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Abstract
This paper presents a Bayesian approach for Gaussian mix-

ture model (GMM)-based speaker identification. Some ap-
proaches evaluate the speaker score of a test speech utterance
using a single data likelihood over the GMM learned by point
estimation methods according to the maximum likelihood or
maximum a posteriori criteria. In contrast, the Bayesian ap-
proach evaluates the score by using the expectation of the data
likelihood over the posterior distribution of the model parame-
ters, which is depicted by Bayesian integration. However, as the
integration can not be derived analytically, we apply Laplace
approximation to the derivations. Theoretically, we show that
the proposed Bayesian approach is equivalent to the GMM-
UBM approach when infinite training data is available for each
speaker. The results of speaker identification experiments on
the TIMIT corpus show that the proposed Bayesian approach
consistently outperforms the GMM-UBM approach under very
limited training data conditions, although the improvement is
not very significant.
Index Terms: speaker identification, speaker recognition,
Bayesian inference, GMM-UBM

1. Introduction
Speaker recognition, a natural and convenient way to authenti-
cate a person’s identity, involves two major tasks: identification
and verification [1]. In automatic speaker identification (ASI),
which is the focus of this paper, the recognition system out-
puts the speaker’s identity for a given test speech utterance;
whereas in automatic speaker verification (ASV), the claimed
speaker identity of a test speech utterance is verified by the sys-
tem. There is an increasing need to develop another technique
of speaker characterization called speaker diarization [2], which
attempts to group together speech segments produced by the
same speaker within an audio stream. Different from the super-
vised nature of ASI and ASV, speaker diarization can be viewed
as an unsupervised speaker recognition task.

The Gaussian mixture model (GMM) has been widely used
in statistical speaker recognition [3, 4, 5, 6, 7, 8, 9]. In [3] and
[4], the authors first successfully applied GMM to the speaker
recognition task, where each speaker GMM was trained with
the maximum likelihood (ML) criterion based on the associ-
ated training data. Subsequently, they applied GMM to ASV,
where the speaker GMM was adapted from a universal back-
ground model (UBM) with the maximum a posteriori (MAP)
criterion to alleviate the overfitting issue inherent in the ML es-
timation method [5]. This approach, which is known as the
“GMM-UBM” method, has been one of the leading approaches
for both ASI and ASV. In addition, GMM-based speaker iden-

tification has also been applied to speaker clustering in some
speaker diarization systems [10, 11].

Although GMM-based ASI using the ML or MAP training
criterion performs reasonably well, the generalization ability of
these two criteria may still be limited due to the intrinsic na-
ture of point estimation. Instead of evaluating the speaker score
of the test speech utterance over an ML- or an MAP-derived
model, we can evaluate it in a fully Bayesian manner. In other
words, we can marginalize the score of the test speech utter-
ance over the posterior distribution of the model parameters
with the given training data [12]. However, the marginalized
score can not be evaluated analytically when GMM is applied
as the speaker model. Therefore, approximation methods, such
as the variational inference [12, 13], are desired.

In this paper, we useLaplace approximationto evaluate the
marginalized score. We show that, theoretically, the proposed
Bayesian ASI approach is equivalent to the GMM-UBM ap-
proach when infinite training data is available for each speaker.
Moreover, with the Bayesian framework, we can consider the
GMM-UBM approach from a fully Bayesian perspective. The
results of ASI experiments on the TIMIT corpus [14] show that
the proposed Bayesian approach consistently outperforms the
GMM-UBM approach under very limited training data condi-
tions.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the Bayesian framework for ASI. Then, we
present our implementations for Bayesian ASI in Section 3. The
experiment results are detailed in Section 4. We then summarize
our conclusions in Section 5.

2. Bayesian speaker identification
framework

Suppose we haveK target speakersS1, · · · , SK . The en-
rollment training data for speakerSi is denoted asŜi =
{s1

i , · · · , sni
i }, whereni is the number of training samples.

Given the test speech utteranceO = {o1, · · · ,oN} with N
samples, ASI can be performed by evaluating the log speaker
posteriors over the test data and choosing the speaker with the
largest posterior score as follows:

Soutput = arg max
Ŝi

ln p(Ŝi|O)

= arg max
Ŝi

ln
p(Ŝi)p(O|Ŝi)

p(O)

= arg max
Ŝi

[ln p(Ŝi) + ln p(O|Ŝi)]. (1)
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Figure 1: The Dirac delta function ofΘi −ΘMAP
i .

Here, we consider the case where the prior importance of each
speaker is the same, i.e.,p(Ŝi) = 1/K for i = 1, · · · , K.
Then, the ASI task involves evaluating the logspeaker evidence
p(O|Ŝi) for each speaker.

To infer the speaker evidence using the Bayesian scenario,
a parametric modelΘi

1 for Ŝi is introduced first. Then, con-
sideringΘi as a latent variable, the speaker evidence can be
expressed as a marginal likelihood as

p(O|Ŝi) =

Z
p(O|Θi)p(Θi|Ŝi)dΘi, (2)

which is the expectation ofp(O|Θi) over p(Θi|Ŝi). For the
case where the posterior distributionp(Θi|Ŝi) is a Dirac delta
function of Θi − ΘMAP

i , as shown in Figure 1,p(O|Ŝi) is
equivalent top(O|ΘMAP

i ). Thus, we may expect that if a more
general, reasonable distribution rather than a delta function is
applied top(Θi|Ŝi), the ASI performance obtained with the
speaker evidence computed by Eq. (2) will be better than that
obtained with the MAP-derived likelihood.

3. Implementation of Bayesian ASI using
GMM and Laplace approximation

First, we briefly review Laplace approximation (LA) in Section
3.1, and then describe our implementation of Bayesian ASI in
Section 3.2.

3.1. Laplace approximation

As shown in Figure 2, Laplace approximation (LA) finds a
Gaussian approximationq(z) for a probability density function
f(z) [12]. The first step of LA involves finding one off(z)’s
modes. Suppose the mode found isz0, the resultant Gaussian
distribution is

q(z) = N (z|z0,A−1), (3)

where
A = −∇∇ ln f(z)|z=z0 . (4)

3.2. Implementation of Bayesian ASI

We apply a GMM withG mixture components to parameterize
speakerSi’s training dataŜi; and denote its parameter set as
Θi = {Θi1 , · · · ,ΘiG}, whereΘig = {wig , µig ,Σig} and
wig , µig , andΣig are, respectively, the weight, mean vector,
and covariance matrix of thegth Gaussian component.

1Θi denotes the parameter set of the model.
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Figure 2: Laplace approximation finds a Gaussian approxima-
tion q(z) for the probability density functionf(z).

Suppose the test data samples are i.i.d., then, we obtain

p(O|Ŝi) =

NY
j=1

p(oj |Ŝi), (5)

where

p(oj |Ŝi) =

Z
p(oj |Θi)p(Θi|Ŝi)dΘi. (6)

However, the calculation of the sample-based speaker evidence
in Eq. (6) is not analytically feasible even if LA is used to Gaus-
sianizep(Θi|Ŝi), unless the following assumptions are made:

A1. Independence between the posteriors of Gaussian com-
ponents:

p(Θi|Ŝi) =

GY
g=1

p(wig , µig ,Σig |Ŝi). (7)

A2. Independence between the weight and the Gaussian pa-
rameters for a mixture component:

p(wig , µig ,Σig |Ŝi) = p(wig |Ŝi)p(µig ,Σig |Ŝi), (8)

where

p(µig ,Σig |Ŝi) = p(Σig |Ŝi)p(µig |Ŝi,Σig ). (9)

A3. p(wig |Ŝi) is a Dirac delta function ofwig − wc
ig

and

p(Σig |Ŝi) is a Dirac delta function ofΣig −Σc
ig

, where
wc

ig
and Σc

ig
are fixed points that can be obtained by

point estimation using the ML or MAP method.

A4.
p(µig |Σc

ig
) ≡ N (µig |µprior

ig
,Σc

ig
). (10)

By applying A1 and A2 to Eq. (6), we have

p(oj |Ŝi) =

GX
g=1

Z
wigN (oj |µig ,Σig )

p(wig , µig ,Σig |Ŝi)dΘig

=

GX
g=1

Z
N (oj |µig ,Σig )p(µig |Ŝi,Σig )p(Σig |Ŝi)

wig p(wig |Ŝi)dΘig . (11)



Then, by applying A3 to Eq. (11), we have

p(oj |Ŝi) =

GX
g=1

wc
ig

Z
N (oj |µig ,Σc

ig
)p(µig |Ŝi,Σ

c
ig

)dµig .

(12)
Eq. (12) shows that only the uncertainty of Gaussian mean
vectors over the speaker training data is considered. Since
µMAP

ig
is a mode ofp(µig |Ŝi,Σ

c
ig

), we use LA to approximate

p(µig |Ŝi,Σ
c
ig

) and obtain

p(oj |Ŝi) '
GX

g=1

Z
wc

ig
N (oj |µig ,Σc

ig
)

N (µig |µMAP
ig

,B−1
ig

)dµig , (13)

where

Big = −∇∇ ln p(µig |Ŝi,Σ
c
ig

)|µig =µMAP
ig

. (14)

Moreover, since the convolution of two independent Gaussians
is another Gaussian, Eq. (13) can be rewritten as

p(oj |Ŝi) '
GX

g=1

wc
ig
N (oj |µMAP

ig
,Σc

ig
+ B−1

ig
). (15)

By using the fact that

p(µig |Ŝi,Σ
c
ig

) =
p(µig |Σc

ig
)p(Ŝi|µig ,Σc

ig
)

p(Ŝi,Σc
ig

)
, (16)

we obtain

Big = −∇∇ ln p(µig |Σc
ig

)|µig =µMAP
ig

−∇∇ ln p(Ŝi|µig ,Σc
ig

)|µig =µMAP
ig

. (17)

Then, by assuming that the training data samples are i.i.d. and
applying A4 to Eq. (17), we obtain

Big = −∇∇ lnN (µig |µprior
ig

,Σc
ig

)|µig =µMAP
ig

−∇∇
niX

k=1

lnN (sk
i |µig ,Σc

ig
)|µig =µMAP

ig

= (1 + ni)(Σ
c
ig

)−1. (18)

From Eq. (18), we observe that whenni → ∞,
p(µig |Ŝi,Σ

c
ig

)' N (µig |µMAP
ig

,B−1
ig

) becomes a delta func-
tion and the uncertainty vanishes. By applying Eq. (18) to Eq.
(15), we finally obtain

p(oj |Ŝi) '
GX

g=1

wc
ig
N (oj |µMAP

ig
, (1 +

1

1 + ni
)Σc

ig
). (19)

In summary, the proposed Bayesian approach performs ASI
by

Soutput = arg max
Ŝi

ln p(O|Ŝi)

' arg max
Ŝi

NX
j=1

ln p(oj |Ŝi), (20)

where the computation ofp(oj |Ŝi) is depicted in Eq. (19).

3.2.1. Estimation of the parameters

In order to calculatep(oj |Ŝi) in Eq. (19), we need to estimate
wc

ig
, µMAP

ig
, andΣc

ig
for g = 1, · · · , G. In this paper, we apply

the MAP estimation method to derive these parameters from
the UBM usingŜi as the training data. When infinite training
samples are available for each speaker, i.e.,ni →∞, it is clear
from Eq. (19) that the Bayesian ASI approach in Eq. (20) is
equivalent to the GMM-UBM approach. In other words, we
can consider the GMM-UBM approach from a fully Bayesian
perspective.

4. Experiments
4.1. Experiment setup

We conducted speaker identification experiments on the TIMIT
acoustic-phonetic continuous speech corpus [14], in which each
speaker has 10 utterances. The regions of silence at the begin-
ning and the end of an utterance were removed according to
the label files in the experiments. The average length of the
utterances after silent region removal was 2.69 seconds. Each
utterance was converted into a stream of 19-dimensional feature
vectors, each consisting of 19 Mel-frequency cepstrum coeffi-
cients extracted using a 32-ms Hamming-windowed frame with
10-ms shifts [15].

We used the standard TIMIT test set, which contained 1680
utterances of 168 speakers, to train the UBM. The UBM was
a GMM with 512 Gaussian components, each with adiagonal
covariance matrix. The speaker identification experiments were
conducted on the standard TIMIT training set, which contained
4620 utterances of 462 speakers.

We used the GMM-UBM approach as our baseline, where
each speaker GMM was learned using MAP estimation with the
UBM as the prior [5]. Only the Gaussian mean vectors were up-
dated, while the weights and covariance matrices were set to the
corresponding parameters of the UBM. The same strategy was
applied in the proposed Bayesian approach. Therefore, for the
speaker evidence calculation in Eq. (19),µMAP

ig
was learned

using MAP estimation with the UBM as the prior, whilewc
ig

andΣc
ig

were set to the corresponding weight and covariance
matrix of the UBM.

4.2. Experiment results

We performed 10-fold cross validation to evaluate the system
performance. In each fold, for each speaker, one utterance was
used as the training data, and the remaining 9 utterances were
used as the test data. To evaluate the effect of the training data
size, we used the first 0.5, 1.0, 1.5, and 2.0 seconds of the train-
ing utterance and the whole utterance as the speaker training
data.

The experiment results are shown in Table 1. The sec-
ond and third columns show the identification accuracy of the
GMM-UBM approach and the proposed Bayesian approach re-
spectively; while the last column shows the significance of the
performance difference between these two approaches evalu-
ated by McNemar’s Test [16]. From the table, it is clear that the
Bayesian approach consistently outperforms the GMM-UBM
approach when the training data size is small; however the dif-
ference becomes insignificant as the amount of training data
increases. The results conform to our claim in Section 3.2.1
that the Bayesian approach is equivalent to the GMM-UBM
approach when infinite training samples are available for each
speaker. In addition, although there is no significant difference



Table 1: Speaker identification accuracy of the GMM-UBM approach and the proposed Bayesian approach on the TIMIT corpus under
different configurations of training data sizes.

Training data size GMM-UBM (%) Bayesian (%) Significance
0.5 sec 30.6558 30.6831 72.00 %
1.0 sec 50.1878 50.2046 67.30 %
1.5 sec 63.5377 63.5642 88.12 %
2.0 sec 70.8560 70.8537 0.00 %

1 utterance 74.4012 74.4204 53.46 %

between the two approaches when the training data size is two
seconds, the Bayesian approach still outperforms the GMM-
UBM approach when the whole training utterance is used to
train the speaker model. In this case, the training data size is
longer than two seconds and varies among the speakers. This
might imply that the Bayesian approach can compensate better
than the GMM-UBM approach in the case of unbalanced train-
ing data sizes for different speakers, although further investiga-
tion is necessary.

The results of the GMM-UBM approach and the proposed
Bayesian approach in Table 1 were obtained based on adapting
the Gaussian mean vectors from the UBM. We have also eval-
uated the case where the Gaussian covariance matrices are also
updated, i.e.,Σc

ig
in Eq. (19) is substituted byΣMAP

ig
. For this

case, the performance of both the GMM-UBM and Bayesian
approaches is slightly better than that obtained by adapting the
Gaussian mean vectors only. Since the results conform to many
research results on applying the GMM-UBM approach in the
speaker identification task, for simplicity, they are not reported
in this paper.

5. Conclusion
In this paper, we have proposed a GMM-based Bayesian ap-
proach for speaker identification, where Laplace approximation
is applied to the Bayesian integration. To evaluate the speaker
score, the proposed approach considers the uncertainty of the
model parameters rather than relies on learning a single model
via point estimation. Theoretically, when infinite training data
is available for each speaker, the proposed approach is equiv-
alent to the GMM-UBM approach because uncertainty about
the model parameters disappears; on the other hand, based on
the proposed approach, we can consider GMM-UBM from a
fully Bayesian perspective. The results of speaker identifica-
tion experiments on the TIMIT corpus show that the proposed
Bayesian approach consistently outperforms the GMM-UBM
approach under very limited training data conditions, although
the improvement is not very significant.
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