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Abstract— Music tags provide different types of semantic 
information about music. Recently, automatic music tagging has 
generated a great deal of interest among researchers in the field 
of music information retrieval. In this paper, we propose a 
posterior weighted Bernoulli mixture model (PWBMM) that 
automatically annotates a song with tags, or retrieves relevant 
songs given a semantic tag. The PWBMM approach improves 
the codeword Bernoulli average (CBA) approach in two ways. 
First, it uses a Gaussian mixture model-based posterior 
representation of music feature vectors, instead of a vector-
quantized representation; second, it incorporates the counts of 
tags assigned to training songs when training the Bernoulli 
mixture model. The results of music tag annotation and retrieval 
experiments on the MajorMiner and CAL-500 datasets 
demonstrate that the PWBMM approach outperforms the CBA 
approach in terms of different evaluation metrics.. 

I. INTRODUCTION 

The goal of automatic music tagging is to model the relations 
between text (tags) and music. There are two types of tasks: 
(1) annotating an unseen song with tags; and (2) retrieving 
songs from a music database by inputting a pre-defined tag. 

In recent years, automatic music tagging has generated a 
great deal of interest among researchers in the field of music 
information retrieval. It has been one of the evaluation tasks 
at the annual Music Information Retrieval Evaluation 
eXchange (MIREX) since 20081. The system that won the 
MIREX 2008 competition [1] models the feature distribution 
of each tag with a Gaussian mixture model (GMM) and 
estimates the model’s parameters with a weighted mixture 
hierarchies expectation maximization algorithm. In contrast to 
using probability models, Eck et al. [2] use AdaBoost to 
automatically generate audio tags for music recommendation. 
In addition, Hoffman et al. [3] propose the codeword 
Bernoulli average (CBA) model, which is a probabilistic 
model that attempts to predict the probability that a tag 
applies to a song based on a vector-quantized (VQ) 
representation of the song's audio. The codewords perform 
well in terms of data representation if there are sufficient 
clusters. However, vector quantization based on the K-means 
derived codebook reveals hard-assignment of a vector in a test 
song to its closest codeword; hence, the differentiation and 
unseen-coverage ability is not good enough. 
                                                           
1 http://www.music-ir.org/mirex/2008/ 

In this paper, we try to improve the CBA approach in two 
ways. First, we replace the K-means derived codebook with a 
GMM. As a result, the sequence of frame-based feature 
vectors of a song is represented by a fixed-dimensional vector 
of posterior probabilities of the Gaussian components in the 
GMM, instead of the normalized counts of the codewords in 
the K-means codebook. Second, the count of a tag assigned to 
a song is taken into account when training the Bernoulli 
mixture model (BMM). The results of music annotation and 
retrieval experiments on two music datasets demonstrate that 
the new approach outperforms the CBA approach. 

The remainder of this paper is organized as follows. In 
Section 2, we describe the music features used in this work 
and how we exploit GMM for music data representation. In 
Section 3, we introduce the Bernoulli mixture model and 
explain how to apply it in music tagging. The experiments 
and results are detailed in Section 4. Finally, we summarize 
our conclusions and discuss our future work in Section 5. 

II. MUSIC DATA REPRESENTATION 

In this section, we describe the music features used in this 
work, and explain how we exploit GMM posterior 
probabilities to transform frame-based feature vectors into 
song-level data representations. 

A. Music Feature Extraction 
To apply our model to predict a song’s tags, we must first 

index the features of the song as a sequence of fixed-
dimensional vectors. We use low-level audio features because 
they contain musical information that can be measured by 
processing the audio signal directly. The features are 
computed within a fixed-size frame of the signal, and the 
values of different features are bundled as a high dimensional 
vector. We do not consider high-level music descriptions, 
such as pitch/melody, tempo/beat, chord/bass-line, 
key/harmonic, and structure, as they are related to musical 
concepts that are difficult to define with exact values, or the 
corresponding extractors may lead to errors and uncertainties. 
For example, the musical structure cannot be described by a 
value, while the pitch extractor might output double pitches. 
A detailed discussion of high-level music descriptions and 
low-level audio features can be found in [4]. 



To extract music features, we use MIRToolbox 1.2.52, a 
free software that comprises approximately 50 audio/music 
feature extractors and statistical descriptors [5]. As shown in 
Table I, we consider four categories of features in this work, 
namely, dynamic, spectral, timbre, and tonal features. All the 
features are extracted in the same fixed-size short-time frame 
to ensure alignment and prevent the mismatch of different 
features in a vector. Therefore, we do not use some dynamic 
frame-length features (e.g., onset, event-density, pulse-clarity, 
attack-slop, and attack-time features), or long-term features 
(e.g., fluctuations and lower-energy features). A sequence of 
70-dimensional feature vectors is extracted from a 16-bit, 
22kHz, mono music waveform with a 50ms frame size and 
0.5 hop shift. 
 

TABLE I 
 THE MUSIC FEATURES USED IN THE FRAME-BASED VECTOR. 

 
Category Feature Description Dim
dynamic rms 1 

centroid: mean 1 
spread: standard deviation 1 
skewness 1 
kurtosis 1 
entropy 1 
flatness 1 
rolloff at 85% 1 
rolloff at 95% 1 
brightness: high frequency energy 1 
roughness: sensory dissonance 1 

 
 
 
 
 
spectral 

irregularity: the degree of variation 
of successive peaks 

1 

zero crossing rate 1 
spectral flux 1 
MFCC 13
delta MFCC 13

 
 
timbre 

delta-delta MFCC 13
key clarity 1 
key mode possibility 1 
HCDF 1 
chroma peak 1 
chroma centroid 1 

 
 
tonal 

chroma 12
 

B. GMM Posterior Representation 
This step converts the frame-based feature vectors of a 

song, which can be of different lengths, into a fixed-
dimensional vector representation of the song. In the CBA 
approach, this is achieved by assigning each feature vector to 
the closest cluster prototype (codeword), and then 
representing the song by a vector of the counts of pre-trained 
codewords, i.e., a bag of codewords representation. Our goal 
is to find a more accurate prototype for each cluster and 
estimate a better generative model to represent the observed 
music features from the real-valued space. The Gaussian 
mixture model (GMM) fits this requirement very well. 
                                                           
2 http://www.jyu.fi/music/coe/materials/mirtoolbox 

Hereafter, we assume that a collection of universal music 
feature vectors is modeled by a large GMM, called the 
Universal Music Features Model (UMFM). The likelihood of 
a music feature vector x is defined as 
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where πk , μk, and Σk are, respectively, the mixture weight, 
mean vector, and covariance matrix of the k-th Gaussian 
mixture component. By considering a “latent music class” as 
a latent variable { }Kk zzzz ,,, 21 K∈  that corresponds to the 
k-th Gaussian mixture component, we obtain the conditional 
probability as follows: 
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To train the UMFM, we first normalize the feature vectors 
in each dimension to mean 0 and standard deviation 1. Then, 
the UMFM is fitted by using the expectation and 
maximization (EM) algorithm to maximize the total 
likelihood of the feature vectors generated by the model with 
respect to the mixture weights, the mean vectors, and the 
covariance matrices. 

With the UMFM, we can estimate the likelihood that a 
given feature vector belongs to a latent music class zk by the 
posterior probability of the class: 
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By assuming that each frame of a given song, sj, contributes 
equally to the song, the posterior probability of a certain latent 
music class can be computed by 
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where xjn is the feature vector of the n-th frame of sj and Nj is 
the number of frames in sj. The posterior representation of a 
song in Eq. (4) can be modeled by the generative process of 
the Bernoulli mixture model, as will be described later. 

III. BERNOULLI MIXTURE MODEL 

The Bernoulli mixture model (BMM), also known as latent 
class analysis [6], is described in detail in [7]. Here, we 
explain how to apply BMM to the music tagging problem 
through a generative process and model inference. We also 
describe how to incorporate the counts of tags assigned to the 
songs in BMM training. Assume that we have a music corpus 
with J songs, each denoted by sj, j=1,…,J; and let each 
song’s tag count cjw, w=1,…,W, be a positive integer 
representing the number of times that tag tw has been assigned 
to song sj. The binary random variable y, with }1 ,0{∈jwy , 
determines whether or not tag tw applies to song sj. 



A. Generative Process 
The generative process of BMM involves two steps. First, 

the probability of the latent class zkw, k=1,…,K, is chosen 
from song sj’s class weight vector θj: 

,)1( jkjkwzp θ== θ    (5) 

where θjk is the weight of the k-th latent class. Then, a case of 
the discrete variable yjw is selected based on the following 
conditional probabilities: 
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where β is a K-by-W parameter matrix recording βkw indexed 
in the k-th row and the w-th column. The conditional 
probability, which models the probability that song sj is 
annotated with tag tw, is a Bernoulli distribution with input 
discrete variable yjw and parameter β for the k-th class zkw. 

The complete joint distribution over y and z is described by 
the model parameter β and weight matrix Θ whose row vector 
is θj of song sj: 
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The marginal log likelihood of the corpus can be expressed as: 
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B. Model Inference by the EM Algorithm 
The Bernoulli mixture model can be fitted with respect to 

parameter β and weight matrix Θ by maximum-likelihood 
(ML) estimation. In this work, we assume that the latent class 
of BMM corresponds to the latent music class of UMFM 
described in Sec. II. In other words, the latent classes have 
been determined by GMM fitting in the music data 
representation stage. Each song that has been transformed into 
the posterior weights θjk = p( zk=1 | sj ) by Eq. (4) provides 
observation information to BMM; therefore, we only need to 
estimate β, which corresponds to the probability of a latent 
music class. We apply the EM algorithm to maximize the log-
likelihood in Eq. (8) in the presence of a latent variable z. 

In the E-step, given the song-level weight matrix Θ and the 
model parameter β, the posterior probability of each latent 
variable zkw can be computed by 
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In the M-step, taking the expectation of the log likelihood 
in Eq. (7) with respect to the posterior probability of the latent 
variable in Eq. (9) yields 
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The derivative of the expectation with respect to βkw is 
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By setting the derivative to zero, we obtain the update rule for 
βkw as follows, 

.
)(

)(

∑
∑

←
j kwj

j jwkwj

kw
z

yz

γ
γ

β    (12) 

From Eq. (12), it is clear that βkw will increase if yjw is 
equal to 1. In other words, yjw =1 makes song sj contribute a 
positive value to βkw once in each EM iteration if the song is 
highly related to the latent music class zkw (i.e., if θjk has a 
large probability). From the tag counts of the music corpus, 
we know that there are different levels of relations between a 
song and a tag. If song sj has a more than one tag count cjw for 
tag tw, we can make song sj contribute to βkw cjw times, rather 
than once, in each iteration of EM. This leads to a new update 
rule for βkw: 
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The new update rule in Eq. (13) is equivalent to duplicating 
song sj cjw times in the training corpus. 

C. Predicting Tags of  New Songs 
An untagged song s is first transformed into a sequence of 

music feature vectors, after which the posterior weight vector 
θ is computed from the pre-trained UMFM. Finally, the score 
for song s to be annotated with tag tw is computed as the 



conditional probability of yw =1 given θ and β, which is the 
model parameter of BMM: 
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The scores associated with the pre-defined tags provide a 
reference for annotating a new song by following the ranking 
of the conditional probabilities of all tags, or by retrieving 
songs in decreasing order of the conditional probabilities of 
the songs associated with a particular tag. 

For the annotation task, the M most likely tags are selected 
by ranking the tag scores for a new song, where M is rounded 
off based on the average number of tags for a song in the 
training corpus. In the retrieval task, the relations between the 
scores and the binary classes (either relevant or irrelevant to a 
tag) are expressed by a quadratic decision function with the 
Mahalanobis metric [8]. The corresponding coefficients can 
be determined by performing an inside validation test on the 
training music corpus. However, we found that, if a song has 
several tags, the scores of the top tags are usually lower than 
those of a song with a few tags. Therefore, the scores of a 
particular tag across different songs might not be comparable. 
To solve this problem, we normalize the scores of different 
tags for a song by subtracting d times their mean, where d 
denotes the “diversity factor” [3]. However, the normalization 
process may yield negative values for some tags. In such 
cases, at the end of the normalization process, we set the 
negative values to positive values smaller than the smallest 
positive value without changing their order. Then, it is 
straightforward to set a pruning threshold on the normalized 
scores for a specific tag across different songs in the retrieval 
process. Since this method maintains the ranking order of tags 
for a song, it does not affect the tagging result of a song. 

Although the GMM posterior representation of a song may 
loose some information about the song, the entire approach is 
very efficient. The computational cost only depends on the 
number of latent classes K and the length of the given song. If 
we ignore the feature extraction part, the tag-prediction 
procedure is almost performed on the fly. Therefore, our 
approach provides an effective solution for an on-line music 
tagging system. 

IV. EXPERIMENTS 

A. Datasets 
We evaluate the proposed approach on the MajorMiner and 

CAL-500 datasets. 
The MajorMiner dataset is taken from the MajorMiner 

website3, which uses a game to gather informative free text 
labels for music. Each player labels randomly given music 
clips (each about 10 seconds long) by listening to them 
without any meta-information. If two players assign the same 
text label to a particular music clip, the label is adopted by the 
system. Hence, each music clip’s tag count is at least 2. 
                                                           
3 http://majorminer.org/ 

Following to the audio tag classification task in the MIREX 
competition, 45 popular tags are considered in the tag set. We 
download all the music clips associated with those 45 tags 
from the MajorMiner website. The resulting dataset contains 
2,441 music clips. In the dataset, the count of a tag given to a 
music clip is at most 12. The 45 tags in the MajorMiner 
dataset are listed in TABLE II. 
 

TABLE   II 
THE 45 TAGS IN THE MAJORMINER DATASET 

 
metal instrumental horns piano guitar
ambient saxophone house loud bass 
fast keyboard electronic noise british
solo electronica beat 80s dance
jazz drum machine strings pop r&b 
female rock voice rap male 
slow vocal quiet techno drum 
funk acoustic distortion organ soft 
country hip hop synth trumpet punk 

 
 CAL-500 is a music corpus comprised of 500 clips of 

popular Western songs [1]. The length of the clips ranges 
from 3 seconds to more than 22 minutes. Each clip has been 
manually labeled by at least three humans based on 135 
predefined musically-relevant concepts, resulting in 174 
distinct text labels. In this work, the “soft-assignment” 
annotation labels with a multi-level degree in the range [0, 1] 
are transformed into positive integer counts ranging from 1 to 
14. We extract our own music features from the clips instead 
of using the MFCC features provided in the corpus. 

B. Model Training 
For each music clip in the training data, we extract a 

sequence of 70-dimensional feature vectors from a 16-bit, 
22kHz, mono music waveform with a 50ms frame size and 
0.5 hop shift. To train the UMFM used in the proposed 
approach and the codebook used in the CBA approach, we 
randomly select 25% of the feature vectors from each clip. 
There are approximately 235,000 vectors for the MajorMiner 
dataset and 821,000 vectors for the CAL-500 dataset. The 
mixture number and the codebook size are set between 
K=128 and K=2,048 for the MajorMiner dataset and between 
K=128 and K=1,024 for the CAL-500 dataset. We do not 
consider the K=2,048 case for the CAL-500 dataset due to the 
high computational overhead. To train the 70-dimensional 
UMFM with 20 iterations on the K-means-derived seeds, we 
utilize the HTK 3.4 toolkit [9]. The codebook is trained by 
using the Matlab software with the stopping criterion that the 
total distance is reduced by less than 0.0001 compared to that 
of the previous iteration. With the UMFM and the codebook, 
we can estimate two kinds of music data representation for a 
song, namely GMM posterior representation and vector 
quantized representation. 

Using the posterior weights estimated by Eq. (4) for each 
training clip, we train the BMM with an initial matrix β, in 
which all entries are set to 0.5. By iteratively updating βkw 
using Eq. (13), the training process stops when the increase 



ratio of the log-likelihood in Eq. (8) is less than 0.0001. This 
method is denoted as PWBMM-II. We can apply the same 
posterior weights in the CBA approach. The BMM is trained 
by using Eq. (12) without considering the tag counts. This 
method is called PWBMM-I. 

C. Experimental Setup 
The experiments evaluate the proposed approach in terms 

of two tasks: annotation and retrieval. We perform three-fold 
evaluation on the MajorMiner dataset based on the MIREX 
audio tag classification evaluation setup, and ten-fold 
evaluation on the CAL-500 dataset following the work in [3]. 
In other words, there are three runs for the MajorMiner 
dataset, each using two folds for training and one fold for 
testing; and ten runs for the CAL-500 dataset, each using nine 
folds for training and one fold for testing. Each dataset is 
divided into folds randomly. 

In the annotation task, the number of tags assigned to a clip 
is the same as the average number of tags assigned to the clip 
in the training data. Under our implementation, the system 
selects the 5 top tags for a clip in the MajorMiner dataset and 
the top 34 tags for a clip in the CAL-500 dataset. The 
performance is evaluated in terms of the precision rate, recall 
rate, and F-measure, as well as the area under the ROC curve 
per clip (Clip AUC). 

In the retrieval task, given a tag, we first apply heuristic 
normalization (described in Sec. III) to the scores of each clip. 
Here, d is set at 1.5. Then, we apply the pre-trained quadratic 
decision function with the Mahalanobis metric on the 
normalized scores to retrieve the relevant clips. In the CBA 
method, given a tag tw, the test clips are ranked according to 
p( yjw =1 | β, θj ) directly. The performance is evaluated in 
terms of F-measure and AUC per tag (Tag AUC). Note that, 
in the CAL-500 dataset, sometimes no clips should be 
retrieved for a tag according to the ground truth label (i.e., no 
clip in the test fold is associated with the tag) due to the large 
and diverse nature of the tag set. We exclude these tags 
because we cannot calculate the AUC for them. 

D. Experimental Results and Discussions 
We evaluate three approaches in the experiments: the CBA 

approach, the PWBMM-I approach and the PWBMM-II 
approach. The CBA approach is taken as the baseline. The 
results of experiments on the MajorMiner and CAL-500 
datasets in terms of the mean and standard deviation (in 
parentheses) of the performance over multiple runs are 
summarized in TABLE III and TABLE IV, respectively. The 
values in bold font represent the best performance of each 
evaluation metric. 

The experiment results suggest that the proposed 
PWBMM-based methods tend to perform better in annotation 
tasks than in retrieval tasks. This is because the methods were 
originally designed for annotation only. To apply them in the 
retrieval task, we adopt a simple normalization strategy to 
manipulate the scores and a simple decision function for 
thresholding. Although the two methods are not good enough, 

their performance is comparable to that of the methods 
evaluated on the MajorMiner dataset at MIREX 20094. 

For the annotation task, the PWGMM-I approach, which 
uses the GMM posterior weights, outperforms the CBA 
approach, while PWGMM-II, which also considers the tag 
counts in training, outperforms PWGMM-I. The results verify 
that using GMM posterior representation and considering the 
tag counts of the training clips in PWBMM training improve 
the performance. 

For the PWBMM-I and PWBMM-II approaches, increasing 
K does not yield a significant improvement, in contrast to the 
CBA approach. This is because GMM-based music data 
representation is more capable of representing the music 
feature space than codebook-based music data representation. 
As a result, the feature modeling ability of a 128-mixture 
UMFM is as good that of the 1,024-centroid codebook in 
terms of the Clip AUC metric. 

The CBA approach outperforms the PWBMM-I approach 
in terms of tag precision on the MajorMiner dataset. A clip in 
the MajorMiner dataset (~10 seconds) is much shorter than a 
clip in the CAL-500 dataset (usually >1 minute). Since short 
clips can not express many scenarios and they are usually 
consistent in only a few musical concepts, their music features 
may show strong and obvious characteristics that really match 
the capability of vector quantization. In other words, 
sometimes a short clip can be well represented by only few 
codewords. However, the good performance of the PWBMM-
I approach on the CAL-500 dataset indicates that a long clip 
prefers a more generative model. This is because a long clip 
contains abundant information that needs a softer 
representation to maintain its entropy within a fixed-
dimensional vector. We have not observed the convergence of 
performance with respect to an increase in K, which means 
the performance may continue to improve as K increases. 

V. CONCLUSIONS 

In this paper, we have proposed a new music tag annotation 
and retrieval approach based on the posterior weighted 
Bernoulli mixture model. The approach uses GMM posterior 
representation of music feature vectors and incorporates the 
tag counts of training songs when training the Bernoulli 
mixture model. The results of experiments on the MajorMiner 
and CAL-500 datasets demonstrate that our approach 
outperforms the CBA approach in terms of different 
evaluation metrics. 

The current implementation gives equal weight to each 
frame in a song when constructing the song-level GMM 
posterior representation. We believe that short-time fixed-
length frames do not contribute equally to a specific tag. For 
long music clips in particular, different segments, such as the 
intro, verse, chorus, and bridge, may provide different 
information to trigger an individual’s perception of the music. 
Through automatic music structure analysis and segmentation, 
we may find a better way to represent a song by giving higher 
weights to those music hooks. In our future work, we will also 
                                                           
4 http://www.music-ir.org/mirex/wiki/2009:MIREX2009_Results 



TABLE III 
 THE RESULTS OF EXPERIMENTS ON THE MAJORMINER DATASET. 

 
 Annotation (M = 5) Retrieval 

Model Name K Clip F-Measure Precision Recall Clip AUC Tag F-Measure Tag AUC 
128 0.4415  (0.0052) 0.4391 0.4458 0.8476  (0.0005) 0.1450  (0.0023) 0.7452  (0.0043)
256 0.4516  (0.0113) 0.4498 0.4557 0.8532  (0.0038) 0.1586  (0.0068) 0.7491  (0.0143)
512 0.4596  (0.0159) 0.4555 0.4600 0.8532  (0.0070) 0.1741  (0.0088) 0.7558  (0.0065)

1,024 0.4660  (0.0116) 0.4646 0.4705 0.8597  (0.0017) 0.1734  (0.0051) 0.7555  (0.0061)

 
 

CBA 

2,048 0.4668  (0.0072) 0.4662 0.4708 0.8606  (0.0039) 0.1806  (0.0098) 0.7536  (0.0033)
128 0.4576  (0.0054) 0.4116 0.5174 0.8609  (0.0014) 0.2703  (0.0069) 0.7494  (0.0038)
256 0.4614  (0.0078) 0.4153 0.5210 0.8629  (0.0097) 0.2780  (0.0049) 0.7501  (0.0076)
512 0.4663  (0.0075) 0.4205 0.5271 0.8635  (0.0073) 0.2785  (0.0048) 0.7505  (0.0097)

1,024 0.4690  (0.0095) 0.4230 0.5294 0.8662  (0.0050) 0.2838  (0.0035) 0.7601  (0.0035)

 
 

PWBMM-I 

2,048 0.4767  (0.0070) 0.4292 0.5414 0.8680  (0.0043) 0.2869  (0.0055) 0.7637  (0.0087)
128 0.4772  (0.0131) 0.4340 0.5265 0.8652  (0.0016) 0.2725  (0.0024) 0.7653  (0.0106)
256 0.4805  (0.0131) 0.4305 0.5305 0.8717  (0.0035) 0.2762  (0.0052) 0.7640  (0.0097)
512 0.4868  (0.0168) 0.4399 0.5292 0.8752  (0.0044) 0.2803  (0.0029) 0.7674  (0.0056)

1,024 0.4891  (0.0117) 0.4435 0.5339 0.8720  (0.0052) 0.2828  (0.0022) 0.7736  (0.0048)

 
 

PWBMM-II 

2,048 0.4945  (0.0148) 0.4493 0.5402 0.8782  (0.0060) 0.2900  (0.0067) 0.7810  (0.0070)
 

TABLE IV 
 THE RESULTS OF EXPERIMENTS ON THE CAL-500 DATASET. 

 
 Annotation (M = 34) Retrieval 

Model Name K Clip F-Measure Precision Recall Clip AUC Tag F-Measure Tag AUC 
128 0.5664  (0.0042) 0.5706 0.5730 0.8554  (0.0051) 0.2686  (0.0079) 0.6796  (0.0086)
256 0.5689  (0.0013) 0.5735 0.5753 0.8568  (0.0054) 0.2682  (0.0040) 0.6823  (0.0111)
512 0.5710  (0.0154) 0.5733 0.5796 0.8579  (0.0071) 0.2747  (0.0076) 0.6919  (0.0158)

 

CBA 

1,024 0.5738  (0.0153) 0.5787 0.5800 0.8600  (0.0076) 0.2743  (0.0160) 0.6979  (0.0101)
128 0.5716  (0.0150) 0.5730 0.5751 0.8575  (0.0085) 0.3255  (0.0069) 0.6995  (0.0187)
256 0.5723  (0.0152) 0.5744 0.5760 0.8596  (0.0087) 0.3271  (0.0170) 0.6992  (0.0270)
512 0.5770  (0.0172) 0.5746 0.5810 0.8601  (0.0076) 0.3309  (0.0138) 0.7007  (0.0171)

 

PWBMM-I 

1,024 0.5789  (0.0137) 0.5783 0.5845 0.8651  (0.0036) 0.3328  (0.0098) 0.7004  (0.0184)
128 0.5782  (0.0179) 0.5796 0.5755 0.8605  (0.0090) 0.3284  (0.0183) 0.7045  (0.0179)
256 0.5774  (0.0195) 0.5782 0.5774 0.8621  (0.0068) 0.3336  (0.0132) 0.7071  (0.0151)
512 0.5804  (0.0195) 0.5811 0.5794 0.8621  (0.0058) 0.3336  (0.0099) 0.7099  (0.0171)

 

PWBMM-II 

1,024 0.5853  (0.0190) 0.5829 0.5856 0.8695  (0.0035) 0.3329  (0.0167) 0.7128  (0.0087)
 

consider more temporal music characteristics to improve the 
GMM posterior representation. 
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