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ABSTRACT

Audio tags correspond to keywords that people use to de-
scribe different aspects of a music clip, such as the genre,
mood, and instrumentation. Since social tags are usually as-
signed by people with different levels of musical knowledge,
they inevitably contain noisy information. By treating the
tag counts as costs, we can model the audio tagging prob-
lem as a cost-sensitive classification problem. In addition, tag
correlation is another useful information for automatic audio
tagging since some tags often co-occur. By considering the
co-occurrences of tags, we can model the audio tagging prob-
lem as a multi-label classification problem. To exploit the
tag count and correlation information jointly, we formulate
the audio tagging task as a novel cost-sensitive multi-label
(CSML) learning problem. The results of audio tag annota-
tion and retrieval experiments demonstrate that the new ap-
proach outperforms our MIREX 2009 winning method.

Index Terms— Audio tag annotation, audio tag retrieval,
tag count, cost-sensitive learning, multi-label

1. INTRODUCTION

With the explosive growth of digital music available on the
Web, organizing and retrieving desirable music from online
music databases is becoming an increasingly important and
challenging task. Until recently, most research on music in-
formation retrieval (MIR) focused on classifying musical in-
formation with respect to the genre, mood, and instrumen-
tation. Social tags, which have played a key role in the de-
velopment of “Web 2.0” technologies, have become a ma-
jor source of musical information for music recommendation
systems. Music tags are free text labels associated with dif-
ferent aspects of a music clip, like the artist, genre, emotion,
mood, and instrumentation [1]. Consequently, music tag clas-
sification seems to be a more complete and practical means
of categorizing musical information than conventional music
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classification. Given a music clip, a tagging algorithm can au-
tomatically predict tags for the clip based on models trained
from music clips with associated tags collected beforehand.

Automatic audio tagging has become an increasingly ac-
tive research topic in recent years [2–5], and it has been one of
the evaluation tasks at the Music Information Retrieval Evalu-
ation eXchange (MIREX) since 20081. We participated in the
MIREX 2009 audio tag classification task and our system was
ranked first in terms of the area under the receiver operating
characteristic curve (AUC) given tag and F-measure [3]. This
paper aims to improve our MIREX winning method by using
the tag count information to train a cost-sensitive classifier
that minimizes the training error associated with tag counts,
and using multi-label classification to handle tag correlation
information.

Social tagging, also called folksonomy, enables users to
categorize content collaboratively by using tags. Unlike the
classification labels annotated by domain experts, the infor-
mation provided in social tags may contain noise or errors.
Table 1 shows some examples of audio clips with associated
tags obtained from the MajorMiner [6] website2, a web-based
game for collecting music tags. Consider that the tag count
indicates the number of users who have annotated the given
audio clip with the tag. We believe that tag count information
should be considered in automatic audio tagging because the
count reflects the confidence degree of the tag. Take the first
audio clip from the song Hi-Fi as an example. It has been an-
notated with “drum” nine times, with “electronic” three times
and with “beat” twice. Therefore, the tag “drum” is the most
salient property of the audio clip. The count also reflects the
popularity of the tag, song, artist, and album. In addition, a
tag with a small count may contain noisy information, which
would affect the training of the tag classifier. The cues indi-
cating noisy labeling are not considered in previous methods.
To solve the problem, we propose using the tag count infor-
mation to train a cost-sensitive classifier that minimizes the
training error associated with tag counts.

Tag correlation is another useful information for auto-

1http://www.music-ir.org/mirex/2008
2http://www.majorminer.org/



Table 1. Some Examples of Audio Clips with Associated Tags Obtained from the MajorMiner Website
Song Album Clip Start Time Artist Associated Tags (Tag Counts)

Hi-Fi Head Music 0:00 Suede drum (9), electronic (3), beat (2)
Universal synth(7), electronic(4), vocal(5), female(4)
Traveler Talkie Walkie 4:00 Air voice(2), slow(2), ambient(2), soft(3), r&b (3)

Safe Travis 1:00 The Invisible Band guitar(5),male(4),pop(4),vocal(3),acoustic(2)
Moritat Saxophone Colossus 0:50 Sonny Rollins jazz(9), saxophone(12)

Pacific Heights Ascension 2:30 Pep Love male(4), synth(2),hip hop(8),rap (6)
male(6), pop(3), vocal(5), piano(7)

Trouble The Chillout 3:40 Coldplay voice(3), slow(2), soft(2), r&b(2)

matic audio tagging since some tags often co-occur. For
example, a song with the “hip hop” tag is more likely to be
also annotated with “rap” than “jazz”, while a song with the
“dance” tag is less likely to be also annotated with “guitar”
than “drum”. However, previous research [2, 3] usually as-
sumes that the tags are independent and, thus, transforms the
tag prediction problem into many independent binary classi-
fication problems, each for an individual tag. This manner
inevitably lose the co-occurrence information of multiple tags
that might be useful for automatic audio tagging. We believe
that multi-label classification, in which an instance can be
associated with multiple labels, is more suitable for the task
than binary classification. To exploit the tag count and corre-
lation information jointly, we formulate the audio tagging task
as a novel cost-sensitive multi-label (CSML) learning prob-
lem and propose a cost-sensitive stacking method to solve
it. To the best of our knowledge, cost-sensitive multi-label
classification has not been studied previously.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of our audio tag annotation
and retrieval system. Then, we present the proposed cost-
sensitive multi-label classification method in Section 3. We
discuss the results of our experiments in Section 4. Finally,
Section 5 contains some concluding remarks.

2. SYSTEM OVERVIEW

Fig. 1 shows the work flow of our audio tag annotation and
retrieval system. We first split an audio clip into homoge-
neous segments, and then extract audio features with respect
to various musical information, including dynamics, rhythm,
timbre, pitch, and tonality, from each segment. The features
in frame-based feature vector sequence format are further rep-
resented by their mean and standard deviation such that they
can be combined with other segment-based features to form
a fixed-dimensional feature vector for a segment. The predic-
tion score for an audio clip given by a classifier is the average
of the scores for its constituent segments. The classification
models will be detailed in the next section.

3. COST-SENSITIVE MULTI-LABEL LEARNING

We first introduce the concept of multi-label classification.
Let x ∈ Rd, which is a d-dimensional input space, and y ⊆
L = {1, 2, ..., K}, which is a finite set of K possible labels.
Given a training set (xi, yi)N

i=1 that contains N samples, the
goal of multi-label classification is to learn a classifier h :
Rd → 2L such that h(x) predicts a set of proper labels for
an unseen sample x. The set of labels can be represented by
y = (y1, y2, ..., yK) ∈ {1,−1}K .

Cost-sensitive multi-label (CSML) classification extends
multi-label classification by coupling a cost vector ci ∈ RK

to each training sample (xi, yi). The j-th component cij de-
notes the cost to be paid when the label yij is misclassified.
More specifically, cij is a false negative cost when yij = 1,
and a false positive cost when yij = −1. In this work, the
false negative cost is set as the tag count while the false posi-
tive cost is uniformly set to one. We extend an existing multi-
label learning algorithm, namely stacking, to its cost-sensitive
version to solve the CSML problem.

3.1. Cost-sensitive Classification

Support vector machine (SVM) and AdaBoost are two very
effective learning algorithms for classification problems. In
this subsection, we describe their cost-sensitive versions.

The training process of SVM attempts to maximize the
margin and minimize the training error at the same time. To
train the cost-sensitive SVM classifier for the j-th tag, the
objective function is formulated as follows:

min
w,b,ξ

1
2wT w + C

N∑
i=1

cijξi,

s.t. yij(wT φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , N,

(1)

where w is the parameter to be learned by solving a mini-
mization problem; φ is a function that maps the input data to
a higher dimensional space; and C is a tuning parameter that
exists in the general SVM form. Note that each cost cij is
associated with a corresponding training error term ξi.



Fig. 1. The work flow of the proposed audio tag annotation
and retrieval system.

AdaBoost finds a highly accurate classifier by combin-
ing several base classifiers, even though each of them is only
moderately accurate. Cost-sensitive AdaBoost [7] maintains
a weight vector Dt for the training instances in each iteration
and uses a base learner to find a base classifier to minimize
the weighted error according to Dt. When training the j-th
tag classifier, in each iteration, the weight vector Dt is up-
dated by

Dt+1(i) =
Dt(i) exp(−αtcijyijht(xi))

Zt
, (2)

where ht(xi) is the prediction score of the base classifier ht

for instance xi; Zt is a normalization factor that makes Dt+1

a distribution; and αt can be calculated based on different
versions of AdaBoost. We use a decision stump as the base
learner in this study.

3.2. Cost-sensitive Stacking

Stacking is a method of combining the outputs of multiple
independent classifiers for multi-label classification. Assume
that the K tags are independent and their tag classifiers are
trained independently. The first step of using stacking for

multi-label classification is to use the outputs of all classifiers,
f1(x), f2(x), ..., fK(x), as features to form a new feature set.
Let the new feature be z = (z1, z2, ..., zK). Then, we can use
the new feature set together with the true label to learn the
parameters wij of the stacking classifiers:

hi(z) =
K∑

j=1

wijzj , (3)

where the weight wij will be positive if tag j is positively cor-
related to tag i; otherwise, wij will be negative. The stacking
classifiers can recover misclassified tags by using the correla-
tion information captured in the weight wij .

Inspired by the idea of stacking, we improve our MIREX
2009 classifier ensemble by using cost-sensitive stacking.
We first train K SVM-based and K AdaBoost-based cost-
sensitive binary tag classifiers by using the tag counts as costs
independently. Then, we use stacking SVM to respectively
process the outputs of the two sets of binary tag classifiers.
Finally, the stacked SVM and AdaBoost scores are merged by
using either a probability ensemble to annotate an audio clip,
or a ranking ensemble to rank all the audio clips according to
a tag. For the ranking ensemble, we first rank the prediction
scores of individual classifiers independently. Then, a clip’s
final score is the average of the rankings derived by the two
classifiers. For the probability ensemble, we transform the
output score of each component classifier into a probability
score with a sigmoid function, and then compute the average
of the two probability scores.

4. EXPERIMENTS

The experiments follow our previous setup of the MIREX
2009 extended experiments reported in [3]. We consider
forty-five tags, which are associated with 2,472 audio clips
downloaded from the website of the MajorMiner game. The
duration of each clip is 10 seconds or less.

Given an audio clip, we divide it into several homoge-
neous segments by using an audio novelty curve [8]. Then,
using MIRToolbox 1.13, we extract a 174-dimensional au-
dio feature vector from each segment to reflect various types
of musical information, such as the segment’s dynamics,
rhythm, timbre, pitch, and tonality.

4.1. Model Selection and Evaluation

We adopt three-fold cross-validation in the experiments. The
audio clips are randomly split into three subsets. In each fold,
one subset is selected as the test set and the remaining two
subsets serve as the training set. The test set for (outer) cross-
validation is not used to determine the classifier’s settings. In-
stead, we perform inner cross-validation on the held out data

3http://users.jyu.fi/ lartillo/mirtoolbox/



Table 2. Audio Tag Annotation and Retrieval Results of Cost-
sensitive Multi-label Classification Methods (in %)

Mean
±St.d. Clip AUC F-measure Tag AUC

MIREX 87.73±0.09 30.27±0.46 79.41±0.25
Ada- CS Only 88.54±0.07 32.20±0.41 80.56±0.20
Boost ML Only 88.50±0.11 31.18±0.45 79.91±0.31

CSML 88.82±0.09 32.42±0.45 80.69±0.28

MIREX 88.29±0.10 31.77±0.37 80.01±0.27
CS Only 88.96±0.06 32.93±0.38 81.12±0.20

SVM ML Only 89.00±0.08 32.70±0.36 81.41±0.19
CSML 89.64±0.07 34.22±0.41 82.06±0.23

MIREX 88.47±0.07 33.35±0.40 81.89±0.19
Ens- CS Only 89.21±0.06 34.32±0.41 82.54±0.18

emble ML Only 89.12±0.07 33.59±0.37 82.37±0.18
CSML 89.57±0.06 34.69±0.46 82.85±0.17

from the training set to determine the cost parameter C in
SVM and the number of base learners in AdaBoost. Then, we
retrain the classifiers with the complete training set and the se-
lected parameters, and perform outer cross-validation on the
test set. We use the AUC as the model selection criterion.

To calculate the tag F-measure, we need a threshold to bi-
narize the output score. In the audio retrieval task, we want
to retrieve audio clips from an audio database. We assume
that each tag’s class has similar probability distributions in
the training and testing audio databases; therefore, we set the
threshold with the class’s distribution obtained from the train-
ing data. In the audio annotation task, we annotate the test
audio clips one by one. We set the threshold to 0.5 because
the calibrated probability score ranges from 0 to 1.

4.2. Experiment Results

Our experiment results in terms of the metrics corresponding
to the audio tag retrieval task and the audio tag annotation task
are summarized in Table 2. Because the cross-validation split
used in MIREX 2009 is not available, we perform three-fold
cross-validation one hundred times and calculate the mean
and standard deviation of the results to reduce the variance
of different cross-validation splits. We compare the CSML
methods, which exploit the tag count and correlation infor-
mation jointly, with the MIREX 2009 winning method. We
also evaluate the cost-sensitive binary classification (CS only)
methods and the cost-insensitive multi-label (ML only) clas-
sification methods. The Ensemble methods use probability
ensemble to generate Clip AUC and ranking ensemble to gen-
erate F-measure and Tag AUC. The ML only methods employ
stacking and the CSML methods employ cost-sensitive stack-
ing.

The results demonstrate the effectiveness of CSML learn-
ing. The improvement in F-measure is the most signifi-
cant: 2.15% for AdaBoost-CSML versus AdaBoost-MIREX,

2.45% for SVM-CSML versus SVM-MIREX, and 1.34%
for Ensemble-CSML versus Ensemble-MIREX. The cost-
sensitive stacking methods outperform their cost-insensitive
binary classification counterparts in terms of all evaluation
metrics (cf. AdaBoost-CS only versus AdaBoost-MIREX
and AdaBoost-CSML versus AdaBoost-ML only). From the
table, we observe that both the CS only methods and the
ML only methods are effective and the CS only methods are
slightly better than the ML only methods. We also observe
that the standard deviations of the results are very small.

5. CONCLUSION

The tag counts and the tag co-occurrences are important in-
formation that should be considered in automatic audio tag-
ging. To exploit the tag count information, we have pro-
posed formulating the audio tagging task as a cost-sensitive
classification problem in order to minimize the misclassified
tag counts. To exploit the tag correlation information, we
have proposed formulating the audio tagging task as a multi-
label classification problem. To exploit the tag count and
correlation information jointly, we have proposed formulat-
ing the audio tagging task as a cost-sensitive multi-label clas-
sification problem and extended a multi-label classification
method, namely stacking, to its cost-sensitive version to solve
the problem. To the best of our knowledge, cost-sensitive
multi-label classification has not been studied previously.
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