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ABSTRACT

Most Web videos are captured in uncontrolled environments
(e.g. videos captured by freely-moving cameras with low res-
olution); this makes automatic video annotation very difficult.
To address this problem, we present a robust moving fore-
ground object detection method followed by the integration of
features collected from heterogeneous domains. We advance
SIFT feature matching and present a probabilistic framework
to construct consensus foreground object templates (CFOT).
The CFOT can detect moving foreground objects of interest
across video frames, and this allows us to extract visual fea-
tures from foreground regions of interest. Together with the
use of audio features, we are able to improve resulting anno-
tation accuracy. We conduct experiments and achieve promis-
ing results on a Web video dataset collected from YouTube.

Index Terms— Video annotation, object detection

1. INTRODUCTION

Web video annotation receives increasing attention due to a
large amount of Web-based applications such as online video
sharing and search. Typically, these applications rely on the
associated tag information, but noisy or incorrect tags anno-
tated by the users will degrade the performance of annotation,
retrieval, or higher-level tasks such as activity and behavior
analysis. Therefore, the development of an automated anno-
tation technique for Web video data becomes necessary, and
its success would benefit the above applications.

Another challenge for applications of Web videos is that
not all the multimedia data on the Web can be used as a satis-
factory training data resource. For example, some Web videos
are captured by cell phone cameras with significant camera
motion, cluttered background, and noisy sound present. Many
of the existing Web videos are still with low image resolu-
tion, low bit rate, or with blocking effects. Another problem
is that, the recorded audio track of a video sequence might not
be relevant to the subject of interest due to background noise
captured by the microphone, e.g. crowd chatting in the back-
ground. In other words, most Web-based video data are cap-
tured under uncontrolled conditions, and this would prohibit
the direct use of this type of data for real-world applications.

Fig. 1. The system diagram of our approach.

In this paper, we propose an automated video annotation
method which is able to detect and label the foreground region
of interest using appearance and motion information. More
specifically, we focus on annotating rigid moving objects such
as cars, airplanes, etc. in Web videos, and we consider videos
with only one foreground object present. We propose to con-
struct consensus foreground object templates (CFOT) to ad-
dress moving object detection. Our method is robust to signif-
icant camera motions (e.g. panning, tilting, zooming, etc.) or
low contrast environments. We also consider the integration
of features collected in different domains, which further im-
proves the annotation accuracy. Figure 1 depicts the our pro-
posed framework, and its output will be the video annotation
results with both object location and class label information.

2. RELATED WORK

Detecting moving foreground objects from videos taken by
non-stationary cameras (or cameras with low resolution) has
been a challenging task. In [1], Sheikh and Shah proposed
to build foreground and background models by using a joint
representation of pixel color and spatial structures. Patward-
han et al. decomposed a scene into layers and used maximum
likelihood techniques to assign pixels into different layers for
foreground estimation [2]. Although attractive results were
reported, only videos which are captured by a camera with
nominal to mild motion can be handled.

In order to detect foreground objects in uncontrolled
videos, a typical technique is to first estimate the global mo-
tion of the camera, and the motion induced by foreground
objects is thus considered as outlier. Meng and Chang [3] uti-
lized the motion vector field to generate the global motion of



Fig. 2. Our framework for foreground object detection.

each image frame. Irani and Anandan [4] proposed to detect
moving objects using 2D and 3D parameters. Wang et al. [5]
used motion vectors in MPEG videos to estimate affine pa-
rameters for zooming and translation. Nevertheless, estima-
tion of camera motion is still a challenging task due to back-
ground clutter present in a scene, or the appearance and scale
variations of the foreground objects, etc. Another category
of object detection algorithms is to model a reference back-
ground image. Felip et al. [6] estimated the dominant motion
from the sampled motion vectors, and the alignment based
on inter-image homography can be achieved by the dominant
motion. Zhao et al. [7] proposed to detect objects from videos
captured by a non-static camera in an indoor scene with an in-
crementally learned scene model. Their method is based on a
matching scheme using SIFT features and homography calcu-
lation. However, this setting may not be practical for videos
captured in outdoor scenes or with complex backgrounds.

Due to limited quality of Web video data, recent work on
Web video classification typically considers the use of mul-
tiple types of features. Most prior methods utilized various
static features such as appearance, color, etc. of each frame,
while some also considered space-time features to extract mo-
tion information [8, 9]. Methods which combine features
from different domains (e.g. text in [8, 10] and audio in [10])
also exist. However, as pointed out in [11], most existing
approaches on video classification cannot be easily general-
ized to applications of web video clips. Due to low qual-
ity and diversity of Web videos, the direct use of web-based
data could dramatically degrade the performance of the de-
signed algorithm. Moreover, they cannot be easily extended
to address video annotation problems. As a result, it usu-
ally requires some preprocessing techniques to obtain refined
data/features to improve the performance of Web video clas-
sification/annotation. For example, a hierarchical taxonomy
structure was proposed in [10] to alleviate noisy data, and in
[8], the authors pruned the motion features using spatial and
temporal statistics. In our work, in order to reduce the effect
of camera motion and cluttered background information, we
present a unique way to extract the region of interest for the
foreground object (Section 2), followed by the integration of
features from multiple domains (Section 3).

3. FOREGROUND OBJECT DETECTION

Our method for foreground object detection consists of two
major steps: construction of the consensus foreground object
template (CFOT) and its use for object detection. Figure 2
illustrates the framework, and Figure 3 shows a detailed flow
chart of the construction of CFOT.

3.1. Consensus Foreground Object Template (CFOT)

3.1.1. Foreground region estimation

Scale-invariant feature transform (SIFT) [12] is a popular
computer vision algorithm, which is used to detect local in-
terest points in an image, and to describe the associated ap-
pearance information. As an initial stage of our foreground
feature point extraction, we apply the SIFT feature detector
in each frame of a video sequence.

For each pair of corresponding SIFT feature points in ad-
jacent frames, a motion vector can be calculated. Assuming
that the motion vectors extracted from moving foreground ob-
jects are significantly different from those from background
clutter, we apply a vector clustering algorithm to perform ini-
tial foreground region extraction. A quantization process ap-
plied on the magnitude of the motion vector is used to catego-
rize the motion vectors into a small number of classes. Each
motion vector is assigned with a corresponding quantization
index, and a histogram of these indices is calculated. For this
histogram, the bin with the maximum value is identified as
foreground, and the associated SIFT interest points are con-
sidered as initial foreground points. More specifically, let q̂t
denote the quantization index of the histogram histt at frame
t with the maximum value, and thus q̂t satisfies:

q̂t = arg max
q∈{1,2,··· ,Q}

(histt(q)) , (1)

where Q represents the number of quantization categories (we
chose Q = 6, and did not observe the results will be sensitive
to this choice). Finally, a set of foreground interest points at
frame t , denoted by Ft, can be defined as follows:

Ft = {fi : g(vi) = q̂i and i ∈ {1, 2, . . . , Nt}}, (2)

where vi is the motion vector of feature point fi, g(·) is the
quantization procedure for vi, and Nt is the number of motion
vectors obtained from two adjacent frames.

Once the foreground interest points are obtained, we de-
fine a candidate foreground region Rt according to the spatial
distribution of Ft with a Gaussian distribution assumption.
More specifically, let (x, y) denote the centroid of the fore-
ground SIFT points, and σx and σy represent the correspond-
ing standard deviation, we thus use the upper left corner (x−
2σx, y−2σy) and the bottom-right corner (x+2σx, y+2σy)
to set the boundary of Rt. We note that the recently proposed
SIFT flow [13] also advocates SIFT matching for determining



Fig. 3. Construction of consensus foreground object template.

corresponding feature points. However, they focus on appli-
cations of image alignment and registration, not moving fore-
ground object detection in videos (as we do in this paper).

3.1.2. Consensus Foreground Object Template

With the candidate foreground region Rt, we further define
the foreground object probability, which indicates how likely
a pixel at location (x, y) within Rt belongs to foreground.
This probability is calculated as follows:

Pt(x, y) =
{
Pt−1(x − △xt, y − △yt) · λ + (1 − λ), if (x, y) ∈ Rt;

Pt−1(x, y) · λ, otherwise ,

(3)
where λ = 0.95 is an update factor, as suggested in [14]. The
notations △xt and △yt are x and y components of the average
foreground motion vector at frame t, respectively. The final
Rt is thus calibrated according to △xt and △yt, and we use
the calibrated Rt to construct an object image template up to
the T -th frame, in which each pixel value is calculated as:

IT (x, y) =

{
T∑

t=1

It(x, y)

}
/cmap,T (x, y), if (x, y) ∈ Rt.

(4)
It(x, y) returns the pixel value of (x, y) at frame It. To nor-
malize this template, a counter map cmap,T (x, y) in the de-
nominator records the number of frames (out of T) that a pixel
belongs to the foreground region. As a result, each foreground
object pixel contributes 1

cmap,T (x,y) of its value to the final av-
erage foreground image. Thus, the final CFOT is produced by
using the averaged foreground pixel model IT (x, y), followed
by an adaptive thresholding of the associated foreground ob-
ject probability Pt(x, y).

3.1.3. Re-start mechanism for CFOT updates

For Web videos, it is not surprising that the appearance, scale,
illumination, etc. of a moving object can vary significantly
throughout the video. Under these severe variations, the
aforementioned foreground probability model will not be suf-
ficient to provide effective information when constructing the
CFOT (as shown in Figure 4). In other words, use of a single
CFOT will not be able to produce satisfying object detection
results, since such a CFOT will contain noisy information.

In order to alleviate these problems, a re-calculation for
CFOTs becomes necessary. We use the local maximum val-
ues observed in σx, σy , and sum of absolute difference (SAD)
to determine whether we should re-start the CFOT gener-
ation process, including the reset of all probability mod-

Fig. 4. Examples when the recalculation of CFOT is required.
(a) Too much background, (b) blurring effects, and (c) signif-
icant scale and appearance variations observed in CFOT.

els in previous stages. At a frame t, we compute the fol-
lowing indicating vector r(t) = [r[1](t), r[2](t), r[3](t)]T =
[σx(t), σy(t), SAD(t)]T . If we observe a significant change
in σx, σy , or SAD, we will recalculate the CFOT. Thus, the
time instant m for this re-start mechanism is determined by
the local maximums of σx, σy , or SAD (using MATLAB
function FINDPEAKS), i.e.

m[j] = arg local-max
t

{r[j](t)}, j = 1, 2, 3. (5)

3.2. Foreground Object Detection Using CFOTs

To detect moving foreground objects, we use the CFOT as a
query image over a number of video frames, and this CFOT
will look for similar image patterns in each frame within this
period of time (before an updated CFOT needs to be calcu-
lated). A similarity test based on SAD is performed to exhaus-
tively search for a region in each frame which best matches
the CFOT. Once this foreground region is determined, as the
completion of the foreground detection process, we use a rect-
angle to mark the foreground region, as shown in Figure 2.

4. AUDIO AND VISUAL CLASSIFICATION

4.1. Audio Classification

To extract audio features for video annotation and for fea-
ture and classifier-level fusion, we convert audio signals of
each video sequence into a stream of 19-dimensional Mel-
frequency cepstrum coefficients (MFCCs) using a 32-ms
Hamming-windowed frame with 10-ms shifts. Since Gaus-
sian mixture model (GMM) has been widely used in audio
classification [15, 16], we train a GMM for each class, and
the output of a test video is determined by the maximum log-
likelihood of the GMMs. To determine the number of com-
ponents for each GMM, we apply the SGML algorithm [17]
based on Bayesian information criterion.

4.2. Visual Classification

4.2.1. Visual features considered

In our work, we advance dense SIFT [12] and histogram of
oriented gradients (HOG) descriptors [18] to capture appear-
ance and shape information from video frames, respectively.



We do not use the salient SIFT descriptors (with local interest
points detected at different image scales), since they cannot
sufficiently describe the objects which are relatively small or
with low contrast in an image. We also found that such a
small percentage of local descriptors cannot provide adequate
descriptive information for multi-class object categorization
problems. Therefore, we choose to extract dense SIFT de-
scriptors. Although the color rgSIFT descriptors which add
appearance features from R and G color channels have been
shown to work well in several applications, we did not find
them useful in recognizing artificial objects with large vari-
ations of color (as the objects in our dataset do). Therefore,
we do not use color salient descriptors. As for the HOG de-
scriptors, we consider a dense grid of uniformly spaced cells
and extract gradient histograms. We did not consider space-
time features, since the foreground objects in our dataset are
all moving objects, and thus motion information does not pro-
vide any additional discriminating ability.

4.2.2. Learning sparse feature representation

Sparse coding (SC) has been shown to be an effective tech-
nique in many vision tasks [19]. To produce sparse represen-
tation for both SIFT and HOG descriptors, we use the soft-
ware package developed by Mairal et al. [20] to learn the
dictionaries (one for each feature), and to encode the associ-
ated feature descriptor. The parameter λ, which controls the
sparsity of the encoded coefficient vector, is set to 0.2 in our
experiments. The average and the maximum number of non-
zero elements in the encoded coefficient vectors are 4.87 and
18 for SIFT, and 5.43 and 16 for HOG (both out of K = 225,
which is the size of the dictionary). After obtaining the en-
coded sparse coefficient vectors for both features, we use the
max pooling technique to covert the SIFT (HOG) descriptors
from each frame into a K-dimensional feature vector.

5. EXPERIMENTAL RESULTS

5.1. Web Video Dataset

We collect a complex, uncontrolled, and challenging Web
video dataset from YouTube for our experiments. The video
data are all captured by moving or shaky cameras, and the
moving object of interest are present in cluttered background.
Significant scale and viewpoint variations of the objects can
be observed, and the resolution of a large portion of videos
in our dataset is low. We consider six different moving ob-
ject categories: Airplane, Ambulance, Car, Fire Engine, He-
licopter, and Motorbike. Each object category has 25 to 30
video sequences, and each sequence has one moving fore-
ground object present in it. We randomly select 10 from
each class for training, and the remaining for testing. Fig-
ure 5 shows examples video frames of each object category
in our dataset. We note that, for audio classification, in or-
der to achieve comparable audio classification results as prior

Airplane

Ambulance

Car

Fire Engine

Helicopter

Motorbike

Fig. 5. Example videos in our dataset.

Table 1. Results of audio classification. MAP = 59.40%
Airplane Ambulance Car FireEngine Helicopter Motorbike

Airplane 50.00% 0% 22.22% 5.56% 16.67% 5.56%
Ambulance 0% 80.00% 10.00% 10.00% 0% 0%

Car 18.75% 0% 43.75% 6.25% 18.75% 12.50%
FireEngine 0% 5.56% 11.11% 83.33% 0% 0%
Helicopter 10.53% 0% 21.05% 0% 52.63% 15.79%
Motorbike 0% 0% 26.67% 6.67% 20.00% 46.67%

work using MFCC features, we further consider the use of
auxiliary training audio data, which are also collected from
YouTube. This additional video training data for audio clas-
sification does not necessarily have objects of interest visi-
ble, and we do not use this set of data for visual classifica-
tion either. Nevertheless, none of the above training data is
present in our test set, and we only use extracted audio and
visual features to train the associated classifiers and to per-
form feature/classifier-level fusion.

For our visual features, SIFT descriptors are extracted
from 16 × 16 pixel patches of an image, and the spacing
between adjacent patches is 6 pixels (horizontally and ver-
tically). HOG descriptors are extracted from each 8× 8 pixel
grid, and only one scale in an octave of the pyramid is used.
We note that we resize the longer side of the image to 300
pixels if its width or height exceeds 300 pixels for both de-
scriptors; this is to preserve the aspect ratio of each image.

5.2. Results of audio and visual classification

Table 1 shows the confusion matrix and the mean average
precision (MAP)for audio classification. The extraction of
MFCC audio features and the use of GMM classifiers were
detailed in Section 4.1. As shown in Table 1, we achieved
MAP = 59.4%, while objects Ambulance and Fire Engine
were with better classification results (> 80%).

To classify video data using either SIFT or HOG features,
we sub-sample 20 frames from each of the test video sequence



Table 2. Visual classification with or without CFOT.
SIFT HOG

without CFOT 39.68% 55.57%
with CFOT 63.68% 63.45%

Table 3. Results of visual classification.
SIFT MAP = 63.68%

Airplane Ambulance Car FireEngine Helicopter Motorbike
Airplane 50.00% 0% 11.11% 0% 38.89% 0%

Ambulance 0% 75.00% 0% 25.00% 0.00% 0%
Car 12.50% 0.00% 50.00% 12.50% 0% 25.00%

FireEngine 0% 0% 0% 94.44% 5.56% 0%
Helicopter 10.53% 5.26% 10.53% 5.26% 52.63% 15.79%
Motorbike 0% 0.00% 20.00% 6.67% 13.33% 60.00%

HOG MAP = 63.45%
Airplane Ambulance Car FireEngine Helicopter Motorbike

Airplane 50.00% 5.56% 11.11% 0% 27.78% 5.56%
Ambulance 0% 90.00% 5.00% 5.00% 0% 0%

Car 12.5% 6.25% 37.50% 12.50% 0% 31.25%
FireEngine 0% 0% 0% 94.44% 5.56% 0%
Helicopter 26.32% 5.26% 10.53% 0% 42.11% 15.79%
Motorbike 0% 0% 20.00% 13.33% 0% 66.67%

and extract the associated features from them. Since we need
to first verify whether the use of our proposed CFOT not only
provides the foreground candidate region, but also refines vi-
sual features by suppressing background clutter for improved
performance, we present the averaged performance with or
without using CFOTs in Table 2. For the results with CFOT,
we multiply the CFOT masks on the corresponding training
and test video data, and only the features extracted from the
training data (within the CFOTs) were used to design the clas-
sifiers. In this paper, we consider one-vs-all linear SVM clas-
sifiers, and the parameter C in all SVMs in our work is se-
lected via a 5-fold cross validation.

To classify a test video input, we first predict the label of
each of the 20 sub-sampled frames, and we use a majority
vote to determine the final object label for this input video.
From Table 2, it is obvious that both type of visual features
produced improved recognition performance using CFOTs.
Thus, we confirm the effectiveness of our CFOTs. Table 3
presents the confusion matrices and MAPs for visual clas-
sification using SIFT and HOG features, both with CFOTs.
Although the MAP results of both cases were slightly below
that of audio classification, the difference is marginal.

5.3. Feature and Decision-Level Fusion

To combine different audio and visual features for improved
performance, we first consider feature-level fusion. For sim-
plicity, we concatenate audio and visual features and obtain a
new feature representation for training and testing. In order
to produce the same number (20) of each type of features, we
uniformly divide a video clip into 20 segments and average
the MFCCs in each to result in 20 audio features. To normal-
ize the features before concatenation, we zero-mean each fea-
ture with a unit variance. After the features are concatenated,
we train one-vs-all SVM classifiers for each object category

Table 4. Feature and decision-level fusion results. The best
performance for each feature combination is shown in bold.

Audio SIFT Audio Audio
+SIFT+HOG + HOG + SIFT + HOG

Feature fusion 64.31% 64.26% 65.35% 67.39%
Sum-rule 67.41% 65.46% 70.78% 66.39%
Max-rule 66.18% 65.26% 67.01% 64.36%

Weighted-sum 66.37% 63.55% 69.21% 63.27%
Late SVM fusion 67.66% 64.56% 70.09% 70.09%

with CFOT applied at each frame. To annotate a test video, we
first determine and apply the associated CFOT on it, and we
extract the features considered for classification. The results
using feature-level fusion are shown in the first row of Table
4, in which we consider different feature combinations for fu-
sion, i.e. Audio+SIFT+HOG, SIFT+HOG, Audio-SIFT, and
Audio+HOG. We see that all feature combinations improved
recognition performance. To remark on the improvements be-
tween audio classification (MAP = 59.4%) with other audio-
visual fusion results (e.g. Audio+HOG at 67.39%), recall that
there are much more than 20 MFCC features extracted for
each video clip when designing GMM classifiers for audio
classification; however, only 20 averaged MFCCs are used for
feature-level fusion. Therefore, the improvements reported in
Table 4 are quite remarkable.

Next, we consider decision-level fusion to combine the
results from classifiers using audio and visual features us-
ing sum, max, and weighted-sum rules. Note that sum rule
treats each classifier equally important, and it averages the
classifier outputs (typically in terms of posterior probability)
and assigns the test input to the class with the highest final
probability score. On the other hand, max rule simply uti-
lizes the largest posterior probability of each classifier for
fusion. Besides, we also perform a weighted sum-rule, in
which the weight for each classifier and each object class is
determined by the confusion matrix of the training data (via
cross-validation). From Table 4, we observe performance im-
provements with all feature combinations (e.g. Audio+SIFT
at 70.78% with sum rule).

Another decision-level fusion strategy we considered is
late SVM fusion. For each feature, we first calculate the poste-
rior probability of an input video using each one-vs-all SVM
classifier, then we concatenate the six probability scores (one
for each object class) as a 6-dimensional vector. If all three
types of features are used, the dimension of the final feature
representation will be 6×3 = 18. The results using late SVM
fusion is shown in the last row in Table 4. Among all fusion
strategies and feature combinations, the use of Audio-SIFT
for decision-level fusion with sum-rule resulted in the high-
est recognition rate (70.78%), and Audio+HOG for late SVM
fusion also achieved a comparable MAP at 70.09%; both are
about 7-13% improvements compared to those using a single
type of audio or visual feature.

It is worth noting that, the results using all features (i.e.



Fig. 6. Example annotation results. The convex hulls shown
in different colors are determined by our CFOT, and each
color corresponds to the associated object class label.

Audio+SIFT+HOG) were not the best in Table 4, while the
fusion of two visual features generally produced the small-
est improvements. This is expected, since rather than adding
features from the same domain or increasing the number of
features for fusion, integration of heterogeneous features from
multiple domains is expected to provide complementary infor-
mation for improved performance, as supported by our empir-
ical results (e.g. Audio+HOG or Audio+SIFT).

Finally, we show some of our video annotation examples
in Figure 6. Figure 6(a) illustrates an excellent annotation
result, which predicted the correct class label with a perfect
CFOT determined. We note that the helicopter in Figure 6(b)
cannot be successfully recognized by either visual feature;
this is probably because we do not have a large number of
front-view helicopter videos in our dataset). However, with
both feature and decision-level strategies, a correct annotation
result was obtained. Figure 6(c) is a challenging video, since
both the foreground object (aircraft) and background clutter
(e.g. sky, cloud, etc.) are present, and the contrast between
them is nominal. Similarly, its class label was successfully
predicted using the combination of both visual and audio fea-
tures, while the use of either feature did not produce a correct
output. These examples again verify the effectiveness of our
approach, which utilizes the significance of integrating het-
erogeneous features for improved video annotation.

6. CONCLUSION

We proposed a robust video annotation method which auto-
matically determines the region of the foreground object and
predicts its class label. The former was done using our con-
sensus foreground object template (CFOT) for moving object
detection, and the later was achieved by the integration of het-
erogeneous features from different domains. In this work, we
especially focused on the challenging task of Web video anno-
tation, in which most existing Web videos are captured under
uncontrolled environments, with insufficient quality or lim-
ited tag information available. Unlike prior sliding window
or object detector based methods, we do not require pixel-
level ground truth data for training; instead, only the label of
each video is utilized, which is especially practical for Web
video applications. In our experiments, we collected a Web
video dataset with only label information as ground truth. We
verified that our CFOT is able to identify the foreground re-
gion of interest, while our proposed framework provides tag
information (class label) using feature and decision-level fu-

sion techniques. We observed a significant improvement in
recognition (annotation) accuracy using our method. In future
work, we expect to extend our CFOT framework for further
high-level vision tasks such as activity or event recognition
using Web videos.
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