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ABSTRACT

This paper addresses the problem of extracting vocal melodies

from polyphonic audio. In short-term processing, a timbral

distance between each pitch contour and the space of human

voice is measured, so as to isolate any vocal pitch contour.

Computation of the timbral distance is based on an acoustic-

phonetic parametrization of human voiced sound. Long-

term processing organizes short-term procedures in such a

manner that relatively reliable melody segments are deter-

mined first. Tested on vocal excerpts from the ADC 2004

dataset, the proposed system achieves an overall transcrip-

tion accuracy of 77%.

1. INTRODUCTION

Music lovers have always been faced with a large collec-

tion of music recordings or concert performances for them

to choose from. While successful choices are possible with

a small set of metadata, disappointment still recurs because

the metadata only provides limited information about the

musical contents. This has motivated researchers to work

on systems that extract essential musical information from

audio recordings. Hopefully, such systems will enable per-

sonalized recommendations for music purchase decisions.

In this paper, we focus on the extraction of vocal melodies

from polyphonic audio signals. A melody is defined as a

succession of pitches and durations; as one might expect,

melodies represent the most significant piece of information

among all the features one can identify from a piece of mu-

sic. In various musical cultures including popular music in

particular, predominant melodies are commonly carried by

singing voices. In view of this, this work aims at analyzing a
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singing voice accompanied by musical instruments. Instru-

mental accompaniment is common in vocal music, where

the main melodies are exclusively carried by a solo singing

voice, with the musical instruments providing harmony. In

brief, the goal of the analysis considered in this work is

finding the fundamental frequency of the singing voice as

a function of time.

The specific problem outlined above is challenging be-

cause melody extraction is prone to interference from the

accompaniment unless a mechanism is in place for distin-

guishing human voice from instrumental sound. [6], [13],

and [9] determined the predominant pitch as it accounts for

the most of the signal power among all the simultaneous

pitches. The concept of pitch predominance is also pre-

sented in [12] and [2], which defined the predominance in

terms of harmonicity. For these methods, the problem proves

difficult whenever the signal is dominated by a harmonic

musical instrument rather than by the singing voice. [3] and

[5] realized the timbre recognition mechanism by classifi-

cation techniques; on the other hand, pitch classification

entails quantization of pitch, which in turn causes loss of

such musical information as vibrato, portamento, and non-

standard tuning.

The contribution of this paper is an acoustic-phonetic

approach to vocal melody extraction. To make judgments

about whether or not each particular pitch contour detected

in the polyphonic audio is vocal, we measure a timbral dis-

tance between the pitch contour and a space of human voiced

sound derived from acoustic phonetics [4]. In this space,

human voiced sound is parameterized by a small number of

acoustic phonetic variables, and the timbral distance from

the space to any harmonic sound can be efficiently estimated

by a coordinate descent search that finds the minimum dis-

tance between a point in the space and the point representing

the harmonic sound.

The proposed method offers practical advantages over

previous approaches to vocal melody extraction. By im-

posing acoustic-phonetic constraints on the extraction, the

proposed method can better distinguish human voice from



instrumental sound than the predominant pitch estimators in

[2, 6, 9, 12, 13]. Furthermore, with pitch contours composed

of continuous sinusoidal frequency estimates taken from in-

terpolated spectra, the proposed method is free from the

quantization errors in pitch estimation that are commonly

encountered by classification-based systems [3, 5].

Figure 1. Short-term processing for vocal melody extrac-

tion. The goal is to extract a vocal pitch contour around

time point t from the polyphonic audio. TDM stands for

timbral distance measurement.

2. OVERVIEW OF SHORT-TERM PROCESSING

In this section, we consider the problem of extracting a vo-

cal pitch contour around time point t from the polyphonic

audio, provided that a singing voice exists at t. As shown in

Figure 1, the extraction proceeds in three steps: 1) detect-

ing pitch contours that each start before and end after t, 2)

measuring the timbral distance between each of the detected

contours and the space of human voiced sound, and 3) ex-

tracting the most salient pitch contour among any detected

contours that lie in the space of human voiced sound.

In particular, the pitch contours simultaneously detected

in Step 1 form a set of candidates for the vocal pitch contour.

If exactly one vocal exists at this moment, then the vocal

contour may be identified by timbre. Timbral distance mea-

surement is intended here to provide the timbral information

essential to the identification. In contrast to frame-based

processing, here the duration of processing depends on how

far pitches can actually be tracked continuously away from

t in the analyzed audio. At the frame rate of 100 frames per

second, it is observed that most pitch contours last for more

than 10 frames; obviously, one would expect more reliable

timbral judgments from contour-based processing than from

frame-based processing.

3. PITCH CONTOUR DETECTION

In this section, we describe the procedure for detecting pitch

contours around time point t from the polyphonic audio. It

starts by detecting multiple pitches from the audio frame

at t. Next, pitch tracking is performed separately for each

detected pitch, from t forwards, and then also from t back-

wards, as depicted in Figure 2. Consequently, this procedure

gives as many pitch contours as pitches are detected at t.

Figure 2. Bi-directional multi-pitch tracking around time

point t.

3.1 Pitch Detection

In order to detect pitches at the time point t, we apply si-

nusoidal analysis to the short-time spectrum of the poly-

phonic audio signal at t. The analysis extracts (quadrati-

cally interpolated) frequencies of the loudest three peaks in

the first-formant section (200–1000 hertz) of the magnitude

spectrum. The loudness of a sinusoid is computed by cor-

recting its amplitude according to the trends in the 40-phon

equal-loudness contour (ELC) [8], which quantifies the de-

pendency of human loudness perception on frequency. For

each extracted sinusoidal frequency f̃ (hertz), the procedure

“detects” up to three pitches in the 80–1000 hertz vocal pitch

range, at f̃ , f̃/2, and f̃/3, regarding the sinusoid as the fun-

damental, the second partial, or the third partial of a pitch.

As a result, the pitch detector gives nine pitches at the most

for the time point t. The ambiguity among the first three

partials will not be resolved until a selection is made among

pitch contours.

3.2 Pitch Tracking

Suppose that we are now appending a new pitch to the end

of a growing pitch contour. Calculation of the new pitch

proceeds in three steps: 1) finding in the new spectrum a set

of sinusoids around (within one half tone of) the first three

partials of the last pitch in the contour, 2) finding among the

sinusoids the one with the highest amplitude, and 3) dividing

the frequency (hertz) of this sinusoid by the corresponding

harmonic multiple (1, 2, or 3). In other words, the pitch

contour is guided by nearby high-energy pitch candidates.

The growth of a pitch contour stops once the amplitude of

the loudest partial drops (cumulatively) from a peak value

by more than 9 dB, i.e., a specific form of onset or offset

is detected, with the loudness of each partial evaluated over

the entire contour as a time average.

4. TIMBRAL DISTANCE MEASUREMENT

In this section, we develop a method for measuring the tim-

bral deviation of a pitch contour C from human voiced sound,

which is based on an acoustic-phonetic parameterization of



human voiced sound, and finding within the space of human

voiced sound the minimum distance from C, as illustrated in

Figure 3.

Figure 3. Measuring the timbral distance between a pitch

contour (star) and the space of human voiced sound.

4.1 Parameterization of Human Voiced Sound

In order to model the space of human voiced sound, it is

desirable to identify every point in the space with a set of

acoustic-phonetic parameters. To this end, we let each short-

time magnitude spectrum of human voiced sound be repre-

sented by seven parameters: the amplitude, the fundamental

frequency, the first three formant frequencies, and the nasal

formant and anti-formant frequencies [11]. Such a parame-

terization is appropriate for specifying human voiced sound

in that sinusoidal parameters of the voice can be obtained

from the acoustic-phonetic parameters through well-defined

procedures. Obviously, partial frequencies of the human

voiced sound can be derived as integer multiples of the fun-

damental frequency. On the other hand, partial amplitudes

of the human voiced sound can be derived on the basis of

formant synthesis [4], which has been applied to synthesiz-

ing a wide range of realistic singing voice [15].

Consider a point in the space of human voiced sound

s = (a, f0, f1, f2, f3, fp, fz)
T , (1)

where a is the amplitude (in dB), f0 is the fundamental fre-

quency (in quarter tones), f1, f2, and f3 are the first three

formant frequencies (in hertz), and fp and fz are the nasal

formant and anti-formant frequencies (in hertz). Amplitude

of partials can be calculated from s by [4]

api = a+ 20 log10
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where api is the amplitude of the ith partial in dB, i ≤ 10,

fh
0 denotes the fundamental frequency in hertz:

fh
0 = 440 · 2(f0−105)/24, (3)

UR(·) represents the (radiated) spectrum envelope of the

glottal excitation [4]:

UR(f) =
f/100

1 + (f/100)2
, (4)

KR(·) represents all formants of order four and above [4]:

20 log10 KR(f) ≈ 0.72
(
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+ 0.0033
(

f
500

)4

,

f ≤ 3000,
(5)

If = {1, 2, 3, p, z}, and Hn(·) represents frequency response

of formant n [4]:

Hn(ω) =
1
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) , n = 1, 2, 3, p,

(6)
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In (6), ωn is the frequency of formant n in rad/s, i.e., ωn =
2πfn, and σn is half the bandwidth of formant n in rad/s,

which can be approximated as a function of ωn by a poly-

nomial regression model [7].

4.2 Distance Minimization

Suppose that the instantaneous pitch values in contour C
have mean fC . Now, let the vector

x = (a, f1, f2, f3, fp, fz)
T (8)

denote any point on the hyperplane f0 = fC in the space

of human voiced sound. Then we can define the distance

between x and C as

DC(x) =

√

∑10
i=1

(

aq
i
−ap

i

σa

)2

, (9)

where aqi is the mean amplitude (in dB) of the ith partial of

C, api is the amplitude (computed as in (2)) of the ith partial

of x, and σa is an empirical constant set to 12. The timbral

distance between C and the space of human voiced sound

can now be measured as

min
x∈X

DC(x), (10)

where X describes constraints imposed on the formant fre-

quencies:
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The accuracy in determining whether or not C is vocal

depends on how well the distance in (9) is numerically min-

imized. To be specific, if C is vocal and the timbral distance

between C and the space of human voiced sound is over-

estimated due to distance minimization being trapped in a

local minimum, then C may very likely turn out to be mis-

taken by the procedure for an instrumental contour. Our

numerical experience revealed that the best of twenty local

searches for the minimum defined in (10), which are ini-

tialized respectively with twenty different reference points,

shows great consistency in associating vocal pitch contours

with short timbral distances. These reference points differ

only in the oral formant frequencies f1, f2, and f3, with nu-

merical values taken from the gender-specific averages for

ten vowels of American English [10]: i, I, E, æ, A, O, U, u,

2, and Ç. Although each individual search is local by nature

and can only be expected to give a local minimum in some

neighborhood of the corresponding starting point, the global

minimum can be found as long as it can be reached from one

of the twenty initial points.

Figure 4. Each update in the local search for the minimum

distance consists of a series of one-variable subproblems.

The local search for the minimum defined in (10) may

be achieved with any local optimization technique. Here we

use a simple coordinate descent algorithm, as represented in

Figure 4, where each (all-variable) update consists of a se-

ries of one-variable updates. Each one-variable update min-

imizes the distance with respect to the variable alone while

fixing the other variables. For instance, the update of the

formant frequency f2 in the jth all-variable update operates

on the current point
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In our implementation, the subproblem (13) is solved by

finding a local minimum over a 100-hertz-spaced sampling

of f2 around f
(j−1)
2 . The subproblem for updating the am-

plitude a can be solved analytically, as it is equivalent to

minimizing a quadratic function of a. The final numerical

solution to the problem (10) is refined by continuing the

local search with a 10-hertz spacing of formant frequency

sampling.

5. PITCH CONTOUR SELECTION

In this section, we present a procedure for selecting the vo-

cal pitch contour from a set of pitch contours detected around

time point t. To begin with, it prunes those pitch contours

that have been associated with a long timbral distance from

the space of human voiced sound. A pitch contour is ac-

cepted only if the timbral distance does not exceed the em-

pirical threshold of
√
−2 log 0.4. In addition, if the mean

amplitude over even partials of a pitch contour exceeds that

over odd partials by more than 7 dB, the contour is rejected,

taken as the octave below a true pitch contour.

Secondly, the procedure prunes some pitch contours that

can be seen as an overtone as related to another pitch con-

tour. To this end, the overlap time interval between each

pair of contours is calculated, and the pitch interval between

two contours is determined on the basis of the mean pitch

during the overlap. The procedure rejects any pitch contour

that has a mean pitch at the 2nd, 3rd, or 4th partial of another

contour.

Lastly, the procedure selects the loudest pitch contour

from any contours that survived the prunings, thereby pro-

viding a mechanism for identifying the predominant lead

vocal out of several simultaneous singing voices. The loud-

ness of each pitch contour is defined as the mean of its

instantaneous loudness values, which are each calculated

by summing the linear-scale, ELC-corrected instantaneous

power over the partials.

6. LONG-TERM PROCESSING

At the excerpt level, the goal of processing is an interleaved

sequence of vocal pitch contours and pauses. To this end, we

maintain a list of visited frames throughout the segmentation

process. A frame is considered visited whenever a vocal

pitch contour has been extracted whose duration covers the

frame.

Suppose that at this moment the procedure has extracted

k vocal pitch contours from the excerpt, with the list of vis-

ited frames updated accordingly. The procedure attempts to

extract the (k + 1)th contour around time point t, which is

set to the unvisited frame that has the highest signal loud-

ness among all the unvisited frames. Here, the loudness

of a frame is calculated by summing the linear-scale, ELC-

corrected power over sharp peaks in the spectrum. The sharp-

ness threshold of each spectral local maximum is set to 9



dB above the mean amplitude over the neighboring 5 fre-

quency bins. In case that the new contour should overlap

with an existing contour, the new contour would be trun-

cated to resolve the conflict. This procedure continues until

the loudness of every unvisited frame is below the excerpt-

wide median. These remaining unvisited frames form the

final pauses between vocal pitch contours.

7. EXPERIMENTS

In this section, to provide comparison of our method with

some existing methods, we conduct vocal melody extraction

experiments on a publicly available dataset.

7.1 Dataset Description

The dataset is a subset of the one built for the Melody Ex-

traction Contest in the ISMIR2004 Audio Description Con-

test (ADC 2004). The whole ADC 2004 dataset consists of

20 audio recordings, each around 20 seconds in duration,

among which eight recordings have instrumental melodies,

and the other twelve have vocal melodies. Since this work

considers vocal melodies only, experiments are carried out

exclusively on the 12 vocal recordings, including four pop

song excerpts, four song excerpts with synthesized vocal,

and four opera excerpts. The dataset has been in use in

several Music Information Retrieval Evaluation Exchange

(MIREX) contests since 2006; therefore, it affords exten-

sive comparison among methods.

Before melody extraction, each audio file in the dataset

is resampled at 11,025 hertz and constant-Q transformed [1]

(Q = 34) into a sequence of short-time spectra. Each result-

ing spectrum is a quarter-tone-spaced sampling of a contin-

uous spectrum that is capable of resolving the interference

between two half-tone-spaced sinusoids from 21.827 hertz

all the way to 5,428.6 hertz.

7.2 Performance Measures

In the experiments documented here, the tested system gives

vocal melodies in the format of a voicing/pitch value for

each frame (at the rate of 100 frames per second). If a frame

is estimated to be within the duration of a vocal pitch con-

tour, the output specifies the pitch estimate for the frame;

otherwise, the output specifies that the frame is estimated to

be not voiced.

MIREX adopts several measures for evaluating the per-

formance of a melody extraction system [14]. In the first

place, to determine how well the system performs voicing

detection, we use the voicing detection rate, the voicing false

alarm rate, and the discriminability. The voicing detection

rate is computed as the fraction of frames that are both la-

beled and estimated to be voiced, among all the frames that

are labeled voiced. The voicing false alarm rate is computed

as the fraction of frames that are estimated to be voiced but

are actually not voiced, among all the frames that are not

voiced according to the reference transcription. The dis-

criminability combines the above two measures in such a

way that it can be deemed independent of the value of any

threshold involved in the decision of voicing detection:

d′ = Q−1(PF ) +Q−1(1− PD), (14)

where Q−1(·) denotes the inverse of the Gaussian tail func-

tion, PF denotes the false alarm rate, and PD denotes the

detection rate.

Second, to determine how well the system performs pitch

estimation, we use the raw pitch accuracy and the raw chroma

accuracy. The raw pitch accuracy is computed as the frac-

tion of frames that are labeled voiced and have pitch esti-

mated within one quarter tone of the true pitch, among all

the frames that are labeled voiced. To focus on pitch class

estimation while ignoring octave errors, we compute the raw

chroma accuracy, which is computed in the same way as the

raw pitch accuracy, except that the pitch is here measured in

terms of chroma, or pitch class, a quantity derived from the

pitch by wrapping the pitch into one octave.

Finally, the performance of voicing detection and pitch

estimation can be measured jointly by the overall transcrip-

tion accuracy, defined as the fraction of frames that receive

correct voicing classification and, if voiced, a pitch esti-

mate within one quarter tone of the true pitch, among all

the frames.

Table 1. Experimental results.

7.3 Results

The results are listed in Table 1. The overall transcription

accuracies listed in the column titled “All” range from 61%

to 96% and have their average at 77.007%. The minimum

is found at the excerpt “opera_fem2.” A close look at a sig-

nificant error made in the analysis of this excerpt revealed

that the system mistakenly selected the octave below a true



vocal pitch contour because the octave had a timbral dis-

tance of
√
−2 log 0.41, slightly shorter than the upper limit

set for a vocal contour. Still, the distance measured for the

true vocal pitch contour was much shorter, at
√
−2 log 0.98.

This suggests that a relative threshold for the timbral dis-

tance may be implemented along with the absolute threshold

to further improve the accuracy. To see the effect of timbral

distance measurement on the average accuracy, we repeated

the experiments with the distance threshold set to infinity, so

that no contour was pruned because of a large timbral devi-

ation from human voiced sound. This turned out to reduce

the mean accuracy from 77.007% to 75.233%, which veri-

fies the benefit of timbral distance measurement. The raw

pitch accuracies in the column titled “Voiced” are highly

correlated with the overall transcription accuracies, which

suggests that further improvement of this system should be

made in pitch estimation, not in voicing detection. The col-

umn titled “Chroma” contains raw chroma accuracies sim-

ilar to the raw pitch accuracies, which suggests that octave

errors were successfully avoided by the system.

Shown in Table 2 is a comparison of the proposed method

with the MIREX 2009 submissions in terms of the over-

all transcription accuracy (OTA). Notably, if the proposed

method had entered the evaluation in 2009, it would have

ranked 5th out of a total of 13 submissions. Moreover, the

accuracy of the proposed system is within 10% of the high-

est accuracy in the 2009 evaluation.

Table 2. Comparison with the MIREX 2009 Audio Melody

Extraction results.

8. CONCLUSION

We have presented a novel method for vocal melody extrac-

tion which is based on an acoustic-phonetic model of human

voiced sound. The performance of this method is evaluated

on a publicly available dataset and proves comparable with

state-of-the-art methods. 1
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