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ABSTRACT 
This paper presents a novel content-based query-by-tag music 
search system for an untagged music database. We design a new 
tag query interface that allows users to input multiple tags with 
multiple levels of preference (denoted as an MTML query) by 
colorizing desired tags in a web-based tag cloud interface. When a 
user clicks and holds the left mouse button (or presses and holds 
his/her finger on a touch screen) on a desired tag, the color of the 
tag will change cyclically according to a color map (from dark 
blue to bright red), which represents the level of preference (from 
0 to 1). In this way, the user can easily organize and check the 
query of multiple tags with multiple levels of preference through 
the colored tags. To effect the MTML content-based music re-
trieval, we introduce a probabilistic fusion model (denoted as 
GMFM), which consists of two mixture models, namely a Gaus-
sian mixture model and a multinomial mixture model. GMFM can 
jointly model the auditory features and tag labels of a song. Two 
indexing methods and their corresponding matching methods, 
namely pseudo song-based matching and tag affinity-based 
matching, are incorporated into the pre-learned GMFM. We eval-
uate the proposed system on the MajorMiner and CAL-500 data-
sets. The experimental results demonstrate the effectiveness of 
GMFM and the potential of using MTML queries to search music 
from an untagged music database.   

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; H.5.3 [Group and Organization Interfaces]: 
Web-based interaction; H.5.5 [Sound and Music Computing]: 
System. 

General Terms 
Algorithms, Performance, Experimentation, Human Factors. 

Keywords 
Tag cloud-based music query interface, MTML query, content-
based music information retrieval, probabilistic fusion model. 

1. INTRODUCTION 
With the explosive growth of music collections, music informa-
tion retrieval (MIR) has been extensively studied in recent years. 
There are many ways to retrieve pieces of desired music, e.g., 
query by humming/singing [1], query by example [2], query by 
meta-information, and query by tag [3]. In this paper, we study the 
query-by-tag MIR task. Specifically speaking, we propose a novel 
content-based MIR system, which allows users to input a query of 
multiple tags with multiple levels of preference by colorizing 
desired tags in a web-based tag cloud interface to search music 
from an untagged music database. 

There are several tagged music resources for researchers to inves-
tigate users’ tagging behavior among music tracks. For example, 
Last.fm is a collaborative social tagging network that collects 
information about users’ music habits in terms of music tags. 
However, the tagging resources collected by Last.fm may encoun-
ter a problem called tagger bias [3], which is originated from the 
completely non-constrained tagging environment in Last.fm. Con-
sequently, several web-based music tagging games have been 
created with the objective of collecting useful tags, e.g., Ma-
jorMiner.org [4], Tag A Tune [5], and the Listen Game developed 
by D. Turnbull [6]. In these tagging games, music clips are ran-
domly assigned to taggers in order to reduce the tagger bias. How-
ever, the collected music tags have only been assigned to existing 
music tracks; in other words, there are no tags available for new 
tracks. The so-called “cold start” issue has motivated research into 
a number of interesting topics, such as automatic music tag anno-
tation and tag-based music retrieval from an untagged music data-
base. 

Unlike the traditional meta-information (e.g., artist(s) name, track 
name, and album name) and well-defined categories (e.g., genre 
and emotion) annotated by domain experts, music tags are free 
text labels generated by common Internet users. Because these 
tags are annotated without constraint, they can be noisy (e.g., 
misspelled, redundant, irrelevant, and unlimited in term numbers). 
It is believed that a tag will enter the common musical vocabulary 
once it is adopted by a large number of users, and thereby extract-
ing tags with high term frequencies can intuitively reduce the 
noisy factors. This leads gradually to the emergence of the so-
called folksonomy, which is a full-scale taxonomy of music that 
reflects the current usage among Internet users [7]. The point of 
view about music tags motivates several current tag-based music 
search interfaces. For example, Last.fm1 highlights or enlarges 

                                                                 
1 http://www.last.fm/charts/toptags 
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those commonly used tags for users to search music information 
in question, such as web pages, related artists, and music playlists. 
This kind of interface is also known as the tag cloud, which be-
comes one of the key visual elements in Web 2.0. The tags in a tag 
cloud are usually single words and are normally listed alphabeti-
cally, and the importance of each tag is shown with font size or 
color [8]. Tag cloud facilitates browsing and navigating all avail-
able tags alphabetically and by popularity. There are several de-
velopments of tag cloud interface in different visual layouts [9-11]. 
In sum, tag cloud provides an intuitive 2-dimensional layout that 
reflects aggregations of tag-usage statistics. However, a tag in the 
traditional layout of tag cloud is usually a hyperlink that directs to 
a collection of items that are associated with the tag, i.e., a user 
can only choose a single tag at once (e.g., Last.fm), which can not 
completely describe the information need. Although tag cloud 
reveals some tagging statistics derived from the data behind the 
interface, it does not provide users with any interaction. In light of 
the above discussions, as shown in Figure 1, we propose a novel 
tag-based music query interface that allows users to input a query 
comprised of multiple tags with multiple levels of preference (de-
noted as an MTML query hereafter) by colorizing desired tags in a 
tag cloud. As will be detailed in Section 3, the tag cloud in the 
interface not only provides the tagging statistics of the music con-
tent but also allows users to interact with it to organize the query 
by manipulating the colors of the desired tags. 

We believe that the MTML query can help facilitate content-based 
music retrieval for two reasons.  

1) Unlike images, which often contain only a few clearly identi-
fiable objects, a piece of music can be described in nature by 
multiple music tags. The tags can include different types of 
musical information, such as genre, mood, instrumentation, 
personal preferences, original artist(s), and particular usages. 
A user can assign tags of the same type or different types to a 
specific song, and this may lead to specific tag co-occurrence 
(denoted as co-tag hereafter) patterns among auditorily similar 
songs. For example, instrumental or timbre tags, such as guitar, 
drum, rap, saxophone, and piano, are inspired by auditory cues 
directly. These instrumental tags usually result in a series of 
consequent tags, e.g., electric guitar, distortion, and drum 
commonly result in rock, loud, and metal tags; saxophone and 
piano are often assigned together with jazz or soft tags. There-
fore, retrieving music with a certain co-tag pattern is more ef-
fective than retrieving music with a single tag. For example, if 
a person tags the song “Trouble” performed by “Coldplay” 
with “male, pop, piano, and slow” tags, he may use those tags 
to search for other songs that are similar to “Trouble” later. A 
single tag query like “pop” is very ambiguous, but combining 
a number of tags provides a clearer description of the desired 
song.  

2) A song in a tagged music database has multiple tags with dif-
ferent counts. The tag count corresponds to the number of us-
ers who have annotated the song with the tag, i.e., it shows the 
tag popularity. Therefore, the MTML query can be directly 
matched with the tag count distribution of each song in a 
tagged music database to retrieve relevant music. The MTML 
query can also be matched with the tag affinity distribution of 
each song in an untagged music database. The tag affinity dis-
tribution of an untagged song consists of the confidence de-
gree given by each tag predictor. The MTML query actually 
gives a more precise query than a single tag query and a sim-
ple binary multi-tag query.  

To effect the MTML content-based music retrieval, we propose a 
Gaussian Multinomial Fusion Model (GMFM), which consists of 
two mixture models, namely a Gaussian mixture model (GMM) 
and a multinomial mixture model (MMM). The GMFM can joint-
ly model the auditory features and tag labels of a tagged song. The 
tag cloud for the target untagged music database can be generated 
by automatic music tagging based on the GMFM learned from a 
limited tagged training music database. We also propose two in-
dexing methods and their corresponding matching methods, 
namely, pseudo song-based matching and tag affinity-based 
matching, based on the GMFM. 

The major contribution of this paper is threefold. 

1) We address a new query scenario for music information re-
trieval, i.e., query by multiple tags with multiple levels of 
preference (denoted as an MTML query). 

2) We design a new tag query interface that allows users to input 
an MTML query by colorizing desired tags in a tag cloud. 

3) We propose a novel probabilistic fusion model, i.e., GMFM, 
which jointly model the auditory features and tag labels of a 
tagged song, and two indexing/matching methods based on the 
GMFM to effect the MTML content-based music retrieval. 

The remainder of this paper is organized as follow. In Section 2, 
we discuss related work. In Section 3, we present our tag cloud-
based MIR interface. Section 4 contains an overview of the pro-
posed MTML-based MIR system. In Section 5, we describe the 
audio signal processing part. In Section 6, we introduce the 
GMFM and our MTML-based MIR methods. We discuss the 
evaluation of the proposed system in Section 7. In Section 8, we 
summarize our conclusion and discuss feature work. 

Figure 1. The screenshot of the tag cloud-based music search 
interface that allows a user to input a query consisting of mul-
tiple tags with multiple levels of preference by colorizing de-
sired tags in the tag cloud. When moving the mouse pointer on 
a tag, the “Tag Level” (0.00~1.00) is shown in the value box in 
the top of the figure. The user can clicks and holds the left 
mouse button to change the color and level of the tag. After 
manipulating the colors of the desired tags, the user can click 
the search button to retrieve the desirable music. According to 
the color map in the rightmost of the figure, the user has in-
putted “female” with 0.97, “jazz” with 0.58, “piano” with 
0.73, “pop” with 0.28 and “vocal” with 0.82. 

 



2. RELATED WORK 
A number of interfaces and approaches have been proposed for 
music retrieval using music tags. In [12], the authors propose a 
similarity measure in the space of social audio features and dem-
onstrate an advanced music retrieval interface to retrieve songs by 
selecting a tag in a tag cloud on a mobile device. The tag cloud is 
user dependent; in other words, it only displays tags correspond-
ing to a user’s music collection. The tag cloud-based retrieval 
scenario is basically the same as that in Last.fm. Turnbull et al. 
[13] model the feature distribution of each tag with a GMM and 
estimate the model’s parameters with a weighted mixture hierar-
chies expectation maximization algorithm. Hoffman et al. [14] 
propose a Codeword Bernoulli Average (CBA) method to model a 
tag’s probability based on a song-level vector quantized feature 
representation. The training efficiency and tag prediction perform-
ance highly depend on the quality of the pre-trained codebook. 
Our recent work [15] applies a binary ensemble classifier com-
prised of SVM and AdaBoost to each tag to model its correspond-
ing music features. The extended work in [16] shows that the tag 
prediction performance can be improved by considering the tag 
count information in auto-tagger training. All the above systems 
only consider retrieving music with a single tag.  

In [7], Levy et al. apply text-based information retrieval (IR) 
techniques to music collections. They represent a music track with 
a joint vocabulary made up of social tags and muswords, where 
muswords are the quantized terms that represent the auditory 
characteristics of a segment-based signal in a track. The authors 
utilize two IR models to retrieve music in a query-by-example 
fashion. Each track in the music database is represented as a 
scaled concatenation of a bag-of-tags (BOW) vector and a bag-of-
muswords (BOM) vector, denoted as BOW+M. Then, they apply 
the probabilistic latent semantic analysis (PLSA) model on the 
vector representations of songs to enhance the music retrieval 
effectiveness and efficiency. However, in their experiments, the 
music database is not completely untagged because a certain per-
centage of label information is used in the BOW+M representa-
tion. Recently, the latent aspect model of music tags has been 
extended to handle open vocabulary tags [17]. The open vocabu-
lary tags, which contain many noisy labels, are reduced to a small 
set of topic labels using Latent Dirichlet Allocation (LDA), and 
then classifiers are trained on the transformed topic labels. Al-
though they accept free text queries, which are equivalent to 
multi-tag queries, they do not consider the preference of each tag.  

The Heard It system [18] creates an intelligent tag-based music 
retrieval system with three connected components: a social game, 
a learning machine, and a music understanding component. First, 
a social Internet game [19] is developed such that players can 
listen to music and share their opinions online. A player actually 
plays with a machine instead of other players but the player is not 
aware of this. The design increases the playability of the game. 
The objective is to have players verify whether a music clip 
should be associated with a pre-defined tag or not. Through the 
game, a large amount of reliable music tags with associated music 
clips have been collected and used to train automatic music tag-
ging classifiers. These classifiers are then applied to predict new 
songs with pre-defined tags. Finally, a content-based music search 
system is established, and users can retrieve or generate a music 
playlist via multiple tags. The tags are categorized into 6 classes, 
namely, emotion, characteristics, genre, instrumentation, use of 
music, and vocal. Users can select desired tags from the 6 classes 
or type the tag words in the pre-defined tag set, as shown in Figure 

2. The categorization of tags helps users organize their music 
needs. However, users can only enter multiple binary tags without 
preference levels, and the tags in the menu do not show the social 
information or data distribution behind the interface.  

In a word, the abovementioned tag-based MIR approaches or sys-
tems accept either single or multiple tags typed in or selected from 
a tag list or a tag cloud. None of them consider the preference 
level of a tag. However, in the proposed tag-based MIR system, 
the tag cloud in the interface not only provides the tagging statis-
tics of the music content but also allows users to interact with it to 
organize the query by manipulating the colors of the desired tags. 
As will be detailed in Section 6, in the proposed GMFM, the 
GMM and MMM are learned in a single stage, while the models 
in [7, 14, 17] are learned in two stages. In this paper, we do not 
deal with the open vocabulary tags since the current MTML inter-
face does not allow users to enter tags not covered by the tag 
cloud. 

3. TAG CLOUD-BASED MIR INTERFACE 
As the screenshot of the proposed web-based MIR interface 
shown in Figure 1, there is a music tag cloud where the font size 
of a tag corresponds to the popularity according to the tag fre-
quency in the music database. Since the music database is origi-
nally untagged, the tag cloud is generated via automatic tagging, 
i.e., the font size of a tag is determined by the accumulated confi-
dence degree among music clips given by the corresponding tag 
predictor. All tags are allocated alphabetically and initialized to 
black color. In the rightmost, there is a color map (from dark blue 
to bright red), in which each color represents a tag level ranging 
from 0.00 to 1.00. When a user clicks and holds the left mouse 
button on a desired tag, the color of the tag will change cyclically 
according to the color map, and the corresponding tag preference 
level will be synchronized with the tag color and shown in the 
value box of “Tag Level” in the top of the interface. Once the user 
releases the left mouse button, the current color and level of the 
selected tag will be stored. The color changing period is set to 3 
seconds, i.e., the tag color changes gradually from dark blue (0.00) 
to bright red (1.00) in 3 seconds, and then retrogresses from bright 
red (1.00) to dark blue (0.00) in another 3 seconds. The user can 
move the mouse pointer back to a previously colored tag to mod-
ify its color and level. In this way, the user can easily organize 
and check the query of multiple tags with multiple levels of pref-
erence through the colored tags. When the user clicks the “search” 
button, the interface will submit the selected tags with correspond-
ing levels of preference to the music search system, and then a 
ranked music list with related materials will be returned to the 
user. 

(a) 

 
(b) 

Figure 2. The tag query interface of Herd It. Users can (a) 
select tags from the pre-categorized menu or (b) enter the tag 
words in the search box. 



Since users can obtain tagging statistics behind the MIR system 
from the tag cloud display, we believe that the tag cloud-based 
query interface can help users organize their desired musical con-
cepts. For example, users can readily know the popularity of a tag 
through the font size. They may compromise their information 
needs by selecting some popular tags in order to retrieve more 
music tracks. Besides, there are infinite kinds of possible MTML 
queries. Slight changes to the MTML query may lead to different 
music ranking results. In other words, users can interact with the 
music query interface to further discover music in the database. 

Currently, the tag-colorizing interface is implemented as a desktop 
interface. However, it can be directly applied to a smart mobile 
device where users can simply press and hold on the desired tags 
through its touch screen. The tag cloud layout can fit the pinch-to-
zoom mechanism and be clearly displayed on the small touch 
screen. With such an interface, users can easily search music by 
inputting an MTML query through a mouse or a finger without the 
need of typing any words or values. We can also implement the 
desktop interface by using a scrolling bar for each tag. Users can 
increase or decrease the preference for a particular tag more in-
stantaneously by using a mouse to control the scrolling function. 
However, the scrolling function-based interface may not be able to 
show tagging statistics of the music database. 

4. SYSTEM OVERVIEW 
 In Section 3, we have described how users can enter the MTML 
query through the tag cloud-based interface to retrieve music. In 
this section, we will give an overview on the proposed MTML 
content-based music search system. 

As shown in Figure 3, the proposed MTML content-based music 
search system is implemented in two phases: feature indexing 
phase and music retrieval phase. In the feature indexing phase, 
each music clip in the untagged music database is indexed as a 
fixed-dimensional vector based on the clip’s audio features. We 
use two indexing approaches: indexing with the auditory posterior 
distribution of a music clip by using an auditory feature reference, 
or indexing with the tag affinity distribution of a music clip given 
by automatic music tagging. In the retrieval phase, given an 
MTML query from the proposed tag-colorizing interface, the con-
tent-based music search system will return a ranked list of relevant 
music clips by vector matching. We apply two matching methods, 
namely pseudo song-based matching and tag affinity-based 
matching; each corresponding to one of the two indexing ap-
proaches. In pseudo song-based matching, an MTML query is first 
transformed into a pseudo song (i.e., the predicted auditory poste-
rior distribution of the MTML query), and then matched with the 
music clips in the database in the space of auditory posterior dis-
tribution. In tag affinity-based matching, an MTML query is di-
rectly used to match with the music clips in the database in the 
space of tag affinity distribution. Table 1 summarizes the two 
implementations of the MTML music search system.  

4.1 Tag Affinity Prediction 
We assume that human memory stores a series of latent co-tag 
patterns that are difficult to describe. When tagging a song, people 
usually choose one or more of these patterns according to the 
auditory characteristics of the song. Although we cannot describe 
the latent co-tag patterns and auditory characteristics exactly, we 
believe that there is a strong link between them. Therefore, as 
shown in Figure 4, we introduce a hidden layer of latent classes of 
music features (denoted as the latent feature class hereafter) into 

the prediction flow of tag affinity distribution to link the latent co-
tag patterns and auditory features. 

Assume there are K latent feature classes zk, k=1,…,K. Each class 
zk represents a group of auditory feature vectors, and its corre-
sponding latent co-tag pattern is denoted as k. A music clip is 
first extracted into an auditory feature vector. Then, the posterior 
probability (denoted as k) of latent feature class zk of the clip can 
be computed according to a pre-trained auditory feature reference. 
With k, k=1,…,K, we can predict the tag affinity distribution for 
an untagged clip based on the value of k, k=1,…,K. For example, 
if a clip’s auditory features can be described completely by a cer-
tain latent feature class z1, i.e., 1=1, and i=0 for all i≠1, then its 
tag affinity distribution would exactly follow 1. To implement 
the idea, we assume that the tag labels with counts of a tagged 
song can be modeled by an MMM, where each latent co-tag pat-
tern corresponds to a component multinomial distribution with 
parameter k, k=1,…,K, and the auditory feature vector of the 
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song can be modeled by a GMM, which corresponds to the afore-
mentioned auditory feature reference. The two mixture models 
(MMM and GMM) condition on the same set of latent feature 
classes, i.e., a mixture component in MMM corresponds to a spe-
cific mixture component of GMM. The fusion of MMM and 
GMM leads to the GMFM. 

4.2 Pseudo Song Estimation  
In System 1 in Table 1, by using the GMFM, the MTML query is 
folded in into the latent co-tag patterns to estimate a pseudo song 
in the auditory posterior distribution representation. As shown in 
Figure 5, an MTML query is transformed into a posterior prob-
ability vector whose k-th component is the posterior probability 
k of latent feature class zk, k=1,…,K. We assume that k, 
k=1,…,K, derived from the MTML query have a similar property 
with the auditory posterior distribution k, k=1,…,K, that is used 
to index music clips in the untagged music database. For example, 
if an MTML query is extremely like 1, the folding-in process will 
yield a dominative posterior 1 on z1, i.e., 1=1, and i=0 for all 
i≠1, which means that the MTML query is extremely relevant to 
the song whose auditory posterior distribution is dominated by 1. 
Therefore, the pseudo song derived from the MTML query can be 
used to match with the clips in the untagged music database. 

 

Figure 5. The estimation of the pseudo song (in the auditory 
posterior distribution representation) from an MTML query 
(in the tag distribution representation). 

5. AUDIO SIGNAL PROCESSING 
In this section, we describe the audio signal processing part in this 
work. To enhance the training efficiency and conform to the prop-
erty of our music tagging modeling method, we adopt the seg-
ment-based audio feature representation instead of the frame-
based one. A music clip in the database will be divided into seg-
ments and each segment is represented by a fixed-dimensional 
feature vector consisting of short-term temporal features and long-
term perceptive features. 

5.1 Audio Segmentation 
Our audio segmentation is based on a measure of audio novelty 
proposed in [20]. An example segmentation result is shown in the 
bottom panel of Figure 6. We first compute the cosine measure of 
Mel-frequency cepstral coefficient (MFCC) vectors between any 
pairs of two frames (non-overlapping with size of 50ms) in a mu-
sic clip, and build a self-similarity matrix, which can be visualized 
as a square image in the top panel of Figure 6. The color scale of a 
pixel in the image is proportional to the similarity. Then, we can 

obtain a time-aligned novelty curve, as shown in the middle panel 
of Figure 6, by convolving a checkerboard kernel with a radial 
Gaussian taper along the diagonal of the self-similarity matrix. 
The radial Gaussian taper of width H is defined as: 
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where a, b = 1,…,H, are the horizontal and vertical indexes of the 
Gaussian taper, respectively. Therefore, we only need to calculate 
a diagonal strip of width H when constructing the self-similarity 
matrix. In this work, H is set to 64 (3.2sec). Finally, the local 
peaks of the novelty curve, as marked by circles in the middle 
panel of Figure 6, are selected as segment boundaries. To prevent 
feature extraction failures caused by insufficient data, we require 
the length of each segment to be at least 1 second. 

Audio segmentation will divide a music clip into a dynamic num-
ber of segments with dynamic lengths. For the convenience of 
implementation, all the segments of a music clip are extracted into 
a segment-based feature vector and treated equally in training and 
testing. We will describe in detail the processing of segments in a 
music clip in Section 6. 

5.2 Music Feature Extraction 
To extract music features, we utilize MIRToolbox 1.3 [21], a free 
software that comprises approximately 50 audio/music feature 
extractors and statistical descriptors. As shown in Table 2, we 
consider seven categories of features in this work, namely, dy-
namic, fluctuation, rhythm, spectral, timbre, pitch, and tonal fea-
tures. We set default values for parameters in MIRToolbox, such 
as the length of frame and hop size. Short-term (frame-based) 
features are represented by their mean and standard deviation 
calculated over the segment. After feature extraction, each seg-
ment is represented by a 180-dimensional feature vector. 
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Figure 6. An illustration of audio segmentation. 

 



6. METHODOLOGY 
This section presents the methodology of the MTML music search 
system, which is developed based on observations from the tagged 
music resources. We take several music clips from the Ma-
jorMiner dataset, as shown in Table 3, as examples. Each music 
clip in 10 seconds long has its tag labels with counts. These music 
clips can be grouped into two sets according to their tags, i.e., the 
clips in a set have a similar tag count distribution. However, the 
clips in a set in Table 3 may not be grouped together based on the 
auditory features since there exists a gap between the similarity of 
auditory features and the similarity of tag count distributions. The 
gap may come from insufficient auditory feature extraction or 
representation. It is believed that the tag count distribution of a 
music clip represents human perception about the clip. If we group 
music according to the auditory features only, the grouping results 
may be beyond human expectation. Therefore, certain supervi-
sions based on tag labels with counts should be considered when 
estimating the distribution of auditory features. However, it is 
impossible to collect infinite music data with label information. In 
this work, our objective is to jointly learn a probabilistic model 
that considers both the auditory features and the tag labels with 
counts from a limited training dataset. We hope that the model can 
approximately cover the mostly realistic situations. In our model, 
we treat the tag labels with counts of a music clip as a text feature. 
Therefore, a music clip contains two types of features, i.e., the 
auditory features and the tag features. Both of them will contribute 
in model learning, but the contributions may not be equal.  

6.1 The Gaussian Multinomial Fusion Model 
As described in Sections 4.1 and 4.2, we would like to model the 
auditory feature vectors by a GMM and model the tag labels with 

counts by an MMM. We propose a fusion model called Gaussian 
Multinomial Fusion Model (GMFM) to combine the GMM and 
MMM. We assume that both GMM and MMM have the same 
number of mixtures, each mixture-component-pair of GMM and 
MMM conditions on the same latent feature class zk, k=1,…,K, 
and the corresponding Gaussian and multinomial distributions 
have the same mixture prior k. All available tags are represented 
as a sequence of M tags, denoted as w  =  (w1,w2,…,wM). Suppose we 
have a tagged music dataset in which the music clips are divided 
into a total of N segments, and each segment, denoted by si, 
i=1,…,N, is extracted into a segment-based feature vector. A seg-
ment si is represented by an {auditory, tag-counts} feature pair 
denoted by {xi, ci}, where xi is the auditory feature vector of si ; ci 
is the vector of tag counts (i.e., a bag-of-tags vector) of the music 
clip from which si is originated (i.e., the tag labels with counts of a 
music clip are shared by all its component segments); and c(i, j), 
j=1,…,M, denotes the count of the j-th tag wj in ci. The likelihood 
functions of GMM and MMM for segment si are formulated in 
Eqs. (2) and (3), respectively, 
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where N(·) is a Gaussian distribution with parameters k and k; 
MN(·) is a multinomial distribution with the parameter k, where 
its j-th component kj, j=1,…,M, represents the probability of the 
j-th tag in the k-th latent co-tag pattern;  represents the parameter 
set of the GMFM. Given the training music dataset, the joint log-
likelihood L over all segments is defined as follows: 
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where the power weight , which ranges between 0 and 1, is used 
because the log-likelihoods of GMM and MMM are not in a com-
parable scale. The role of  will be discussed later. 

6.2 Model Inference with the EM Algorithm 
The GMFM can be fitted by maximizing the joint log-likelihood L 
in Eq. (4) with respect to the mixture weight k, Gaussian parame-
ters k and k, and multinomial parameters k, k=1,…,K. We ap-
ply the Expectation Maximization (EM) algorithm to estimate the 
model parameters. Both types of features, namely the auditory 
features and the tag features, of a segment should contribute to the 
posterior probability of a latent feature class zk. Therefore, in the 
E-step, the posterior probability of zk given si is the weighted 
combination of the corresponding posterior probability of the 

Table 3. An example 2-group clustering result of music clips from the MajorMiner dataset based on their human labeled tags.    

Group Artist Name – Song Name – Clip Starting Time Associated Music Tags (Tag Counts) 
1 Cast - Two of a Kind - 2:20 bass(3),drum(5),electric guitar(2),guitar(5),male(5),pop(3),rock(5),vocal(2) 
 The Kinks - Dedicated Follower of Fashion - 1:30 bass(2),drum(4),guitar(5),male(4),pop(2),rock(4),vocal(2) 
 Suede - You Belong to Me - 1:30 bass(2),drum(3),guitar(4),male(4),pop(2),rock(5) 
 New Order - Turn My Way - 2:40 bass(2),drum(3),guitar(3),male(3),pop(2),rock(4),vocal(2) 

2 Intermix - Sonic Ritual - 4:20 beat(2),dance(2),electronic(3),electronica(5),house(2),synth(4),techno(4) 
 Underworld - Air Towel - 1:00 beat(2),dance(3),electronic(4),electronica(4),house(2),synth(5),techno(3) 

Table 2. The music features and the corresponding dimension 
used in the segment-based feature vector. 

Type Feature Description Dim

dynamic rms 2 

fluctuation peak, centroid 3 

rhythm event density, pulse clarity, tempo, attack 
time, attack slope 

7 

spectral centroid, spread, skewness, kurtosis, en-
tropy, flatness, rolloff at 85%, rolloff at 
95%, brightness, roughness, irregularity 

22 

timbre zero crossing rate, spectral flux, low en-
ergy, MFCC, delta MFCC, delta-delta 
MFCC, zero crossing rate 

78 

pitch pitch value, inharmonicity 4 

tonal key strength, key clarity, key mode possi-
bility, HCDF, chroma peak, chroma cen-
troid, chroma 

61 

 



GMM, i.e., p( zk | xi, si ), and that of the MMM, i.e.,  p( zk | w, si ), 
as expressed in the following: 
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where  is a leverage factor for adjusting the contributions of the 
auditory features and the co-tag distribution. 

In the M-step, we maximize the expected log-likelihood over the 
posterior probability p( zk | si ) with respect to the model parame-
ters. The update rules for the model parameters are as follows: 
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The posterior probability of a latent feature class zk in Eq. (5) 
plays a linkage between the GMM and the MMM, and determines 
the identical mixture weight k of the two models in Eq. (6). 

The reason why we use the addition of the two mixture models’ 
posterior probabilities rather than the product to estimate the pos-
terior probability of zk in Eq. (5) is that they have very different 
scales. From our experiences, the likelihood of the Gaussian PDF 
could be extremely small (could even become 0 due to the limited 
computing power) owing to the high dimension of the auditory 
feature vector. If product is used, the learning process could be 
overwhelmingly dominated by the auditory features, and the 
learning of MMM would highly depends on the feature aggrega-
tion of the GMM. Although the GMM learned in this way may be 
tight, the MMM could be very loose. This does not fit our goal of 
learning a GMFM with properly balanced feature aggregation that 
leads to good performance. 

The leverage factor  is designed to be tuned and validated in the 
experiments. Note that in Eq. (4),  will not affect the estimation 
of model parameters in the joint log-likelihood maximization 
process because the log-likelihood terms of the two mixture mod-
els in Eq. (4) can be maximized independently. In practice,  
plays a role in balancing and generating a reasonable L if we re-
quire a stopping criterion based on L during the iterative model 
fitting process. In this work, we readily set  to be equal to . The 
learning process of GMFM is summarized in Algorithm 1. 

6.3 Music Retrieval with MTML Queries 
As summarized in Table 1, there are two ways to apply the 
GMFM to the MTML content-based MIR system. Both Systems 1 
and 2 need to first convert each music clip in the database into a 
set of auditory posterior distribution vectors. Given a music clip S, 
it is first extracted into a set of segment-based feature vectors 
denoted as xt, t=1,…,T.  Then, the auditory posterior distribution 
of segment xt, denoted as vector t, is computed with the GMM in 
the pre-learned GMFM: 
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where tk is the k-th component in t. 

In System 1, each music segment in the database is indexed by its 
 computed by Eq. (10). Then, a given MTML query ,~c  whose 

component is denoted as ),(~ jc  j=1,2…,M, is folded in into the 
MMM to estimate a pseudo song  whose component k, k=1,…,K, 
is estimated by 
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The pseudo song has a similar property with the auditory posterior 
distribution  as explained in Section 4.2. Therefore, we apply the 
well-known vector space model to compute the cosine similarity 
between the pseudo song and each music segment in the database. 
The music segments in the database are ranked by sorting the 
similarities from high to low. The ranking position of a music clip 
in the database is the averaged ranking positions of its component 
segments. 

In System 2, the GMFM-based automatic tagger predicts the tag 
affinity distribution of each music clip in the untagged music da-
tabase. Given a music clip S, we first predict the tag affinity of S’s 
component segment xt, t=1,…,T. The affinity of tag wj for seg-
ment xt is computed by 
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Assume each segment in a music clip is treated equally, the affin-
ity of tag wj for S is computed by 
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Given an MTML query, we use the same standard matching func-
tion, i.e., the cosine similarity, to compare an MTML query ,~c  
and the tag affinity distribution of each music clip in the database.  

Since the two systems may complement each other, we can per-
form a ranking ensemble on their ranking results. The system is 
denoted as System 3 in the experiments. 

Algorithm 1. The learning process of GMFM 

Input: Initial model parameters { )0()0()0( ,, kkk Σμ }, k=1,…,K; 
Training segments {xi, ci}, i=1,…,N; Leverage factor ; 
Stopping ratio r; 

Output: Learned model parameters { kkkkπ ̂,ˆ,ˆ,ˆ Σμ }; 

1:  Initialize a set of equal )0(
k  that sum to 1; 

2:  Iteration index t ← 0;  

3:  Compute L(t) with Eq. (4) using { )0()0()0()0( ,,, kkkk Σμ }; 

4:  while (L(t)-L(t-1))/L(t) > r or t = 0 do  

5:      Compute the posterior probability using Eq. (5); 

6:       t ← t +1; 

7:       Update { )()()()( ,,, t
k

t
k

t
k

t
k Σμ } using Eqs. (6) ~ (9); 

8:       Compute L(t) with Eq. (4) using { )()()()( ,,, t
k

t
k

t
k

t
k Σμ }; 

9:  end while 

 



7. EVALUATION AND RESULTS 
In this section, we first examine the convergence of GMFM learn-
ing and the parameter . Then, we evaluate the MTML content-
based MIR system on the MajorMiner [4] and CAL-500 datasets.  

The MajorMiner dataset is obtained from the MajorMiner website, 
which uses a game to gather informative free text labels for music. 
Each player labels randomly given music clips (each about 10 
seconds long) by listening to them without any meta-information. 
If two players assign the same text label to a music clip, the label 
is adopted by the system. Hence, each music clip’s tag count is at 
least 2. We crawled all the music clips associated with the most 
commonly used 76 tags from the MajorMiner website in March 
2011. The resulting dataset contains 2,472 music clips. In the 
dataset, the count of a tag given to a music clip is at most 12. 

The CAL-500 dataset consists of 500 clips of western popular 
songs [14]. The length of a clip ranges from 3 seconds to more 
than 22 minutes. Each clip has been manually labeled by at least 
three humans following 174 pre-defined text labels. We select a 
subset of 111 tags, which cover categories of genre, instrumenta-
tion, usages, and vocals. In this work, the “soft-assignment” scores 
of tags between 0 and 1 are transformed into positive integer 
counts ranging from 1 to 14 for model training.  

7.1 Examination of GMFM Learning 
We fit the GMFM on the MajorMiner dataset to examine the con-
vergence of the training log-likelihood. The initial GMM is de-
rived by applying the K-means algorithm on a small portion of 
available segment-based vectors. The initial MMM is randomly 
generated and the parameters of each mixture component are nor-
malized to sum to unity. From Figure 7(a), we can see that the 
log-likelihood of the GMFM (K=32) increases monotonically till 
the stopping criterion that the log-likelihood is increased by less 
than 0.0001 is reached. Note that K represents the number of la-
tent feature classes. We also perform an automatic tagging ex-
periment with the GMFM to validate the parameter . The ex-
periment is executed in a three-fold cross-validation manner, i.e., 
two-thirds of music clips for training and the remaining for testing. 
We repeat 20 runs to get the average tag prediction performance 
in terms of AUC (area under the ROC curve) per clip at different 
K and . In each run, the dataset is divided into three folds at ran-
dom. As shown in Figure 7(b), the GMFM achieves better tagging 
performance when  is between 0.5 and 0.7. The results indicate 
that the auditory features should contribute more in GMFM learn-
ing. In the following MIR experiments,  is set to the value that 
gives the best performance in Figure 7(b). Although the perform-
ance curves in Figure 7(b) vary slightly with K, they have a simi-
lar concave tendency. The performance is improved as K increases 
since a larger K yields a higher resolution of the latent feature 
class. But the improvement is not linearly proportional to the in-
crease in K, and it starts to saturate at around K=256 as will be 
described in detail later.  

7.2 Evaluation of the MTML MIR System 
To evaluate the proposed MIR system, we need a set of MTML 
queries; and for each query, we need the relevant/irrelevant labels 
of music clips in the dataset. Recall that each music clip in the 
dataset is associated with tags and their counts, i.e., c(i, j), 
j=1,…,M; thus, the tag labels with counts of each clip can be used 
as a test MTML query. Then, given an MTML query, the pro-
posed content-based MIR system searches the music clip itself as 
well as other music clips that are perceptually similar to it. How-

ever, since relevance information is not available and manual 
labeling is not feasible, we generate the relevance information 
based on the tag labels with counts of music clips in the dataset. 
We assume that two music clips will be considered relevant by a 
user if they have a highly similar tag count distribution, i.e., the 
cosine similarity between their tag count distributions is close to 1. 
For example, the music clips in a group in Table 3 are considered 
mutually relevant. Therefore, the ground-truth relevance R be-
tween two clips can be defined as the cosine similarity (in the 
range 0 to 1) between their tag count distributions. If we take the 
tag count distribution of a clip S1 as an MTML query, the ground-
truth relevance for clip S2 can be calculated as the cosine similar-
ity between the tag count distributions of S1 and S2. In this way, 
we can generate the relevance information for each MTML query. 

We repeat three-fold cross-validation 20 times on the MajorMiner 
dataset. In each run, the dataset is divided into three folds at ran-
dom. We use 1,648 clips for training the GMFM and 824 clips for 
MIR testing. The tag label of each track in the test set is taken as 
an MTML query; hence, there are 824 MTML queries. Given a 
query in turn, the retrieval system will rank the 824 music clips 
based on their audio content. The same manner is applied on the 
CAL-500 dataset except that we perform five-fold cross-validation. 
The ranked results are compared with the ground-truth relevance. 
To evaluate the retrieval performance, we apply the discounted 
cumulative gain (DCG) and normalized DCG (NDCG) [22]. DCG 
is formulated as follows: 
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where R(i) is the ground-truth relevance of the i-th music clip on 
the ranked list. The ground-truth relevance of a retrieved music 
clip will contribute to DCG a non-negative value discounted loga-
rithmically proportional to its ranked position. The DCG at P is 
proportional to how relevant the top P retrieved music clips are to 
the query. If a system retrieves more relevant clips and highly 
relevant clips have higher positions, it will obtain a higher DCG. 
If we only consider the ranking of the retrieved clips and disregard 
the relevance degree with respect to the whole database, we can 
use the normalized DCG, which is formulated as follows: 

,
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where IDCG@P, which guarantees the ideal NDCG@P value will 
be 1, is the best DCG@P that can be obtained given a set of re-
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Figure 7. (a) The log-likelihood computed in Eq. (4) at each 
iteration of GMFM learning; (b) the automatic tagging per-
formance in terms of AUC per clip with different K and  . 



trieved clips. NDCG is practically meaningful because most users 
only care about the ranking of the top ranked results. 

7.2.1 MIR Methods Compared 
We evaluate the Fold-in method (i.e., System 1 in Table 1), the 
Auto-tag method (i.e., System 2 in Table 1), and the Ensemble 
method (i.e., System 3 mentioned in Section 6.3). The number of 
latent feature classes is set between 16 and 512. We also imple-
ment three methods as the baselines, namely, the codebook Ber-
noulli Average (CBA) method [14], the Gaussian Bernoulli Aver-
age (GBA) method, and the Random method. The CBA method 
starts with an unsupervised training of a codebook on available 
auditory feature vectors, and then each music clip is encoded as a 
bag-of-codewords vector. Next, a binary classifier for each tag is 
learned based on estimating a set of Bernoulli distributions, each 
corresponding to a codeword. There are several improvements 
with GMFM versus CBA. First, CBA is performed in a two-step 
learning manner in which the label information is not considered 
in codebook training and the learning of Bernoulli distributions 
fully depends on the vector grouping of the codebook. Second, 
CBA is not designed to model the co-tag phenomenon and tag 
counts since it employs an independent classifier for each tag and 
a Bernoulli distribution for each codeword. Third, the use of vec-
tor quantization for encoding a song limits the generalization of 
CBA so that it usually requires a large codebook to achieve good 
performance and model adaptation is not feasible when there are 
new songs or tag labels. In the GBA method, the codebook is 
replaced by a GMM. Note that K represents the size of codebook 
in CBA and the number of Gaussian components in GBA. The 
Random method is implemented in two ways: 1) randomly gener-
ating a pseudo song for an MTML query, and 2) indexing a clip 
with a randomly generated tag affinity. The performance of the 
Random method is the average performance of the two implemen-
tation ways. We also investigate the performance of the query-by-
example (QBE) method. Compared with the Fold-in method, 
which uses the pseudo song estimated from an MTML query to 
search music, the QBE method uses the auditory posterior distri-
bution of the associated music clip.   

7.2.2 Results of MIR Experiments 
The results of MIR experiments on the MajorMiner dataset in 
terms of mean NDCG@5, NDCG@10, DCG@5, and DCG@10 
are shown in Figures 8 and 9, respectively. It can be found that the 
performance in general monotonically increases with K, but the 
improvements are gradually reduced. For the MajorMiner dataset, 
we suggest to use K=256 because of its performance and computa-
tional efficiency. From the figures, it is obvious that our methods, 
in particular System 2 (Auto-tag) and System 3 (Ensemble), out-

perform the baselines in all cases. There could be two reasons for 
the superiority of System 2 (Auto-tag) over System 1 (Fold-in). 
First, System 2 matches the MTML query with the music clips in 
the database in the tag label space, based on which the ground-
truth relevance R is estimated, while System 1 does matching in 
the auditory posterior space. Second, the GMM is fitted better 
than the MMM in GMFM learning because the GMFM favors the 
GMM and auditory features more according to . However, the 
two systems can be combined as System 3 (Ensemble) to further 
improve the performance. The results verify that System 1 and 
System 2 complement each other. Although the ensemble method 
performs well, for the online computational efficiency, we suggest 
using System 2 since the folding-in procedure in System 1 may 
suffer from an additional step of estimating the pseudo song from 
the input MTML query online. 
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Figure 10. The comparison of the best performance of all 
methods on the MajorMiner dataset. 
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Figure 11. The comparison of the best performance of all 
methods on the CAL-500 dataset. The DCG@5 of the Random 
method is not shown because it is worse than 1.4. 
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Figure 9. The DCG results for the MajorMiner dataset. 
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The comparison of the best performance of all methods evaluated 
on the MajorMiner and CAL-500 datasets are shown in Figures 10 
and 11, respectively. From the figures, it is obvious that all meth-
ods outperform the Random method significantly. The QBE 
method is originally designed to evaluate the upper bound per-
formance of the Fold-in method. However, it is interesting to find 
that QBE does not always outperform Fold-in. The reason could 
be as follows. The pseudo song transformed from a music clip S’s 
tag labels should have a near identical auditory posterior distribu-
tion with S ideally. However, the MMM learned from the latent 
feature classes and tag labels with counts of the training music 
clips may transform S’s tag labels with counts (i.e., the MTML 
query) into a pseudo song that may benefit from the ground-truth 
relevance estimated from the tag labels with counts in the music 
database, although it does not share a similar auditory posterior 
distribution with S,. This is reasonable if tag bias or noisy tags 
exist in the training dataset. Compared with MajorMiner, CAL-
500 is a more well-labeled dataset, in which all the pre-defined 
tags are verified to the music clips (the tags in MajorMiner are not, 
due to the nature property of social tagging resources). As can be 
seen in Figure 11, the performance of CBA and GBA gets closer 
to that of Auto-tag, and CBA and GBA even outperform Fold-in 
in some cases, in contrast to the results for MajorMiner in Figure 
10. Since the noisy factors in realistic tagged music resources can 
be dealt by topic modeling as discussed in [7, 17], the GMFM, 
which employs the concepts of topic modeling, has the advantage 
as well. The observation that the QBE method performs an out-
standing result in terms of the NDCG metric also indicates that the 
similarity from auditory posterior distribution  encoded by the 
GMM does properly match human’s perceptual similarity. 

8. CONCLUSION AND FUTURE WORK 
In this paper, we have addressed a new tag-based query scenario 
for music information retrieval, i.e., query by multiple tags with 
multiple levels of preference. The MTML query scenario is ac-
complished by a query-by-tag MIR system with a novel tag query 
interface that allows users to search music by colorizing desired 
tags in a tag cloud. In addition to music, the tag-colorizing inter-
face can also be applied to other multimedia documents, e.g., im-
ages and videos. To effect the content-based music retrieval, we 
have introduced a novel probabilistic fusion model GMFM, which 
consists of a GMM and an MMM, to jointly model the auditory 
features and tag labels of a song. Two indexing methods and their 
corresponding matching methods, namely pseudo song-based 
matching and tag affinity-based matching, are incorporated into 
the pre-learned GMFM. The experimental results have demon-
strated the effectiveness of GMFM and the potential of using 
MTML queries to search music from an untagged music database. 

Our future work is fivefold. First, with the tag-colorizing interface, 
users have the opportunity to interact with the interface and dis-
cover music in the database. We can also apply a user feedback 
scenario. In this way, we can collect the tags associated with a set 
of originally untagged music. The newly collected tagged music 
can be used to adapt the GMFM by using the Maximum a Posteri-
ori (MAP) algorithm. Second, the GMFM can be extended to fit 
out a self-organizing map (SOM) of music tags. In this way, the 
tag cloud will have a more intelligent layout, which shows more 
information about tags to attract people to play and discover music 
with the system. Third, the usability of the proposed tag cloud-
based interface should be further evaluated on a large untagged 
music database. In this paper, we only evaluate the technical 
method that realizes the interface on two small tagged music data-

bases. Hopefully, we can cooperate with a music website or Inter-
net radio station such that the user experience of the system could 
be practically evaluated. Fourth, we will further consider the us-
ability of the tag cloud-based interface and the scrolling function-
based interface. The integration of these two interfaces is also 
worthy of study. Fifth, we want to extend our method to deal with 
the open vocabulary tags. We do not consider the open vocabulary 
tags currently since the MTML interface does not allow users to 
enter tags not covered by the tag cloud. However, the interface 
will be more flexible if it also allows users to key in tags. 

9. ACKOWLEDGEMENTS 
This work was supported in part by Taiwan e-Learning and Digi-
tal Archives Program (TELDAP) sponsored by the National Sci-
ence Council of Taiwan under Grant: NSC 100-2631-H-001-013. 
We thank the anonymous reviewers and our shepherd Dr. Lexing 
Xie for their helpful comments. 

10. REFERENCES 
[1] N. Kosugi, et al. A practical query-by-humming system for a large 

music database. In Proc. of ACM MM, 2000. 
[2] W.-H. Tsai, H.-M. Yu, and H.-M. Wang. A query-by-example tech-

nique for retrieving cover versions of popular songs with similar 
melodies. In Proc. of ISMIR, 2005. 

[3] P. Lamere. Social tagging and music information retrieval. J. New 
Music Res.. 37(2), pp. 101-114, 2008. 

[4] M. I. Mandel and D. P. W. Ellis. A web-based game for collecting 
music metadata. J. New Music Res.. 37( 2), pp. 151–165, 2008. 

[5] E. Law and L. von Ahn. Input-agreement: A new mechanism for data 
collection using human computation games. In Proc. of ACM CHI. 
pp. 1197-1206, 2009 

[6] D. Turnbull, et al. A game-based approach for collecting semantic 
annotations of music. In Proc. of ISMIR, 2007. 

[7] M. Levy and M. Sandler. Music information retrieval using social 
tags and audio. IEEE Trans. on Multimedia. 11(3), 383-395, 2009. 

[8] http://en.wikipedia.org/wiki/Tag_cloud  
[9] Owen Kaser and Daniel Lemire. Tag-cloud drawing: Algorithms for 

cloud visualization. In Proc. of WWW, 2007. 
[10] S. Lohmann, J. Ziegler, and L. Tetzlaff. Comparison of tag cloud 

layouts: Task-related performance and visual exploration. T. Gross et 
al. (Eds.). INTERACT 2009, Part I, pp. 392–404, 2009. 

[11] K. Knautz, S. Soubusta, and W.G. Stock. Tag clusters as information 
retrieval interfaces. In Proc. of the 43rd Annual Hawaii International 
Conference on System Sciences (HICSS-43), 2010. 

[12] M. Kuhn, R. Wattenhofer and S. Welten. Social audio features for 
advanced music retrieval interfaces. In Proc. of ACM MM, 2010. 

[13] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic 
annotation and retrieval of music and sound effects,” IEEE Trans. on 
Audio, Speech and Lang. Process.. 16(2), pp. 467–476, 2008. 

[14] M. Hoffman, D. Blei, and P. Cook. Easy as CBA: A simple probabil-
istic model for tagging music. In Proc. of ISMIR, 2009. 

[15] H.-Y. Lo, J.-C. Wang, and H.-M. Wang. Homogeneous segmentation 
and classifier ensemble for audio tag annotation and retrieval. In Proc. 
of IEEE ICME, 2010. 

[16] H.-Y. Lo, S.-D. Lin, and H.-M. Wang. Audio tag annotation and 
retrieval using tag count information. In Proc. of MMM, 2011. 

[17] E. Law, B. Settles, and T. Mitchell. Learning to tag from open vo-
cabulary labels. In Proc. of ECML, 2010. 

[18] http://herdit.org/music/ 
[19] http://apps.facebook.com/herd-it/ 
[20] J. Foote and M. Cooper. Media segmentation using self-similarity 

decomposition,” In Proc. of SPIE Storage and Retrieval for Multime-
dia Databases, 2003. 

[21] O. Lartillot and P. Toiviainen. A Matlab toolbox for musical feature 
extraction from audio. In Proc. of DAFx, 2007. 

[22] K. Jarvelin and J. Kekalainen. Cumulated gain-based evaluation of 
IR techniques. ACM Trans. on Info. Syst.. 20(4), pp. 422–446, 2002. 


