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ABSTRACT 
Due to the cold-start problem, measuring the similarity be-
tween two pieces of audio music based on their low-level 
acoustic features is critical to many Music Information Re-
trieval (MIR) systems. In this paper, we apply the bag-of-
frames (BOF) approach to represent low-level acoustic fea-
tures of a song and exploit music tags to help improve the 
performance of the audio-based music similarity computa-
tion. We first introduce a Gaussian mixture model (GMM) 
as the encoding reference for BOF modeling, then we pro-
pose a novel learning algorithm to minimize the similarity 
gap between low-level acoustic features and music tags 
with respect to the prior weights of the pre-trained GMM. 
The results of audio-based query-by-example MIR experi-
ments on the MajorMiner and Magnatagatune datasets 
demonstrate the effectiveness of the proposed method, 
which gives a potential to guide MIR systems that employ 
BOF modeling.   

1. INTRODUCTION 

Measuring the similarity between two pieces of music is a 
fundamental but difficult task in Music Information Re-
trieval (MIR) research [1] since music similarity is inher-
ently based on human subjective point of view and can be 
bias among people who have different musical tastes and 
prior knowledge. A piece of music contains a variety of 
musical contents, including the low-level audio signal; the 
metadata, such as the artist, album, song name, and release 
year; and a number of high-level perceptive descriptions, 
such as timbre, instrumentation, style/genre, mood, and so-
cial information (e.g., tags, blogs, and explicit or implicit 
user feedback). Among the musical contents, only the au-
dio signal is always available while the metadata and high-
level perceptive descriptions are often unavailable or ex-
pensive to obtain. Owing to the cold-start problem, measur-
ing the similarity between two pieces of audio music based 
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on their low-level acoustic features is critical to many MIR 
systems [2, 3]. These systems are usually evaluated against 
the objective criteria derived from the metadata and high-
level perceptive descriptions, which in fact correspond to 
the subjective criteria that humans use to measure music 
similarity. The similarity gap between the acoustic features 
and human subjective perceptions inevitably degrades the 
performances of the MIR systems. The gap may come from 
an insufficient song-level acoustic feature extraction or rep-
resentation and an ill similarity metric. Therefore, the goal 
of improving audio-based music similarity computation is 
to reduce the gap between audio features and human per-
ceptions, and it can be achieved from a music feature repre-
sentation perspective [3-8] or a similarity learning perspec-
tive [1, 10]. 

Due to the “glass ceiling” of performance that the pure 
audio-based music similarity computation systems have 
faced, several high-level perceptive descriptions, which are 
considered having a smaller gap between the similarity 
computed on them and the subjective similarity of human, 
have been employed in some previous work, For example, 
in [6, 7], an intermediate semantic space (e.g. genre or text 
caption) is used to bridge and reduce the similarity gap. 
During recent years, social information has been very 
popular and become a major source of contextual knowl-
edge for MIR systems. The social information generated by 
Internet users makes the “wisdom of crowds” available for 
investigating the general criteria of human subjective music 
similarity. In [1], the music blogs are exploited to learn the 
music similarity metric of audio features. In [8], the social 
tags are concatenated with the audio features to represent 
music in a query-by-example MIR scenario. Furthermore, 
Kim et al. [9] conduct explicit and implicit user feedback, 
which can be implemented by collaborative filtering (CF, 
the user-artist matrix), to measure artist similarity. Surpris-
ingly, the experimental results show that CF can be a very 
efficient source in music similarity computation. After-
wards, the CF data is used in [10] to learn the audio-based 
similarity metric and significant improvements in query-by-
example MIR performance are achieved with three types of 
song-level representations, namely, acoustic, auto-tag, and 
human-tag representations. 

In the abovementioned work, music tags are mostly 
treated as part of music features to represent a song [8-10]. 
In this paper, we adopt music tags to create a ground truth 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval 



  
 

semantic space to be used to measure human subjective 
similarity for three reasons. First, music tags are human la-
bels that represent human musical perceptions. According 
to previous studies [9, 10], the similarity from tags is highly 
relative to the subjective similarity for evaluation, i.e., the 
similarity gap is relatively small. Second, music tags are 
free-text labels that include all kinds of musical information, 
such as genre, mood, instrumentation, personal preference, 
and metadata, which are used to objectively evaluate the ef-
fectiveness of audio-based similarity computation in previ-
ous work. Third, music tags are generally considered noisy, 
redundant, bias, and unstable when collected from a com-
pletely non-constrained tagging environment, such as 
last.fm. Consequently, several web-based music tagging 
games have been created with a purpose of collecting reli-
able and useful tags, e.g., MajorMiner.org [12] and Tag A 
Tune [13]. In these tagging games, music clips are ran-
domly assigned to taggers in order to reduce the tagging 
bias. Carefully extracting tags with high term frequencies 
and merging equivalent tags can intuitively reduce the 
noisy factors. With a set of well-refined music tags, the se-
mantic space which simulates the human music similarity 
can be established. 

In most audio-based MIR systems, the sequence of short-
time frame-based or segment-based acoustic feature vectors 
of a song is converted into a fixed-dimensional vector so 
that the song-level semantic descriptions (or tags) can be 
incorporated into it. The bag-of-frames (BOF) or bag-of-
segments approach is a popular and efficient way to repre-
sent a set of frame-based acoustic vectors of a song and has 
been widely used in MIR applications [8,10,14]. In the tra-
ditional BOF approach, a set of frame representatives (e.g., 
codebook, denoted as an encoding reference hereafter) are 
selected or learned in an unsupervised manner, then a song 
is represented by the histogram over the encoding reference. 

In the BOF representation vector, each dimension repre-
sents the effective quantity of its corresponding frame rep-
resentative (e.g., codeword) within a song. Based on the ef-
fective quantities, we can estimate the audio-based similar-
ity of two songs. Motivated by the metric learning for au-
dio-based music similarity computation in [1, 10], we could 
learn a metric transformation over the BOF representation 
vector by minimizing the similarity gap between acoustic 
features and music tags. Since the BOF vector is generated 
by the encoding reference, the minimization of similarity 
gap can be achieved by learning the encoding reference ra-
ther than learning a metric transformation on the native 
BOF space. This leads to a supervised method for learning 
the encoding reference from a tagged music dataset to im-
prove the BOF representation. Hopefully, the learned en-
coding reference could better generalize the BOF modeling 
than a stacking transformation over the native metric. 

The remainder of this paper is organized as follows. Sec-
tion 2 describes the audio feature extraction module and 
song-level BOF representation. In Section 3, we introduce 

the method for learning the encoding reference from the 
tagged music data. In Section 4, we evaluate the proposed 
method on the MajorMiner and Magnatagatune datasets in 
a query-by-example MIR scenario. Finally, we summarize 
our conclusions in Section 5. 

2. BAG-OF-FRAMES REPRESENTATION FOR 
ACOUSTIC FEATURES 

2.1 Frame-based Acoustic Feature Extraction 

We use MIRToolbox 1.3 for acoustic feature extraction 
[14]. As shown in Table 1, we consider four types of fea-
tures, namely, dynamic, spectral, timbre, and tonal features. 
To ensure alignment and prevent mismatch of different fea-
tures in a vector, all the features are extracted with the same 
fixed-sized short-time frame. Given a song, a sequence of 
70-dimensional feature vectors is extracted with a 50ms 
frame size and 0.5 hop shift. Then, we normalize the 70-
dimensional frame-based feature vectors in each dimension 
to mean 0 and standard deviation 1. 

Types Feature Description Dim
dynamic rms 1 
spectral  centroid, spread, skewness, kurtosis, en-

tropy, flatness, rolloff 85, rolloff 95, bright-
ness, roughness, irregularity 

11

timbre zero crossing rate, spectral flux, MFCC, 
delta MFCC, delta-delta MFCC 

41

tonal key clarity, key mode possibility, HCDF, 
chroma , chroma peak, chroma centroid 

17

Table 1. The music features used in the 70-dimensional frame-
based music feature vector. 

2.2 The Encoding Reference and BOF Representation 

The BOF approach is argued that each frame of a song 
should not be treated equally, and an isolated frame of low-
level acoustic feature is not representative for high-level 
perceptive descriptions [15]. Besides, the effectiveness of 
BOF modeling is highly impacted by the size of encoding 
reference and will encounter a glass ceiling when the size is 
too large [16]. Our goal of improving the encoding refer-
ence for BOF modeling is twofold: First, we aim at choos-
ing a type of frame representative that gives better gener-
alization ability and a more reliable distance measure crite-
rion. Second, each frame representative should not have 
equal information load during song-level encoding.  

The BOF modeling starts with generating the encoding 
reference from a set of available frames (denoted as F). 
The frames are usually selected randomly and uniformly 
from each song in a music dataset. Note that how to select 
frames to form F is beyond the scope of this paper, al-
though the frame selection strategy could impact the final 
performance. We use a Gaussian mixture model (GMM) 
instead of a codebook derived by the K-mean algorithm as 
the encoding reference [17]. In the GMM, each component 



  
 

Gaussian distribution, denoted as zk, k=1,…,K, corresponds 
to a frame representative. The GMM is trained on F by the 
expectation-maximization (EM) algorithm, and is ex-
pressed as follows: 
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where v is a frame-based feature vector, Nk(·) is the k-th 
component Gaussian distribution with mean vector μk and 
covariance matrix Σk, and πk is the prior weight of the k-th 
mixture component. Given v, the posterior probability of a 
mixture component is computed by: 
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Given a song s with L frames, its BOF posterior-probability 
representation (denoted as vector x) is computed by: 

,)(1)(
1
∑

=
=←

L

t
tkkk zp

L
szpx v                (3) 

where xk is the k-th element in vector x. When encoding a 
frame by GMM, the posterior probability is based on the 
likelihood of each component Gaussian distribution. The 
posterior probability of each mixture component yields a 
soft-assigned encoding criterion which enhances the mod-
eling ability of the GMM-based encoding reference over 
the vector-quantization-based (VQ-based) one. 

Our contention is that the diversity of frame representa-
tives in the encoding reference is proportional to the ability 
of the BOF modeling, i.e., the BOF modeling can involve 
more audio information of a song to be encoded. However, 
like other encoding references (e.g., a set of randomly se-
lected vectors or a trained codebook), the GMM is gener-
ated in an unsupervised manner. The factors that we can 
control includes the number of components in GMM, i.e., 
K, the types of acoustic features used in the frame-based 
vector, and the construction of F. Except for K, the other 
two factors are fixed in the beginning. As K increases, the 
frame representatives become more diverse, but some of 
them are in fact redundant. This motivates us to determine 
the importance of each frame representative in a discrimi-
native way. The EM training for GMM provides the esti-
mation of the data distribution over F, which is assumed to 
follow a mixture of Gaussian distributions, by the maxi-
mum likelihood criterion. The prior πk of the k-th compo-
nent Gaussian represents the corresponding effective num-
ber of frames in training set F. However, the construction 
of F implies that the estimated distribution of F actually 
does not have information about the song-level distribution 
of acoustic feature vectors. In other words, it may not re-
flect the importance of each mixture component when en-
coding a song. In fact, as will be discussed later in Sec. 4, 
our experimental results show that setting the trained priors 
to a uniform distribution improves the MIR performance. 

In light of the observations described above and the ben-
eficial characteristics of music tags, we readily incorporate 
the tagged music data as a supervision guide to determine 
the importance of each mixture component in the GMM.   

3. LEARNING THE AUDIO-BASED SIMILARITY 

In this work, learning the similarity of audio music from 
tagged music data is achieved by learning the encoding ref-
erence to minimize the similarity gap between low-level 
acoustic features and high-level music tags. To this end, we 
conduct learning with respect to the parameters of the 
GMM trained from F. In this paper, we only consider the 
relearning of the prior probabilities, i.e., the pre-learned pa-
rameters μk and Σk, k=1,…,K, are fixed. The proposed itera-
tive learning algorithm has two steps, namely, encoding 
songs into BOF vectors and minimizing the similarity gap 
with respect to the prior probabilities of the GMM.  

3.1 Preliminary 

Suppose there is a tagged music corpus D with N songs. 
Given a song si in D, we have its BOF vector xi∈RK×1, 
which is encoded by the GMM to represent the acoustic 
features, and its tag vector yi∈{0,1}M×1, in which each tag 
is binary labeled (multi-label case) from a pre-defined tag 
set with M tags. Two similarity matrices are defined: SX is 
computed on the N BOF vectors, and SY is computed on the 
N tag vectors. We estimate the acoustic similarity between 
si and sj in D by computing the inner product of xi and xj. 
Therefore, the acoustic similarity matrix SX of D can be ex-
pressed as: 

,XXT
XS =              (4) 

where X is a K-by-N matrix with xi as its i-th column. The 
tag similarity matrix SY of D is expressed as:   

,YYT
YS =             (5) 

where Y is an M-by-N matrix with yi∕||yi|| as its i-th col-
umn. Since each song may have different numbers of tags, 
to ensure that the tag-based similarity of a song itself is al-
ways the largest, we compute the cosine similarity between 
yi and yj in Eq. (5) to estimate the tag-based similarity to 
simulate the human similarity between si and sj. 

The methods for audio-based similarity computation can 
be evaluated by a query-by-example MIR system, i.e., 
given a query song with the audio signal only, the system 
ranks all the songs in the database based on audio-based 
similarity computation only. To evaluate the effectiveness 
of SX, we perform leave-one-out MIR tests to evaluate the 
normalized discounted cumulative gain (NDCG) [18] with 
respect to the ground truth relevance derived by SY. That is, 
each song si in D is taken as a query song in turn, the out-
put ranked list for si is generated by sorting the elements in 
the i-th row of SX in descending order, and the correspond-
ing ground truth relevance is the i-th row of SY. The 



  
 

NDCGi@P, which represents the quality of ranking of the 
top P retrieved songs for query si, is formulated as follows: 
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where Ri(j) is the ground truth relevance (obtained from the 
i-th row of SY) of the j-th song on the ranked list, and QP is 
the normalization term representing the ideal ranking of the 
P songs [18]. Intuitively, if more songs with large ground 
truth relevance are ranked higher, a larger NDCG will be 
obtained. The query-by-example MIR performance on D 
based on SX with respect to SY is evaluated by  
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The larger NDCG in Eq. (7) is, the more effective the audio 
similarity computation for SX is. 

3.2 Minimizing the Similarity Gap 

We define a K-by-K symmetric transformation matrix W 
for the BOF vector space. The transformed BOF vector for 
si is expressed by Wxi, and the new acoustic similarity ma-
trix ST of D can be obtained by: 

,)()( TXXWXWX TT
TS ==           (8) 

where T=WTW. Therefore, minimizing the similarity gap 
between the transformed BOF vector space and human tag 
vector space is equivalent to minimizing the distance or 
maximizing the correlation [19] between the two kernel 
matrices ST and SY with respect to W. In this paper, moti-
vated by the work in [20], we express the N songs in D as 
two random vectors, Zx∈RN×1 for the transformed acoustic 
feature and Zy∈RN×1 for the tag label, which follow two 
multivariate Gaussian distributions Nx and Ny, respectively. 
There exists a simple bijection between the two multivari-
ate Gaussians. Without loss of generality, we assume Nx 
and Ny have an equal mean and are parameterized by (μ, ST) 
and (μ, SY), respectively. Then, the “closeness” between Nx 
and Ny can be measured by the relative entropy KL(Nx || Ny) 
(i.e., the KL-divergence), which is equivalent to d(ST || SY):   

{ },  ||log)(  
2
1)||( 11 NSSSStrSSd YTYTYT −−= −−      (9) 

where tr(·) and |·| are the trace and determinant of a matrix, 
respectively. The minimization of d(ST || SY) can be solved 
by setting the derivative of d(ST || SY) with respect to T to 
zero. The solution that minimizes d(ST || SY) is as follows: 

 ( ) .)(
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Since W is symmetric, the optimal matrix W is derived by 
.)( 21** TW =            (11) 

To prevent singularity, a small value 0.001 is added to each 
diagonal element of the matrices that are inversed in solv-

ing W. If we restrict W in Eq. (8) to be diagonal, i.e., we 
ignore the correlation among different dimensions in the 
BOF vector, and define vector w ≡ diag(W), the optimal w* 
is the diagonal of W*: 

),(diag ** Ww =              (12) 

where each element in w* must be greater than zero. The 
derivations of Eqs. (10) and (12) are skipped due to the 
space limitation. 

In the testing phase, each song is first encoded into a 
BOF vector by the GMM using Eq. (3). Then, the audio-
based similarity between any two songs si and sj is com-
puted as xi

TT*xj, where T* can be a full or diagonal matrix 
according to the initial setting of W in Eq. (8). In the ex-
periments, this method with full transformation and diago-
nal transformation is denoted as FullTrans and DiagTrans 
respectively, while the method without transformation is 
denoted as OrigGMM (i.e., the native GMM). 

3.3 Relearning the Priors of the GMM 

Instead of learning a transformation matrix, we can also 
minimize the similarity gap by relearning the prior weights 
of the GMM. We propose a two-step iterative learning 
method, which iteratively updates the prior weights of the 
GMM until convergence. The NDCG in Eq. (7) can be 
used as the criterion for checking the convergence of the 
learning procedure. The minimization of similarity gap im-
plies the improvement in NDCG since the learned ST tries 
to preserve the structure of SY, which is used as the ground 
truth relevance in computing NDCG. If NDCG is no longer 
improved, the learning algorithm stops. The learning 
method is summarized in Algorithm 1. 

According to Algorithm 1, there are two steps in an itera-
tion. Line 05 corresponds to the first step, which encodes 
all songs into their BOF vectors; and lines 11 and 13 corre-
spond to the second step, which minimizes the similarity 
gap with respect to the prior weights of the GMM. Since 
encoding all songs in D is a complicated procedure, di-
rectly optimizing NDCG with respect to the parameters of 
the GMM with Eqs. (1), (2) and (3) is infeasible. Therefore, 
we turn to find an indirect solution that minimizes the simi-
larity gap with respect to the priors of the GMM. We ex-
ploit the property of w* to derive Eq. (13), which serves as 
an indirect optimizer for maximizing the NDCG(D)@N by 
reweighting the prior weights of the GMM. Intuitively, the 
vector w* derived in line 11 plays a role to select mixture 
components in the GMM.  

In the testing phase, each song is encoded into a BOF 
vector by the GMM with the relearned prior weights using 
Eq. (3). Then, the audio-based similarity between any two 
songs si and sj is computed as the inner product of xi and xj , 
without the need to apply any stacking transformation in 
the BOF space. In the experiments, the proposed method 
implemented in this way is denoted as DiagGMM. 



  
 

4. EVALUATIONS 

4.1 Datasets 

We evaluate the proposed method on the MajorMiner and 
Magnatagatune datasets in a query-by-example MIR sce-
nario. Both datasets are generated from social tagging 
games with a purpose (GWAP) [11, 12] to collect reliable 
and useful tag labels. The MajorMiner dataset has been a 
well-known benchmark in MIREX since 2008. The one 
used in this paper is crawled from the MajorMiner website 
in March 2011. It contains 2,472 10-second music clips and 
1,031 raw tags. After exacting the high frequency tags and 
merging the redundant tags, 76 tags are left. The Magnata-
gatune dataset [12], which contains 25,860 30-second au-
dio clips and 188 pre-processed tags, is downloaded from 
[21]. To construct F, we randomly select 25% and 2% of 
frames from the two datasets, respectively. For MajorMiner, 
F contains 235,000 frames, while for Magnatagatune, F 
contains 535,800 frames. The F constructed in this way is 
blind to song-level information. To prevent bias in the tag-
based similarity computation of SY, we ignore the clips la-
beled with fewer tags. For the MajorMiner dataset, 1,200 
clips having at least 5 tags are left. For the Magna-tagatune 
dataset, 3,764 clips having at least 7 tags are left. 

4.2 Experimental Results and Discussions 

In the experiments, we repeat three-fold cross-validation 10 
times on the MajorMiner dataset, which is divided into 

three folds at random. In each run, two folds are used for 
training the transformation matrix of the FullTrans and Di-
agTrans methods or relearning the prior weights of the 
GMM for the DiagGMM method, while the remaining fold, 
which serves as both the test queries and the target data-
base to retrieve, is used for the leave-one-out audio-based 
MIR outside test. For the Magnatagatune dataset, all clips 
have been divided into 16 folds to prevent that two or more 
clips originated from the same song occur in different folds. 
We merge the 16 folds into 4 folds and perform four-fold 
cross-validation. The NDCG@P in Eq. (7) is used as the 
evaluation metric in both inside and outside tests.  

First, we examine the learning process of DiagGMM on 
the MajorMiner dataset. Figure 1 shows an example learn-
ing curve in terms of NDCG for one of the three-fold cross-
validation runs. The curve is equivalent to the inside test 
performance evaluated on the training data. We can see that 
the learning curve of DiagGMM (K=256) increases mono-
tonically till convergence, although DiagGMM can only 
improve the NDCG of the training data indirectly as dis-
cussed in Section 3.3. DiagGMM gains an absolute in-
crease of 0.04 in NDCG@10 and 0.002 in NDCG@800. 
The NDCG of FullTrans can be considered an upper bound 
for DiagGMM since it adopts a direct optimization strategy.  

Next, we evaluate OrigGMM and the VQ-based method 
on the MajorMiner dataset. There is no need to divide the 
data into three folds since no supervised learning is in-
volved in the methods.  From the MIR results shown in Ta-
ble 2, we observe that replacing the priors of the GMM 
trained from F with a uniform distribution enhances the 
performance. We also observe that, even with a large K, 
OrigGMM outperforms VQ-based BOF modeling. The re-
sults demonstrate the better modeling ability of the GMM 
over the K-means derived codebook. 

Finally, we compare DiagGMM with three baselines, i.e., 
FullTrans, DiagTrans, and OrigGMM. The results of three-
fold cross-validation on the MajorMiner dataset are shown 
in Figure 2, while the results of four-fold cross-validation 
on the Magnatagatune dataset are shown in Figure 3. From 
Figures 2 and 3, it is obvious that the proposed DiagGMM 
outperforms all other methods in most cases. The conven-
tional BOF approach does face a glass ceiling when K is 

Algorithm 1. The learning algorithm 
Input: Initial GMM parameters {μk, Σk }, k=1,…,K;  

A tagged music corpus D: a set of frames Vi for si, 
i=1,…,N, and tag similarity matrix SY  from Eq. (5);

Output: Learned GMM prior { kπ̂ }; 

01: Initialize )0(
kπ  to be 1/K; 

02: Iteration index  t ← 0;  
03: L(t) ← 0; 
04: while  t ≥ 0 do  
05:    Encode Vi into xi with Eq. (3) using { kk

t
k Σμ ,,)(π };

06:    Compute SX with Eq. (4); 
07:    t ← t + 1; 
08:    L(t) ← NDCG(D)@N with Eq. (7) using SX and SY; 
09:    If  (L(t)-L(t-1))/L(t) < 0 then  
10:         Return )1(ˆ −← t

kk ππ and break; 
11:    Compute w* with Eq. (12) using SX and SY ; 
12:    for k=1,…,K, do 

13:         ;
1
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(where wk is the k-th element in w*) 
14:    end for 
15: end while 
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Figure 1. The learning curve in terms of (a) NDCG@10 and (b) 
NDCG@800 evaluated on the MajorMiner training data. 



  
 

too large, as evidenced by the observation that the perform-
ance of OrigGMM saturates at around K=1,024 for Ma-
jorMiner (10-second clips) and K=2,048 for Magna-
tagatune (30-second clips). The proposed DiagGMM en-
hances the performance over the glass ceiling of OrigGMM 
with a smaller K, e.g., DiagGMM with K=512 outperforms 
OrigGMM with K=2,048 on the MajorMiner dataset. Full-
Trans outperforms DiagTrans and DiagGMM only when K 
is small. However, FullTrans tends to saturate early since it 
has more parameters to train and thus requires more train-
ing data, compared with DiagTrans and DiagGMM. In Fig-
ure 1, the performance of FullTrans shows an upper bound 
of DiagGMM in inside test; however, in outside test, 
DiagGMM outperforms FullTrans except when K is small. 
The experimental results in Figures 2 and 3 demonstrate the 
excellent generalization ability of DiagGMM, which learns 
the similarity of audio music by relearning the priors of the 
GMM instead of a transformation in the BOF vector space. 

5. CONCLUSIONS  

In this paper, we have addressed a novel research direction 
that the audio-based music similarity computation can be 
learned by minimizing the similarity gap or maximizing the 
NDCG measure with respect to the parameters of the en-
coding reference in BOF representation. We have imple-
mented the idea by learning the prior weights of the GMM 
from tagged music data. The experimental results demon-
strate the effectiveness of the proposed method, which 
gives a potential to guide MIR systems that employ BOF 
representation, e.g., the DiagGMM can be directly com-
bined with the codeword Bernoulli average (CBA) method 
[13], a well-known automatic music tagging method.  
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NDCG @5 @10 @20 @30 
OrigGMM (K=2,048) w/o Prior 0.9382 0.9015 0.8753 0.8674
OrigGMM (K=2,048) w Prior 0.9322 0.8992 0.8743 0.8669
VQ-based (K=2,048) Histogram 0.9297 0.8930 0.8721 0.8650

Table 2. The results of OrigGMM and the VQ-based method  on 
the complete MajorMiner dataset (1,200 clips). 
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Figure 2. The results in terms of NDCG@5 and NDCG@10 on 
the MajorMiner dataset with different K. 
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Figure 3. The results in terms of NDCG@5 and NDCG@10 on 
the Magnatagatune dataset with different K. 


