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ABSTRACT 

 
Visualizing audio signals during playback has long been a 
fundamental function of music players. However, most vis-
ual effects are generated by audio signal processing directly 
and render meaningless or incomprehensible displays to 
users. In this paper, we present an intelligent music player 
called the Playing with Tagging (PWT) music player. By 
integrating a real-time music tagger, the PWT player can 
display dynamic tag distributions via a set of tag bars that 
move in sync with the music. To synchronize the tag distri-
butions, the music tagger must be able to online recognize 
the music tags. We utilize a Gaussian mixture model (GMM) 
as an auditory feature encoding reference and a mixture of 
tag-based aspect models (TBAMs) to predict the tag distri-
bution for a short sliding chunk of the music played. To 
evaluate the real-time tagging function, we simulate tag 
prediction on short music chunks. The results of experi-
ments on the MajorMiner dataset demonstrate the potential 
and effectiveness of the proposed music tagging method.  
 

Index Terms— Online music tag annotation, real-time 
music visualization, probabilistic tag-based aspect model. 
 

1. INTRODUCTION 
 
Visualizing audio signals during playback has long been a 
fundamental function of music players. For example, digital 
home stereo systems are usually equipped with a small 
screen that shows the bar chart of the spectrum; and Win-
dows Media Player provides several visual effects, such as 
splashes of color, geometric shapes, and random graphs, for 
users to select when playing music. Most visual effects are 
generated directly by audio signal processing based on low-
level features, such as the time domain waveform or the 
frequency domain spectrum. Such visualizations are usually 
meaningless or incomprehensible because a pure audio sig-
nal does not contain any semantics and the user cannot read 
it directly. It would be more interesting and entertaining if 
the music player could display the musical concepts in sync 
with the music being played. The information would also 
help general users understand the semantic meaning that the 
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music track is intended to express. In this paper, we present 
an intelligent music player called the Playing with Tagging 
(PWT) music player, which incorporates a real-time music 
tagger that recognizes and displays the dynamic tag distribu-
tion of the current audio content during playback. As shown 
in Figure 1, the bars, which represent the current tag distri-
bution, stretch and shrink with the music just like a moving 
spectrum. The music player can online recognize the music 
tags of a sliding chunk of the music and synchronize the 
display of the predicted tag distribution with the music be-
ing played. The music player can be used on any platform 
of computational devices. 

Music tags are generated from a folksonomy, which is a 
full-scale taxonomy of music that reflects the current usage 
among Internet users [1]. For example, Last.fm is a collabo-
rative social tagging network that collects information about 
users’ music habits in terms of music tags. In addition, sev-
eral web-based music tagging games, such as MajorMiner 
[2] and Tag A Tune [3], have been created with the purpose 
of collecting useful tags. These applications provide tagged 
music resources for researchers to investigate users’ tagging 
behavior. The tags may provide different facets of informa-
tion about the music, such as genre, mood, instrumentation, 
and original artist(s). However, the collected music tags 
only relate to existing music tracks, i.e., tags are uneven or 
not available for new tracks. This so-called cold start issue 
has motivated research into a number of topics, such as 
automatic music tag annotation [3-7] and tag-based music 
retrieval [3-8] from an untagged music database. 

Figure 1. A screenshot of the PWT music player’s visuali-
zation function at 00:50 for the first chorus of the song 
“Ripcord” from Radiohead’s album “Pablo Honey.” The 
bar chart shows the dynamic tag distribution and moves in 
sync with the music. 
 



Most existing music tagging methods focus on offline 
tag prediction for music tag annotation and retrieval. In 
contrast, we propose an efficient generative approach that 
combines a Gaussian mixture model (GMM) and a mixture 
of tag-based aspect models (TBAMs) for real-time tag pre-
diction. To synchronize the dynamic visual tag distributions 
with the music being played, tag prediction is performed on 
a fixed-length chunk of music with a small number of 
frames sliding at a down-sampled rate over the music being 
played. We utilize the GMM as an auditory feature refer-
ence to encode the frame vectors of an audio chunk in a 
fixed-dimensional feature vector. To online predict the tag 
distribution of a sliding chunk of an audio music track, the 
tag predictor must be very efficient. After the audio feature 
extraction and GMM-based auditory feature representation 
steps, the computation in TBAM-based online tag predic-
tion is linear. 

The remainder of this paper is organized as follows. 
Section 2 provides an overview of the proposed PWT music 
player. In Section 3, we describe the audio feature extrac-
tion and representation components as well as the synchro-
nization schema. In Section 4, we introduce the TBAM-
based music tag prediction. In Section 5, we discuss the 
simulations of online tag prediction and evaluate the per-
formance on the MajorMiner dataset. Section 6 contains the 
conclusion and our future work. 
 

2. SYSTEM OVERVIEW 
 
The proposed PWT music player is implemented in two 
phases, the model training phase and the music playing 
phase, as shown in Figure 2. In the model training phase, 
each music clip in the tagged music database is extracted in 
a set of frame-based audio feature vectors; then a pre-
trained GMM is applied to encode the frame vectors in a 
fixed-dimensional feature vector. Finally, the TBAMs are 
learned from the fixed-dimensional feature vectors and the 
associated tag labels. In the music playing phase, the music 
track to be played is extracted into frame vectors by a buff-
ered audio feature extractor. Then, the frame vectors of a 
sliding chunk are encoded in a fixed-dimensional feature 
vector, and the GMM and TBAMs are used to generate the 
tag distribution of the chunk. A timer synchronizes the dis-
play of the tag distribution of each chunk and the audio 
playback. The tag distribution of a sliding chunk will be 
displayed at the end of the chunk, as shown in Figure 3. In 
other words, users can always see the tag distribution of the 
short chunk the music player has just played. 
 

3. AUDIO FEATURE EXTRACTION AND 
PLAYBACK SYNCHRONIZATION 

 
In this work, the audio feature extraction component and 
clip-level (or chunk-level) feature representation are modi-
fied from our previous work [8]. To satisfy the requirement 
for real-time processing, we only utilize the timbre features, 
i.e., Mel-Frequency Cepstral Coefficients (MFCCs), delta-
MFCCs and delta-delta MFCCs, which can be extracted 
faster than the audio playback, to form a 39-dimensional 

frame vector. Each frame is extracted with a window size 
d=0.05 seconds and a frame shifting rate h=0.5. 

As illustrated in Figure 3, to synchronize the display of 
dynamic tag distributions with music playback, tag predic-
tion is performed on a chunk comprised of T frames sliding 
at a down-sampled rate R over the audio playback. When 
the chunk hop size HS is set at 4 frames, the down-sampled 
rate R = SR /{1 /(HS ·h ·d)} is 441, where SR is the sampling 
rate of the audio playback, which is 44100 Hz, i.e., the 
player updates the tag distributions every 0.01 seconds. The 
playing time (e.g., t1, t2 and t3) corresponds to the last 
(rightmost) frame of the chunk (i.e., the red, green, and blue 
ones). In this way, users always see the tag distribution of 
the short chunk the music player has just played. 

To produce a standard auditory feature reference that 
can be used for any music signal, we apply a global GMM 
trained on a collection of randomly selected feature vectors 
to encode an audio frame. In the GMM, we define a set of 
“latent feature classes”, zk, k=1,…,K, each of which corre-
sponds to the k-th Gaussian component, denoted as Nk(·), 
with mixture weight k, mean vector k, and covariance 
matrix k. The t-th frame vector xt of a song is encoded by a 
set of posterior probabilities over zk , k=1,…K as follows: 
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We do not consider the mixture weight k because it was not 
useful in our previous work [9]. A chunk of frames is the 
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Figure 2. The flowchart of the proposed PWT music player. 
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Figure 3. An illustration of the synchronization of the dynamic tag 
distribution display and music playback, where the tag distribution 
of the sliding chunk is displayed at the end of the chunk. 



basic unit for online tag prediction. Suppose that chunk sn 
starts at time tn of the playback song. Then, its chunk-level 
audio posterior representation n can be computed by 

,)(
1

)|(
1







Tt

tt
tknknk

n

n

zp
T

szp x|                (2) 

where nk is the k-th component of n. Since adjacent 
chunks have many frames that overlap, the change in the 
audio posterior representations (i.e., of adjacent chunks 
will not be salient, and the resulting dynamic tag distribu-
tions will change smoothly. Note that, like Internet video 
streaming, a short buffer is necessary to guarantee that the 
display of dynamic tag distributions and music playback is 
synchronized, even though the music player’s online tag 
prediction method is efficient. If the timer (see Figure 2) 
finds that tag prediction cannot synchronize with the play-
back, it instructs the playback function to pause until 
enough predicted tag distributions are buffered. 
 

4. REAL-TIME TAG PREDICTION 
 
To realize real-time tag prediction, we apply TBAM [8], a 
probabilistic generative model that jointly models the audio 
posterior distribution derived by Eq. (2) and tag labels with 
counts of each clip in a training music database. 

Suppose the training music database contains J audio 
clips hj, j=1,…,J, and the corresponding tag labels with 
counts c(j,m), which is a non-negative integer indicating the 
number of times that tag wm from a predefined tag set 
w={w1,…,wM} has been assigned to hj. Since the real-time 
tag prediction is applied on the chunk-level audio posterior 
distribution, each training audio clip is uniformly divided 
into nj chunks of T frames. We assume that the tag labels of 
a training audio clip can be shared by its component 
chunks1. Therefore, the training music database contains N 
= j nj training chunks sn, n=1,…,N, and their corresponding 
tag labels with counts c(n,m). Given a latent feature class zk, 
we define its corresponding TBAM as a multinomial distri-
bution with parameter k, whose m-th component km corre-
sponds to tag wm and is subject to mkm =1. k can be 
learned by maximizing the following log-likelihood via the 
expectation-maximization algorithm: 
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where nk is the k-th component of n from Eq. (2), repre-
senting the probability that the audio content of sn is similar 
to zk, the k-th Gaussian component in the pre-trained GMM.  

In the playing phase, given an audio posterior distribu-
tion  of a sliding chunk, the affinity of tag wm for the chunk 
is computed by the linear combination of mixture probabili-
ties, each with a pre-learned model parameter km: 
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1 The assumption is valid if the training clip is short, since the tag labels are 
in general consistent over a short clip. In this work, the length of a training 
clip is 10 seconds.   

The intuition of tag prediction is illustrated in Figure 4. 
Suppose the human memory store K discrete timbre patterns 
described by a global GMM (i.e., Nk, k=1,…K), each of 
which is indexed by zk and has a corresponding co-tag dis-
tribution k. If a user has just listened to a chunk that can be 
described completely by N1, (i.e.,1 =1, and i=0 for all i≠1), 
the tag affinities will exactly follow the distribution 1. 

 The computation in Eq. (4) is linear given . Therefore, 
the bottleneck of online tag prediction occurs when comput-
ing  in Eqs. (1) and (2), whose complexity is proportional 
to the number of latent feature classes K. Although reducing 
K could make the computation more efficient, it could also 
degrade the tag prediction performance dramatically be-
cause K corresponds to the resolution of the audio posterior 
representation. If the music player is implemented on a 
handheld device with less computing power, K (the major 
factor), HS and h should be chosen carefully. 
 

5. EXPERIMENTS 
 
We evaluated the proposed system on the MajorMiner data-
set [2]. The dataset is available from the MajorMiner web-
site, which uses a game to gather informative free text labels 
for music. We downloaded all the music clips associated 
with the 45 most commonly used tags on the website. The 
resulting dataset contains 2,472 ten-second audio clips to-
gether with the tag labels. We perform three-fold cross-
validation 10 times. In a set of randomly split three folds, 
1,648 clips are used for training and 824 for testing. To 
simulate the real-time tagging scenario, each 10-second test 
clip is uniformly divided into non-overlapping 1-second 
(i.e., T =HS =40 frames) chunks. Since the test clips are 
short, the tag labels are generally consistent over a short clip, 
so each chunk inherits the tag labels of its source clip. In 
this paper, we only evaluate real-time tag prediction on 
short chunks. Currently the PWT music player is imple-
mented with Matlab environment. We will demonstrate the 
PWT music player at the conference. 

We consider two strategies for handling the training 
clips, namely, clip-level training (TrClip) and chunk-level 
training (TrChunk). In TrClip, we do not divide the training 
clips into chunks, i.e., the TBAM is trained on j, 
j=1,…,1648. While, in TrChunk, like the test clips, each 10-
second training clip is divided into 10 one-second chunks, 
and the TBAM is trained on n, n=1,…,16480. To train the 
GMM, we randomly select 25% of the frame-based feature 
vectors (~235K frames) in the complete dataset. The GMM 
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Figure 4. The prediction flow of tag affinity.



and TBAM are trained with the stopping criterion that the 
objective function is increased by less than a ratio of 0.0001. 

We compare our method with the Codeword Bernoulli 
Average (CBA) method [6], which uses a codebook to en-
code the frame-based feature vectors of a clip or a chunk. 
Our GMM-based TBAM method has two advantages over 
CBA. First, when both T and K are small, the GMM-based 
posterior representation provides a better model generaliza-
tion than the vector quantization (VQ)-based histogram rep-
resentation. Second, the employment of multinomial distri-
butions in TBAM enables the modeling of tag co-
occurrences and tag counts. 

 Figure 5 shows the average performance of 10-times 
three-fold cross-validation in terms of the area under the 
receiver operating characteristic (ROC) curve per chunk 
(AUC). In Figure 5(a), we compare chunk-level training 
(TrChunk) with clip-level training (TrClip). Clearly, 
TrChunk outperforms TrClip under different K (the number 
of mixture components in GMM-TBAM or the number of 
codewords in CBA). For the GMM-TBAM method, there is 
no significant difference between the two training strategies 
(GMM-TBAM-TrChunk vs. GMM-TBAM-TrClip). In con-
trast, for the CBA method, clip-level training yields a poor 
performance when K is large (CBA-TrChunk vs. CBA-
TrClip). This could be because the VQ-based histogram 
representation has insufficient modeling ability for a small 
chunk. Figure 5(b) shows the performance of different 
methods using chunk-level training. Here, we compare two 
additional methods, namely, the Gaussian Bernoulli average 
(GBA) and the VQ-histogram-based TBAM (VQ-TBAM). 
GBA is modified from CBA by replacing the VQ-based 
histogram with a GMM-based posterior representation; 
while VQ-TBAM uses the VQ-based histogram to represent 
a chunk, instead of the GMM-based posterior to encode a 
chunk. We observe that, under different K, the proposed 
GMM-TBAM method outperforms VQ-TBAM, CBA and 
GBA; and GBA outperforms CBA. The results demonstrate 
that GMM outperforms VQ in encoding a short chunk (1 
second in this paper) and the tag-based aspect model can 
generalize tag modeling better than a set of independent 
Bernoulli models. The GMM-TBAM method is efficient 
enough to be applied in the PWT music player. When K=32, 
it outperforms CBA with K=512 and also runs 16 times 
faster than CBA with K=512. The performance improves as 
K increases, but it tends to saturate if K becomes too large. 
Considering the efficiency of the real-time tagging system, 
we recommend using K=64, which reached almost 0.86 in 
AUC according the slope of performance increase. However, 
the selection of K depends on the computing power of the 
device. The best AUC performance tested on 10-second 
clips of the MajorMiner dataset in the tag classification task 
at MIREX 2010 was 0.8828 [10]. Our GMM-TBAM system, 
which applies a very simple and efficient model with basic 
timbre features (MFCCs) to predict tags for a short audio 
chunk (1 second), yields a comparable performance (0.8675 
when K=1024). Note that our MajorMiner dataset was col-
lected during March 2011, so it might be slightly different 
from the one used at MIREX 2010. 
 

6. CONCLUSION AND FUTURE WORK 
 
In this paper, we have presented the PWT music player, 
which uses an online music tagger to visualize dynamic tag 
distributions with music playback in real-time. Our experi-
mental results demonstrate the potential and effectiveness of 
the real-time auto-tagging method. In our future work, we 
will conduct a subjective evaluation of the PWT player’s 
usability. Moreover, to improve the real-time music tagging 
algorithm, we will develop other visualization mechanisms, 
such as an active tag cloud layout or a 3D-based display, to 
present dynamic tag distributions. 
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Figure 5. Tag prediction performance: (a) comparison between 
CBA and TBAM using chunk-level training (TrChunk) and clip-
level training (TrClip); (b) comparison of the four methods using 
chunk-level training (TrChunk). 


