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Abstract—In the music information retrieval (MIR) research,
developing a computational model that comprehends the affective
content of music signal and utilizes such a model to organize
music collections have been an essential topic. Emotion perception
in music is in nature subjective. Consequently, building a general
emotion recognition system that performs equally well for every
user could be insufficient. In contrast, it would be more desirable
for one’s personal computer/device being able to understand
his/her perception of music emotion. In our previous work, we
have developed the acoustic emotion Gaussians (AEG) model,
which can learn the broad emotion perception of music from
general users. Such a general music emotion model, called the
background AEG model in this paper, can recognize the perceived
emotion of unseen music from a general point of view. In this
paper, we go one step further to realize the personalized music
emotion modeling by adapting the background AEG model with
a limited number of emotion annotations provided by a target
user in an online and dynamic fashion. A novel maximum a
posteriori (MAP)-based algorithm is proposed to achieve this in
a probabilistic framework. We carry out quantitative evaluations
on a well-known emotion annotated corpus, MER60, to validate
the effectiveness of the proposed method for personalized music
emotion recognition.

I. INTRODUCTION

State-of-the-art systems for speaker recognition are usually
built upon two models: a large Gaussian mixture model
(GMM), also called the Universal Background Model (UBM)
[1], that is trained to represent the speaker-independent dis-
tribution of acoustic features, and a speaker-dependent GMM
that is obtained by updating the parameters of the UBM via
the model adaptation techniques with the speech data of a
specific speaker, who is interacting with the system [2]. This
system design has been proved successful as it captures both
the commonality among general speakers and the individuality
of the target speaker.

In this paper, we propose to apply the idea of GMM-UBM
and model adaption to the challenging task of automatic music
emotion recognition (MER), which has received increasing
attention in recent years [3], [4], [5].1 MER is considered im-
portant as it holds the promise of managing the ever increasing
volume of digital music in a content-based and intuitive way.

1We define music emotion as the emotion human perceives as being
expressed in a piece of music, rather than the emotion felt in response to
the piece. This distinction is made because we may not feel sorrow when
listening to a sad tune [6].

However, due to the complicated mental processes involved in
the perception of music, MER is different from conventional
pattern recognition tasks in that oftentimes emotion perception
is fairly user-dependent [6], [7]. For example, heavy metal
music can be pleasant to some people, yet annoying to others.
The subjective nature of emotion perception indicates the
requirement for personalizing the MER system [8], [9]. As
argued in [10], although developing a general MER system
that performs equally well for every user is great, it is rather
more sufficient if one’s personal computer or mobile device is
able to understand his or her perception of emotion and adapt
to each individual in a dynamic and real-time fashion [11].

Despite that the subjective nature of emotion perception
is well recognized, little effort has been invested to take the
subjectivity into account. Most existing work avoids dealing
with this issue by assuming a common consensus can be
achieved (particularly for classic music) [12], discarding songs
that a common consensus cannot be achieved [13], or simply
leaving it as future work [14]. Although some preliminary
attempts have been made to personalized MER, most of them
are built upon discriminative models that lack a solid and
theoretical computational framework [15], [16], [11]. The
performance of existing MER systems are still limited from
both theoretical and practical points of view.

For the model adaptation techniques to be applicable, a
prerequisite is that the target pattern recognition task can be
represented in a parametric form, such that model adaptation
can be performed efficiently on-line by adapting the model
parameters. A novel probabilistic model, which is outlined
below, is developed to learn a UBM-like background model
for music emotion, which is viewed as a parametric and
probabilistic distribution over the so-called emotion space
instead of static mood labels. Personalizing the background
model can then be realized by adapting the parameters of this
model. To the best of our knowledge, few attempts if any have
been made to develop a principled probabilistic framework
that has a sound statistical foundation in concern with the
subjectivity issue and personalization scenario in emotion-
based music information systems.

A. The Acoustic Emotion Gaussians Model

In our recent work, we have proposed a novel Acoustic
Emotion Gaussians (AEG) model that realizes the generative



Fig. 1. Subjects’ annotations in the VA space [19] for four 30-second clips,
which from left to right are Dancing Queen by ABBA, Civil War by Guns N’
Roses, Suzanne by Leonard Cohen, and All I Have To Do Is Dream by the
Everly Brothers, respectively. Each circle corresponds to a subject’s annotation
for a clip, and the overall annotations (in total 40) for a clip can be modeled
by a 2-D Gaussian distribution (i.e., the blue ellipse) [20].

process of emotion perception in music from acoustic features
[17], [18]. The AEG model learns from data two Gaussian
mixture models (GMMs), namely an acoustic GMM and a VA
GMM, to describe the low-level acoustic feature space and
high-level emotion space, respectively. A set of latent feature
classes is introduced to play the end-to-end linkage between
the two spaces and align the two GMMs. As a principled
probabilistic model, AEG is applicable to both emotion-based
music annotation (i.e., MER) and retrieval.

Specifically, to better account for the subjective and stochas-
tic natures of emotion perception, the proposed AEG model
represents the perceived emotion of music as a mixture of
bivariate Gaussian distributions in a two-dimensional emotion
space spanned by valence (or pleasantness; positive/negative
affective states) and activation (or arousal; energy and stimu-
lation level) – the two most fundamental dimensions found by
psychologists [19].2 The valence-activation space is referred
to as the VA space in this paper hereafter. Figure 1 shows the
ground truth VA annotations of four music clips, each labeled
by multiple subjects. We can see that the annotations for each
clip appear to be approximately expressed by a 2D Gaussian.
Therefore, we can learn an AEG model from this type of
emotion annotations and utilize it to predict the emotion
distribution for a music clip as a 2-D Gaussian. In this way,
developers of an emotion-based music retrieval system can
better understand how likely a specific emotional expression
(expressed as a VA-based probabilistic distribution) would be
elicited when listening to a clip.

B. Personalizing the AEG Model via Model Adaptation
As the AEG model is parametric, it can be easily extended

to incorporate additional user information, such as individ-
ual emotion perception survey, personal profile, purchasing
records, and listening history, for personalization. Therefore, in
this paper, we go one step further to realize the personalization
scenario for the AEG model. Due to the use of VA GMM in
modeling the VA annotations underlying the AEG framework,
we can apply the GMM-based adaptation methods to personal-
izing the AEG model with a person’s annotations. Specifically,
we first treat the VA GMM learned from broad subjects as a

2For example, happiness is associated with a positive valence and a high
activation, while sadness is associated with a negative valence and a low
activation.

background emotion model, and then derive the maximum a
posteriori (MAP) [21] based method to adapt the background
(general) VA GMM using a small number of user-provided
annotations in an on-line fashion. In practice, the quantity of
personal annotations is usually sparse, and sometimes only
one annotation is available at a time instance. Therefore, it is
preferable to incrementally adapt the model parameters.3

The remainder of the paper is organized as follows. Section
II introduces the generative process of AEG as well as the
model learning and emotion predicting procedures underlying
the AEG framework. Sections III describes the technical
details of the model adaptation method. The corpus, evaluation
setup, and metric used in this work and the evaluation results
are presented in Section IV. Finally, we conclude the paper in
Section V.

II. THE ACOUSTIC EMOTION GAUSSIANS MODEL

This section introduces the AEG model and presents how to
apply it to the VA-based emotion prediction of a music clip,
as illustrated in Figure 2.

A. Acoustic GMM Posterior Representation

To start the generative process of the AEG model, we utilize
a universal acoustic GMM to span the probabilistic space
for the acoustic GMM posterior representation. The acoustic
GMM, which is pre-learned using the EM algorithm [22] on
a universal set of frame-based acoustic feature vectors, F , is
expressed as

p(x) =

K∑
k=1

πkN (x|zk,mk,Sk), (1)

where x is a frame-based feature vector; πk, mk, and Sk are
the prior weight, mean vector, and covariance matrix of the k-
th component acoustic Gaussian, which is denoted by a latent
feature classes zk (cf. Figure 2). Accordingly, each zk, which
is derived by the acoustic GMM learning, represents a certain
kind of acoustic pattern.

Suppose each clip in an emotion annotated music corpus X
is denoted as si, i = 1, . . . , N , where N is the number of clips,
and its t-th frame vector is denoted as {xit}Ti

t=1, where Ti is
the number of frames in si. The acoustic posterior probability
of zk for xit is computed by,

p(zk|xit) =
πkN (xit|zk,mk,Sk)∑K

h=1 πhN (xit|zh,mh,Sh)
. (2)

In our implementation, the mixture prior (i.e., πk and πh)
in Eq. 2 is replaced by 1

K , because it was not useful in the
previous work [23].

The clip-level acoustic GMM posterior {θik}Kk=1 (cf. Figure
2) can be summarized by

3It can be noted that because the MAP-based method is content-based,
the target user can choose whatever clips to annotate, for example, songs
that he/she is familiar with, not limited to the ones utilized in training the
background model.
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Fig. 2. Illustration of the generative process of the AEG model. Music emotion distribution can be generated from the acoustic features.

θik ← p(zk|si) =
1

Ti

Ti∑
t=1

p(zk|xit). (3)

One can see from Eq. 3 that a component acoustic posterior
probability θk is obtained based on the whole set of frames of
the music clip. This statistical representation is able to capture
the long-term acoustic characteristics of every music clip in
a K-dimensional probabilistic space, and thus it should be
sufficient for music emotion modeling. Finally, the acoustic
GMM posterior of si is represented by vector θi, whose k-th
component is θik.

B. User Prior Model for VA Annotation

To cover the emotion perception of different subjects, typ-
ically each clip si in X is annotated by multiple subjects.
Given the emotion annotations eij , j = 1, . . . , Ui, of si, where
eij denotes the annotation given by the j-th subject uij and
Ui denotes the number of subjects who have annotated si,
we build a user prior model γ with the following Gaussian
distribution,

γ(eij |uij , si) ≡ N (eij |si,ai,Bi), (4)

where ai =
1
Ui

∑Ui

j=1 eij and Bi =
1
Ui

∑Ui

j=1(eij − ai)(eij −
ai)

T . The annotation prior of eij can be estimated based on
the likelihood computed by Eq. 4. Therefore, if an annotation
is far away from other annotations for the same clip, it would
be considered less reliable.

To be incorporated into the learning process of the VA
GMM, the annotation prior probability of an annotation of
a clip (denoted by γij) is derived from its corresponding user
prior model γ(eij |uij , si) as follows

γij ← p(uij , si|X ) =
γ(eij |uij , si)∑N

q=1

∑Uq

r=1 γ(eqr|uqr, sq)
. (5)

C. Learning the VA GMM

In the right hand side of Figure 2, each zk maps an audio
pattern into an area Gk in the VA space, where Gk can be
modeled by a bivariate Gaussian distribution, denoted as a

latent VA Gaussian. The mixture of latent VA Gaussians is
called the VA GMM hereafter. To infer the VA GMM, we
assume that eij of si by uij in X can be generated from a
weighted VA GMM governed by the acoustic GMM posterior
θi of si,

p(eij |uij , si,θi) =
K∑

k=1

θikN (eij |µk,Σk), (6)

where µk and Σk denote the mean vector and covariance
matrix of the k-th latent VA Gaussian Gk shown in Figure
2 to be learned.

For each clip si, we have computed its acoustic GMM
posterior θi and annotation prior γij . The clip-level likelihood
is generated by a weighted sum over all subjects who have
annotated the clip, and the total likelihood is generated by the
weighted sum of the clip-level likelihoods over all clips in X
as follows,

p(E|X ) =
∑
i

∑
j

γij
∑
k

θikN (eij |µk,Σk), (7)

where
∑

i

∑
jγij = 1, and E denotes {eij} ∈ X ,∀i, j.

According to the Jensen’s inequality, the logarithm of Eq. 7
has the following property,

log p(E|X ) ≥
∑
i,j

γij log
∑
k

θikN (eij |µk,Σk). (8)

We apply the EM algorithm to maximize Eq. 8 with respect
to {µk,Σk}Kk=1 [22]. In the E-step, the posterior probability
of zk given a subject’s annotation for si is

p(zk|eij ,θi) =
θikN (eij |µk,Σk)∑K

h=1 θihN (eij |µh,Σh)
. (9)

In the M-step, we derive the following update rules [17]:

µ′
k ←

∑
i,j γijp(zk|eij ,θi)eij∑
i,j γijp(zk|eij ,θi)

, (10)

Σ′
k ←

∑
i,j γijp(zk|eij ,θi)(eij − µ′

k)(eij − µ′
k)

T∑
i,j γijp(zk|eij ,θi)

. (11)



D. Emotion Prediction

Given a test music clip with the acoustic GMM posterior
θ̂, the AEG model can generate the predicted emotion distri-
bution as a GMM

∑
k θ̂kN (e|µk,Σk), where {µk,Σk}Kk=1

is the learned VA GMM. However, the resulting predicted VA
GMM may be unnecessarily complicated and difficult for a
user to interpret the result of emotion prediction. Instead, a sin-
gle and representative VA Gaussian N (e|µ̂, Σ̂) is practically
more useful, since there is only one set of Gaussian parameters
that makes it straightforward to comprehend the predicted
emotion. The representative VA Gaussian can be derived by
the weighted combination of all latent VA Gaussians as shown
in the rightmost part in Figure 2. This can be resorted to the
information theory to calculate the mean vector and covariance
matrix of the representative VA Gaussian by solving the
following optimization problem,

N (e|µ̂, Σ̂) =

argmin
{µ,Σ}

K∑
k=1

θ̂kDKL(N (e|µk,Σk)‖N (e|µ,Σ)),
(12)

where DKL(NA‖NB) denotes the one-way KL divergence
from N (e|µA,ΣA) to N (e|µB ,ΣB):

DKL(NA‖NB) =
1

2

(
tr(ΣAΣ−1B )− log |ΣAΣ−1B |

)
+
1

2
(µA − µB)

TΣ−1B (µA − µB)− 1,
(13)

The optimal mean vector and covariance matrix for Eq. 12 are
obtained by [24]:

µ̂ =
∑K

k=1
θ̂kµk, (14)

Σ̂ =
∑K

k=1
θ̂k
(
Σk + (µk − µ̂)(µk − µ̂)T

)
. (15)

III. PERSONALIZING THE AEG MODEL

So far the VA GMM learned from quite a few of subjects
and their corresponding annotated music clips can be a suffi-
cient representation for general user opinions as a background
model. Similar to the idea of the GMM-UBM speaker recog-
nition system, we treat the background VA GMM as a user-
independent background model, which is considered having
the well-trained parameters for generalizing the emotion mod-
eling. When the annotated clips of a target (or new) user are
available, the personalized VA GMM can be adapted from
the background VA GMM. Motivated by speaker adaption in
speech recognition, we adopt the maximum a posteriori (MAP)
[21], [2] criterion derived from the Bayesian learning theory as
the GMM-based adaptation method. The MAP-based approach
is regarded as fairly efficient in speaker adaptation and as
having a tight coupling between the personalized model and
UBM, without the loss of model generalizability. It is therefore
an ideal candidate for online personalization of emotion-based
MIR applications.

To personalize the AEG model, the system may ask a target
user u∗ to annotate a few number of music clips in advance

and then uses the personal annotations to adapt the background
VA GMM. We are given a pre-trained background VA GMM
denoted as {N (e|µk,Σk)}Kk=1, and a set of music clips and
their corresponding VA values {em,θm}Mm=1 ∈ X∗ that the
target user u∗ has rated. Since the VA GMM models the
emotion annotations based on the acoustic GMM posterior
that is generated from the fixed acoustic GMM, the music
clips in X∗ can be exclusive to the music corpus X used to
learn the background VA GMM. This means that u∗ is allowed
to annotated his/her familiar music.

The first step of VA GMM adaptation is equivalent to
the E-step of the EM algorithm that computes the posterior
probabilities over zk using X∗,

p(zk|em,θm) =
θmkN (em|µk,Σk)∑K

h=1 θmhN (em|µh,Σh)
. (16)

Then, we derive the expected sufficient statistics of X∗
over the posterior probability p(zk|em,θm) for the effective
number (weight), mean, and covariance parameters:

Mk =
∑M

m=1
p(zk|em,θm), (17)

E(µk) =

∑M
m=1 p(zk|em,θm)em

Mk
, (18)

E(Σk) =

∑M
m=1 p(zk|em,θm)emeT

m

Mk
. (19)

Finally, the new parameters of the personalized VA GMM
can be obtained according to the MAP criterion with a set of
conjugate prior distributions [21]. The resulting update rules
are the forms of interpolations between the expected sufficient
statistics (i.e., E(µk) and E(Σk)) and the parameters of the
background VA GMM (i.e., µk and Σk) as follows:

µ∗k ← αµ
kE(µk) + (1− αµ

k )µk, (20)

Σ∗k ← αΣ
k E(Σk) +

(
1− αΣ

k

) (
Σk + µkµ

T
k

)
− µ∗k(µ

∗
k)

T .
(21)

Note that there is no need to update the weight parameters
since the mixture weights are replaced by the acoustic GMM
posterior probabilities in emotion prediction. Personalizing the
background VA GMM is very efficient because we only need
to perform the adaptation procedure once. The complexity
mainly depends on K times of computing expected sufficient
statistics and updating the parameters.

The interpolation coefficients for updating the mean vector
and covariance matrix in Eqs. 20 and 21 are data-dependent
and defined as

αµ
k =

Mk

Mk + δµ
, and αΣ

k =
Mk

Mk + δΣ
, (22)

where δµ and δΣ are the fixed relevance factors for mean and
covariance, respectively. The personalized VA GMM adapted
from X∗ can be used to personalize music emotion recognition
mentioned in Section II-D. The personalized VA GMM can
be also incorporated into the emotion-based music retrieval
introduced in our recent work [17].



IV. EVALUATION

This section presents the emotion annotated corpus, eval-
uation setup, and metrics used in this work. As for the
performance study, we first evaluate general MER using the
background AEG, and then investigate the performance of the
personalized AEG for personalized MER in an incremental
learning scenario.

A. Music Corpora

We use the MER60 corpus consisting of 60 clips that comes
with VA annotations [20].4 These clips, in which each is 30-
second long, were selected from the chorus section of English
pop songs, and each of them was annotated by 40 subjects
for VA values. Each subject was asked to annotate the VA
values by using a graphic interface that displays the VA space
in a silent computer lab. The VA values, which are numerical
values ranging from -1 to 1, are entered by clicking a point in
the emotion space. Among the 40 users, 6 users have annotated
all the clips. Therefore, we can evaluate the performance of
personalization on these 6 users.

B. Frame-based Acoustic Features

In this work, we adopt the bag-of-frames modeling and ex-
tract frame-based musical features for acoustic modeling [23],
[25], [26]. A frame that captures detailed temporal features
can facilitate the ability of clip-level acoustic modeling of the
acoustic GMM posterior representation. Instead of analyzing
the emotion of a specific frame, we aggregate all the frames in
a clip into the acoustic GMM posterior vector θ (cf. Eq. 3) and
perform our analysis of emotion at the clip level. Although it
may be interesting to extract long-term mid-level features such
as melody, rhythm, structure, or harmonic progression that
directly characterizes the musical information of a clip, such
features are not used because the extraction of them is still not
perfect and they may introduce noises (in feature extraction)
to the system.

We utilize MIRToolbox 1.3 [27] to extract the following four
types of frame-based acoustic features: dynamic (root-mean-
squared energy), spectral (centroid, spread, skewness, kurtosis,
entropy, flatness, rolloff 85%, rolloff 95%, brightness, rough-
ness, and irregularity), timbre (zero crossing rate, spectral flux,
13 MFCCs, 13 delta MFCCs, and 13 delta-delta MFCCs), and
tonal (key clarity, key mode possibility, HCDF, 12-bin chroma,
chroma peak, and chroma centroid). All of the frame-based
features are extracted with the same frame size of 50ms and
50% hop size to ensure easy alignment. Each dimension in all
extracted frame vectors is normalized to have zero mean and
one standard deviation. Two frame vector representations are
considered in the performance evaluation: a 39-D vector that
consists of MFCC-related features only and a 70-D vector that
concatenates all the features.

4Available at http://mac.iis.sinica.edu.tw/∼yang/MER/NTUMIR-60/.

C. Evaluation of Background AEG for General MER

To learn the acoustic GMM, we use an external music
collection to form the global frame vector set F containing
235K frames. Then, the acoustic GMMs with several K values
are learned using the EM algorithm [22]. We restrict the
covariance matrix of the acoustic GMM to be diagonal. To
learn the respective VA GMM, we initialize all the VA Gaus-
sian components with the sample mean vector and covariance
matrix of the VA annotations of the training set, and use a full
covariance matrix for each latent VA Gaussian component.

We perform six-fold cross-validation for the MER evalua-
tion. That is, 50 clips are used for training and the remaining
10 clips are used for testing. Each set of ground truth anno-
tations of a clip is summarized by a ground truth Gaussian to
represent the general emotion perception. The error (prediction
deviation) can be evaluated by the one-way KL divergence (cf.
Eq. 13) between the predicted and ground truth Gaussians for
a clip. The overall performance is evaluated in terms of the
average KL divergence (AKL) over the test set. Smaller AKL
corresponds to better performance.

The following factors in the background AEG are consid-
ered: the frame-based acoustic features (either 39-D MFCCs
or 70-D concatenated features), the number of latent feature
classes K, and whether to use the annotation prior described in
Section II-B or not. For example, “AEG-APrior-70DConcat”
means using the annotation prior with the 70-D concatenated
features. We test the AEG model with K ranging from 16
to 1,024. When the annotation prior is not used, we simply
replace all γij by 1 in the learning process. We compare
the AEG method with support vector regression (SVR) [28],
which is regarded as one of the state-of-the-art methods widely
used in the MER task [29], [20], with different acoustic
features. The SVR-Melody method, which uses the melody
features, was the best performed setting reported in [20].5 We
also investigate the performance of SVR using the acoustic
features used in our method.

Figures 3 shows the AKL performance. It is clear that, as a
general music emotion recognizer, the background AEG con-
sistently outperforms the SVR method in almost all cases. Par-
ticularly, AEG-APrior-70DConcat (K=32) significantly out-
performs SVR-Melody with p-value< 1% under the two-tailed
t-test. In general, the annotation prior model improves the
performance, and the 70-D concatenated features outperform
the 39-D MFCCs when K is small.

D. Evaluation for Personalized MER

So far we have demonstrated the effectiveness of the back-
ground AEG for general MER. Next, we conduct the per-
sonalized MER task in an incremental setting as the scenario
described in Section I-B that the personal annotations of a
target user are not available during training the background
VA GMM, and more and more data are gradually available
in the future. In the MER60 corpus, there are 6 users who

5Currently we do not consider the melody features for AEG, since they
belong to the long-term mid-level features. We leave this for our future work.

http://mac.iis.sinica.edu.tw/~yang/MER/NTUMIR-60/
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Fig. 3. Performance of general MER in terms of AKL (the smaller the better)
evaluated on the MER60 corpus.

have annotated all the clips. Therefore, we train and test the
personal MER task with the annotations of the 6 users.

For each test user, we perform six-fold cross-validation that
holds out 1-fold of music clips for testing in each validation
run. The remaining five folds are utilized for training the
personalized model in an incremental way: the training data
are available for model adaptation fold-by-fold (instead of
one-by-one). In a nutshell, the experiment for a target user
is organized as the following procedures:

1) Randomly split all the clips and the corresponding
annotations of the user into P + 1 folds (here P = 5).

2) Perform P + 1-fold cross-validation (P + 1 validation
trials):

a) Hold out one fold unseen for testing.
b) Train a background VA GMM with music clips in

the rest P folds using the emotion annotations of
all the subjects we have except for the target user.

c) Add one fold into the adaptation pool until all the
P folds are used (P incremental adaptation trials).
i) Use the current adaptation pool to adapt the

background VA GMM.
ii) Evaluate the prediction accuracy for the clips

in the test fold using the adapted VA GMM.
3) Summarize the performance for the target user.

Note that we have used P to denote the number of folds
used for adaptation. The main purpose of the experiment is
to investigate the effectiveness of model adaptation against
the quantity of personal data available for the system. The
performance of the personalized MER model can be evaluated
by feeding the ground truth annotation of the target user into
the predicted VA Gaussian, i.e., logN (e∗|µ̂∗, Σ̂∗), where e∗
is the ground truth annotation of user u∗, and {µ̂∗, Σ̂∗} is the
predicted single VA Gaussian with the test music clip. The
average log-likelihood (ALLi) over the test set is regarded
as the final performance; larger ALLi corresponds to more
accurate performance.

In our preliminary study, we have found that updating the
covariance matrices of VA GMM may sometimes lead to the
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acoustic features, and number of folds of personal annotations used for
adaptation) for personalized MER on the MER60 corpus.

degradation of performance of model adaptation, possibly be-
cause the limited number of personal data we have may not be
sufficient for estimating a proper covariance. This observation
is also in line with the findings in speaker adaptation [2].
Therefore, in the experiment we only adapt the mean vector
of the VA GMM according to the personal annotations. As
a result of model adaptation, the positions of the component
latent VA Gaussians may shift (c.f., Figure 2), but the shape
and size will remain unchanged. The relevance factor δµ is
empirically set to 0.1.

Figure 4 shows the result of personalized MER in terms
of ALLi. We select 6 settings, which have performed well
in the evaluation of background AEG, to investigate in the
evaluation of personalized MER. In general, the performance
gets improved in all cases as more personal annotations are
available, i.e., the performance is positively proportional to
the value of P . In particular, the performance difference of
APrior-70DConcat with K = 32 is significant (p-value< 5%
under the two-tailed t-test) between P = 0 and P = 2,
indicating that the adaptation method can achieve a significant
improvement with only 20 personal annotations. In summary,
these observations demonstrate the effectiveness and efficiency
of the proposed personalization method.

Two more observations can be made from the result. First,
among the 6 settings, APrior-70DConcat with K = 32
performs the best as suggested in the previous evaluation.
In contrast, APrior-70DConcat with K = 1, 024 leads to the
worst result, suggesting that a complicated model considering
a larger K and more diverse acoustic features may not be
useful. We attribute this to the limited number of adaptation
data, which may be insufficient for updating the parameters of
such a complicated model. Second, the annotation prior does
not benefit the 70DConcat feature as K is large, possibly also
because it increases the model complexity.



V. CONCLUSION

In this paper, we have presented a novel MAP-based
adaptation technique for personalizing the AEG model. The
performance study has also demonstrated the effectiveness
of the proposed method for the personalized MER task in
an incremental learning scenario. In the near future, we will
investigate the maximum likelihood linear regression (MLLR)
[30] based technique that learns a linear transformation over
the parameters of the AEG model for personalization.
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