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ABSTRACT

Music auto-tagging refers to automatically assigning seman-
tic labels (tags) such as genre, mood and instrument to music
so as to facilitate text-based music retrieval. Although signif-
icant progress has been made in recent years, relatively little
research has focused on semantic labels that are time-varying
within a track. Existing approaches and datasets usually as-
sume that different fragments of a track share the same tag la-
bels, disregarding the tags that are time-varying (e.g., mood)
or local in time (e.g., instrument solo). In this paper, we
present a new dataset dedicated to time-varying music auto-
tagging. The dataset, called CAL500exp, is an enriched ver-
sion of the well-known CALS500 dataset used for conventional
track-level tagging. Given the tag set of CAL500, eleven sub-
jects with strong music background were recruited to annotate
the time-varying tag labels. A new user interface for anno-
tation is developed to reduce the subject’s annotation effort
yet increase the quality of labels. Moreover, we present an
empirical evaluation that demonstrates the performance im-
provement CAL500exp brings about for time-varying music
auto-tagging. By providing more accurate and consistent de-
scriptions of music content in a finer granularity, CAL500exp
may open new opportunities to understand and to model the
temporal context of musical semantics.

Index Terms— Music auto-tagging, temporal context,
time-varying, annotation interface, dataset construction

1. INTRODUCTION

Fueled by the tremendous growth of digital music libraries,
a large number of example-based and text-based music infor-
mation retrieval (MIR) methods have been proposed in the
literature. The former retrieval scenario allows users to query
music with audio examples, such as a hummed melody or
a fragment of a desired song [1, 2], whereas the latter helps
users to search music through a few keywords related to high-
level music semantics or metadata such as artist name, song
title, genre, style, mood, and instrument [3-5]. The task of
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automatically tagging musical items (e.g., artists, albums, or
tracks) with such high-level musical semantics is usually re-
ferred to as music auto-tagging in the MIR literature [6-23].

In many previous works, music auto-tagging has been de-
voted to labeling music in the frack-level, assuming that the
overall content of a track can be summarized by a set of tags
[8,9,13,18]. That is, they usually collect the ground-truth
associations between tag and music in the track level [24],
develop a set of track-level auto-taggers, and then evaluate
the accuracy by comparing the predicted labels against the
ground-truth ones. This approach is straightforward since it is
natural for people to talk about music in the track-level. How-
ever, it might not be adequate for tracking the tags that vary
with time as different fragments of a track might be seman-
tically non-homogenous. For example, it is well-known that
the music emotion aspect is better modeled as time-varying
[25,26]. For local musical events such as instrument solo, it
is also preferable to consider the corresponding audio content
in a finer granularity (i.e., smaller temporal scale) [22].

The prevalence of the track-level approach might be partly
due to the difficulty of collecting tag labels in smaller tempo-
ral scale. It requires people to listen to a track and make the
moment-by-moment annotations consecutively. An annotator
would have to listen to the same track several times to en-
sure that the annotation is accurate and complete, which is
enormously labor-intensive and time consuming. Therefore,
existing datasets for auto-tagging usually employ track-level
tags [14,27], without specifying the exact temporal positions
in a track with which a given tag is associated.

Mandel et al. presented an early attempt to address this
issue [7, 15]. For each track, they sampled five fixed-length
(10-second) segments evenly spaced throughout the track.
Then, the crowdsourcing platform Mechanical Turk [29] was
adopted to collect the tags for each segment. They found
that different parts of the same track tend to be described
differently by the human listeners. However, obtaining a seg-
ment for annotation without concerning its possible acoustic
homogeneity and the corresponding duration variability may
result in degrading the tag label quality, as the annotators
might not easily catch the local musical event. By describing
tags in a shorter and variable temporal scale that is acousti-
cally homogeneous, the connection between natural language



Table 1. Existing datasets for music auto-tagging

’ dataset \ stimuli \ annotation method \ taxonomy \ label \ # tags \ public
CAL500 [27]" 500 tracks university students expert strong | 174 yes
CAL10k [14]! 10,870 tracks professional editors expert weak | 1,053 yes
MSD [28]3 1,000,000 tracks social tags folksonomy | weak | 7,643 yes
MajorMiner [6]* 2,600 segments (10 sec) game with a purpose | folksonomy | weak | 6,700 no
Magnatagatune [10]° | 25,860 segments (30 sec) | game with a purpose | folksonomy | weak 188 yes
Mech. Turk [15] 925 segments (10 sec) crowdsourcing folksonomy | weak | 2,100 no
CAL500exp” 3,223 segments (3-16 sec)

(this work) from 500 tracks experts expert strong 67 yes

(i.e., tags) and music would be better defined, leading to new
opportunities to bridge the so-called semantic gap [4].

To this end, our goal of time-varying music auto-tagging
is to train the auto-taggers based on length-variable homo-
geneous segment tag labels so as to make more accurate tag
predictions for contiguous, overlapping short-time segments
(with variable length) of a track. The concept of time-varying
music auto-tagging lends itself to applications such as audio
summarization, playing-with-tagging (PWT) [22] (i.e., visu-
alizing music signals by tracking the tag distribution during
playback), automatic music video generation [30, 31] (i.e.,
matching between the music and video signals in a more fine-
grained temporal scale), and audio remixing [32] (i.e., jump-
ing from a fragment of a track to a fragment of another track.

Following this research line, in this paper we present a
novel dataset to foster time-varying music auto-tagging. The
dataset, which is called CAL500 Expansion (CALS500exp), is
an enriched version of the well-known CAL500 dataset [9].!
Below we highlight three main contributions of this work.

e We present a novel protocol with three new elements
tailored for constructing a time-varying music auto-
tagging dataset. First, instead of using segments of
fixed duration, we perform audio-based segmentation
to extract acoustically homogenous segments with vari-
able length and inter-segment clustering to select the
representative segments for annotation (cf. Section
3.1). Second, instead of annotating each segment from
scratch, we initialize the annotation of each segment
based on the track-level labels of CAL500 and ask sub-
jects to check and refine the labels to save annotation
burden (cf. Sections 3.2-3.3). Third, instead of resort-
ing to crowdsourcing, we recruit subjects with strong
music background and devise a new user-interface for
better annotation quality (cf. Section 3.4).

e We present a comparative study that validates the per-
formance gain brought about by CAL500exp for time-
varying music auto-tagging (cf. Section 4).

e We have made CALS500exp available upon request to
the research community.?

'http://cosmal.ucsd.edu/cal/projects/AnnRet/
2http://slam.iis.sinica.edu.tw/demo/CAL500exp/

2. RELATED WORK

Music auto-tagging has been studied for years [13]. Many so-
phisticated machine learning algorithms have been proposed
to improve the accuracy of auto-tagging, including the consid-
eration of tag correlation [11], cost-sensitive ensemble learn-
ing [19], time series models [20] and deep neural network
[21]. In this paper, we attempt to improve the performance of
auto-tagging via constructing a new dataset whose labels are
more accurate, consistent and complete, with a specific focus
on handling music semantics that are local or time-varying.

Tagged music database can be obtained from different
sources [24], including conducting human surveys, deploying
games with a purpose, collecting web documents or harvest-
ing social tags. One can have an overview with Table 1 that,
existing datasets usually differ in the granularity of annota-
tion (track- or segment-level), number of musical pieces and
tags, annotation methods, level of expertise of the annota-
tors (e.g. crowd or experts), taxonomy definition (expert or
folksonomy [8]), and the label type (strong or weak).®

We note that the CAL500 dataset, which consists of 500
Western Pop songs, is a widely-used track-level dataset [9,
11, 20, 21]. It employs 174 expert-defined tags covering 8
semantic categories including emotion, genre, best-genre, in-
strument, instrument solo, vocal style, song characteristic and
usage. The decision of each tag label is made by “majority
voting” over at least three paid university students. We build
the new dataset (CAL500exp) based on CALS500, because of
its complete and balanced taxonomy and relatively high label
quality (cf. Table 1).

CALS500exp, which is introduced in this paper, stands
out as the only segment-level dataset using variable-length
(3—16 second) segments. On average, the length of a seg-
ment is 6.5842.28 seconds. In contrast, other segment-level
datasets use fixed-length segments and usually do not con-

3http://labrosa.ee.columbia.edu/millionsong/

‘http://majorminer.org/

Shttp://tagatune.org/Magnatagatune.html

Tag labels elicited from social websites or game with a purpose, called
“weak labels,” could be fairly noisy and sparse and in particular have enor-
mous false negative labels [33]. In contrast, “strong labels” indicate that each
tag is carefully verified for each song.



sider whether the segments are acoustically homogeneous
or representative of the corresponding track. Moreover,
CALS500exp is characterized by its “backward compatibility”
with CAL500 and therefore inherits the expert-defined tax-
onomy. Accordingly, researchers can use the original audio
sources of CAL500 and the label information of CAL500exp
in their study. Although the quantity of CAL500exp is rel-
atively smaller than datasets such as Magnatagatune [10],
CAL10k [14] and the million song dataset (MSD) [28], it
offers unique opportunities to study music auto-tagging in
shorter temporal scale.

We also note that the PWT system [22], which is a di-
rect application of time-varying music auto-tagging, requires
a real-time auto-tagger that makes the short-time tag predic-
tion with a “sliding chunk” (in the segment-level) and dis-
plays the predicted results in sync with music playback. One
can expect better performance by training a PWT system on
the segment-level tag labels of CAL500exp.

3. CALS500 EXPANSION

3.1. Data Preprocessing

Some minor problems of CAL500 have been identified and
addressed by Sturm [34]. We follow his guidelines and as-
sume that the song order of annotations in the annotation text
files complies with what indicated in the text file of the song
names. Then, we select 500 out of 502 songs that both sound
files and tag annotations are available.” Finally, we replace
the sound file “jade_leary-going_in.mp3”, which was origi-
nally overly short (313 bytes), with the one obtained from
[34]. Before content analysis, we downsample each sound
file to 22,050 Hz and merge stereo to mono, a common prac-
tice in MIR [4].

To obtain acoustically homogenous segments, we adopt
Foote & Cooper’s segmentation algorithm [35] implemented
by the MIRToolbox [36] to process every track in CALS500.
The idea is to first detect the changes in spectrum on the self-
similarity matrix of a track and then find local peaks from
the resultant novelty curve as the segment boundaries. After
segmentation, there are in total 18,664 segments, with each
track being partitioned to 37.3 segments on average.

Because many segments of a song could be similar, it is
time-consuming and perhaps redundant to annotate every seg-
ment. Therefore, we perform k-medoids clustering [37] on
the segments of each song. A 140-dimensional acoustic fea-
ture vector (cf. Section 4.1) is used to represent each segment.
The medoid of each cluster is selected as a representative seg-
ment to annotate. The cluster number & (ranging from 1 to
8) is set in proportion to the number of segments of a track.
To ensure the quality and diversity of the k-medoids result,
we repeat the algorithm 20 times (with random initialization)

7The 500 selected songs can be found in the website of CAL500exp.

and select the result with the smallest cumulative distance be-
tween a segment and its medoid. Eventually, we obtain on
average 6.4 representative segments per track.

During playback, we hope that subjects can annotate tag
labels according to the middle part of a segment. Thus, we
emphasize the middle part by integrating a volume weight
vector v (with length ¢) based on a Hamming window w (with
length ¢/2) to fade-in and fade-out the segment, where v =
[left part of w, 1(¢/2), right part of w], where 1(n) is the n-
dimensional vector with all ones.

3.2. Taxonomy for Time-varying Music Tags

To determine the tag set of CAL500exp, we remove some
contrary tags that begin with ‘NOT’ in CAL500, because
each ‘NOT”’ tag has its positive counterpart. For example,
we discard ‘NOT-Emotion-Angry/Agressive’ as it can be rep-
resented by a negative label of ‘Emotion-Angry/Agressive.’
This reduces the total number of unique tags to 144.

To prevent chaos, we show one category of tags to sub-
jects at a time. Moreover, we observe in our pilot study that
the tag labels of some categories are not time-varying and
almost identically annotated among all the segments of a
track. In consequence, we define two types of tag categories,
namely time-varying tags (i.e., Instrument, Instrument-Solo,
Vocal, and Emotion) for the segment-level annotations and
time-invariant tags (i.e., Genre, Genre-Best, Song, and Us-
age) in the track-level scale. In this paper, we focus on the 67
time-varying tags to be annotated in the segment level.

3.3. Tag Label Initialization

To alleviate the annotation labor, we provide initialized tag la-
bels as default for each segment and ask the subjects to mod-
ify the default labels by insertion (adding tags) and deletion
(removing tags). From the pilot study, we also find that re-
moving tags is easier than adding tags. Therefore, the follow-
ing two strategies are considered to generate the default tag
labels. First, we generate the tag labels for each segment of
a track as long as an annotator of CAL500 has applied the
tag to that track, instead of using the “hard” label obtained
by majority voting [9]. Second, we “re-tag” each segment by
using audio-based auto-taggers trained on the track-level tag
labels of CAL500. Specifically, we train auto-taggers using
all the segments with the tag labels of their originated tracks
and individually re-tag each segment with binary outputs. Fi-
nally, the default tag labels are derived by unifying the results
obtained from the two strategies. Obviously, our strategies
lead to many false positive labels (especially for instrumen-
tation and vocal tags) comparing to the possible ground-truth
that subjects are going to give. For example, ‘Electric Guitar
Solo’ may be initially assigned to every segment according to
CALS500 but may not appear in all segments in reality. We ex-
pect that the subjects recruited for annotating CAL500exp can
identify and remove such false positive labels in most cases.
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Fig. 1. A snapshot of the user interface we develop for
segment-level tag annotation. The annotators are requested
to annotate the tags category-by-category, by refining the de-
fault set of tags generated by tag label initialization.

3.4. User Interface

Figure 1 shows the designed user interface. The left hand side
of the interface shows, from top to bottom, the information of
the track,® the whole track preview player, segment-level mu-
sic player, the list of segments of the track, and annotation
instructions. On the other hand, the right hand side shows
the candidate tags grouped by categories (organized by us-
ing tabs) where the initialized tag labels (cf. Section 3.3) are
checked and highlighted initially.

The interface employs a two-stage process for annotating
each track. A subject has to first listen to and annotate all the
segments of a track with time-varying tags in the segment-
level before proceeding to annotate the time-invariant tags
of the track (in the track-level). Accordingly, with the time-
varying tags in mind, it may be easier for the subject to anno-
tate the time-invariant tags.

According to the pilot study, a subject usually has to listen
to a segment several times when verifying its time-varying
tag labels. Hence, we provide a ‘repeat’ function (shown in
the middle of the left hand side, under the play bar) in the
music player. In addition, we have also found that the tag
labels of some representative segments of a track might be
still similar. We then include a ‘copy’ function (shown in the
upper-right corner of the interface), so that for a new segment,
subjects can copy the tag labels of a previously done segment
and make modification upon them.

Once subjects have done a segment, the segment block

8We also provide Last.fm links for more detailed information of the artist
and track, such as social tags, high quality audio sources, and user comments.

Table 2. The statistics of average tag insertions (ins), deletion
(del), and operation (opr), and the numbers (num) of anno-
tated segments among different subjects (sbj).

sbj | ins  del opr num
1 | 1.L15 275 390 316
2 [297 566 863 652
3 1232 599 831 1278
4 1202 730 932 656
5 1222 621 843 2612
6 |261 855 11.16 1615
7 1191 792 983 979
8 293 640 933 626
9 |3.05 854 116 982
10 | 1.84 569 752 647
11 | 324 563 886 642
avg | 242 6.77 9.18 —

will become green. Then, they can retrospect and modify the
tag labels by clicking on segments with green block. They
can also modify the tag labels of a previously done track with
the ‘previous’ and ‘next’ buttons beside ‘Song ID.’

The interface is web-based and built by WampServer,
which allows web applications created with Apache2, PHP,
and MySQL database under Microsoft Windows environ-
ment. On the client side, we utilize jPlayer to play the audio
contents, and Bootstrap 3 as the front-end framework.

3.5. Analysis of Subjects’ Annotating Behaviors

Table 2 reports some information of the subjects’ annotating
behaviors. We recruited and paid eleven subjects with strong
musical background, including professional musicians (user
IDs: 1,2,4,5,6,9, and 10), studio engineers (IDs 1, 5, 9, and
10), MIR researchers (IDs 3 and 7), amateur musicians (IDs
3,2, 8, and 11) and students graduated from music degree
programs (IDs 6 and 8). All subjects can determine the num-
ber of tracks they like to label. Each subject was rewarded 1.2
USD per track and not allowed to label a certain track twice.

The annotation process lasted about three weeks. Each
segment and track have been completely annotated by at least
three subjects. Following the method of CAL500, we perform
majority voting to determine the binary ground-truth labels
for both time-varying and time-invariant tags.

In Table 2, one can see the average numbers of insertion,
deletion, and operation (the sum of insertion and deletion)
made by the eleven subjects for the time-varying tags. Two
observations can be made. First, the average operation rate is
not small (9.2/67=13.7%), suggesting that the subjects might
have taken this annotation job seriously, rather than just us-
ing the default tag labels. Second, the number of deletion is
generally much larger than that of insertion. This is expected,
as the tag label initialization methods (cf. Section 3.3) would
generate many false positive labels in the default set.



4. EXPERIMENT

This section presents empirical evaluations on time-varying
music auto-tagging. The purpose of this study is to verify
whether the subjects’ operations lead to better consistency in
response to the audio content, and to demonstrate the perfor-
mance improvement brought about by CAL500exp.

4.1. Experiment Setup

For a frame-based feature vector, a hybrid set of frame-level
energy, timbre and harmonic descriptors were computed by
using the MIRToolbox [36], with a frame size of 50 ms and
half overlap. The features include root-mean-square energy,
zero-crossing rate, spectral flux, spectral moments, MFCCs,
chroma vector, key clarity, musical mode, and harmonic
detection. The segment-level feature vector is represented
by concatenating the weighted mean and standard deviation
(STD) of the frame-based feature vectors using v as the
weights, forming a 140-dimensional vector. Finally, each fea-
ture dimension is normalized to zero mean and unit standard
deviation throughout all the segments of the dataset.

For classification, we adopt the standard binary relevance
multi-label classification scheme [9] and train each tag clas-
sifier with the linear-kernel SVM implemented by LIBLIN-
EAR [38]. While predicting the tags of a segment, each tag
classifier outputs a probability for a tag. As for binary output,
we annotate the tags of a segment as positive if their prob-
abilities are greater than the threshold determined by an in-
ner (training set) cross-validation (denoted as ‘CV’). The fold
splitting is performed in the track level.

We conduct both intra-dataset and inter-dataset evalua-
tions using CAL500 and CAL500exp. The intra-dataset case,
denoted by ‘D (CV), uses standard five-fold CV on one of
the datasets (i.e., D can be CAL500 or CAL500exp). For the
inter-dataset evaluation, denoted by “D;—D5,,” we note that
the two datasets share the same audio sources and features,
and thus we perform the training and tag prediction in the
scenario of five-fold CV using Dy, but then evaluate the test
accuracy using the ground-truth labels of the corresponding
fold from D,. For instance, CAL500—CAL500exp stands
for training on CAL500 and then evaluating based on the la-
bels of CAL500exp. Note that, for CAL500 the ground-truth
label of a segment is obtained from that of its originated track.

To evaluate the performance of time-varying music auto-
tagging (e.g., in the scenario of automatic music tag tracking
applications [22]), we can treat the segments in the test fold
as the representative segments sampled by a sliding chunk
from the test tracks. The performance of the binary outputs
is measured in terms of per-tag precision, recall, and F-score
(the harmonic mean of precision and recall) [9]. As for the
performance of the probabilistic outputs, we report the per-
segment AUC (the area under the ROC curve) to outline how
accurate the predicted tag distribution is.

Table 3. (a) presents the results of Instrument, Instrument-
Solo and Vocal tags, and (b) shows the result of Emotion tags.
We use P, R, and F to denote per-tag precision, recall, and F-
score, respectively.

(a) instrument & vocal P R F AUC
CAL500 (CV) 0.157 0371 0.213 0.833
CAL500exp (CV) 0.257 0456 0.317 0.884
CAL500—CAL500exp | 0.226 0.384 0.267 0.842
CAL500exp—CAL500 | 0.172 0.445 0.225 0.844
(b) emotion P R F AUC
CAL500 (CV) 0.301 0.701 0417 0.735
CAL500exp (CV) 0455 0.759 0.561 0.842
CAL500—CAL500exp | 0.443 0.751 0.543 0.802
CAL500exp—CAL500 | 0.303 0.747 0.422 0.744

4.2. Result and Discussion

The result is shown in Table 3, which divides the time-varying
tag set into two groups: (a) Instrument, Instrument-Solo, and
Vocal tags, and (b) Emotion tags. We make the following ob-
servations. First, by comparing the results of CAL500 (CV)
and CAL500exp (CV), we see that CAL500exp leads to
better performance for all performance measures and tag
groups, showing that the connection between audio and tag
for CAL500exp is relatively easier to model. This may also
suggest better tag label consistency among different segments
of CAL500exp. Second, considering the case of fixing the
test set to CAL500 and using either CAL500 or CAL500exp
for training, we see that CAL500exp—CAL500 consistently
outperforms CAL500 (CV) in most cases (e.g., see the first
and fourth rows of Table 3). This implies that the tag labels of
CALS500exp are more accurate, so thay can even achieve bet-
ter performance when using lower-quality labels of CAL500
for testing. Third, we find that CAL500exp (CV) yields
better performance than CAL500—CAL500exp (second
and third rows). The differences in F-score and AUC are
significant, showing that we can get more accurate auto-
taggers for time-varying auto-tagging by using CAL500exp
instead of its predecessor CAL500 for training. Such re-
sult also validates the motivation of this paper. Finally,
the performance difference between CAL500exp (CV) and
CAL500—CAL500exp is larger for the instrument & vocal
tags than for the emotion tags. This is reasonable due to the
factor that instrument & vocal tags are less subjective so the
improvement of CAL500exp can be easily reflected.

5. CONCLUSION

In this paper, we have presented a new publicly available
dataset, called CAL500exp, to facilitate music auto-tagging
in a smaller temporal scale, which holds the promise of en-
abling applications such as play-with-tagging. The dataset
has been constructed by taking many issues into considera-



tion so as to improve its usefulness for the research commu-
nity. For instance, music segmentation is used to make the
connection between tags and music better-defined; a new an-
notation user interface, representative segment selection, and
music re-tagging are performed to reduce user burden and im-
prove annotation quality. We have also presented a compre-
hensive performance study that demonstrates the advantage of
the new dataset for time-varying auto-tagging. We hope that
the dataset can call for more research towards understanding
the temporal context of musical semantics.
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