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Abstract 
In this paper, we first reformulate the derivation of the 
conventional i-vector scheme, which is the state-of-the-art 
utterance representation for speaker verification, as a modeling 
of universal background model (UBM)-based mixtures of 
factor analyzers (UMFA), and then propose a clustering-based 
UMFA method called CMFA. In UMFA, each analyzer is 
characterized by a subspace, and the same projection 
coordinate of an utterance into individual subspaces is called 
the i-vector. We relax this assumption by grouping the mixture 
components of the UBM into clusters according to their 
acoustic traits. Therefore, in CMFA, each utterance is 
represented by multiple i-vectors, each of which generated by 
similar subspaces associated with a same cluster. We also 
investigate two strategies for merging these i-vectors into a 
single one to be applied in the classifier of the conventional i-
vector framework. The results of experiments conducted on 
the male portion of the core task in the NIST 2005 Speaker 
Recognition Evaluation (SRE) in terms of normalized decision 
cost function (minDCF) and equal error rate (EER) 
demonstrate the merits of the new i-vector method over the 
conventional i-vector method. 

Index Terms: speaker recognition, i-vector, clustering 

1. Introduction  
As a branch of audio classification, where sound patterns 
extracted from raw waveform data are usually discrete symbol 
sequences or continuous-valued feature vectors, the 
performance of speaker verification tasks is heavily dependent 
on the data representation applied [1]. Therefore, to deploy 
speaker verification systems, many efforts have been devoted 
to the design of preprocessing pipelines, which result in a 
representation of speech signals that can effectively and 
robustly support various backend classifiers. As has been 
widely practiced, once the speech signal is digitized into a 
series of acoustic frames, each containing 80-200 ms temporal 
information, such as MFCCs or LPCCs, by a speech 
parameterization process [2, 3], two problems immediately 
arise. The first is how to represent a speech utterance of 
variable length by a fixed-size vectorial token so that the 
comparison between any pair of utterances can be 
straightforwardly effectuated through a suitable metric, such 
as the cosine similarity or the Euclidean distance. The second 
is how to eliminate external noise and distortions within an 
utterance or compensate session/channel variabilities induced 
by various sources in order that the speaker characteristics can 
be abundantly preserved and the mismatch between training 
and test conditions can be ulteriorly reduced. 

In recent years, the Gaussian mixture model (GMM) has 
been found beneficial to serve as a sound tokenizer to 
represent a speech utterance by a probabilistic distribution 
with 𝐶 mixture components [4]. The resulting representation is 
usually a super-vector 𝑴 ! ℝ!" , which is a concatenation of 𝐶 

𝑝-dimensional mean vectors 𝑴! ! ℝ! 𝑐 = 1,… ,𝐶  [5], or an 
i-vector, which is a compact form derived from the super-
vector with a much lower dimension, where the 
aforementioned issues are addressed simultaneously [6]. 
Unlike the joint factor analysis (JFA) [7], in which the factor-
loading matrices are composed of two distinct subspaces for 
separating the speaker and channel components residing in an 
utterance, the i-vector formulation only defines a single 
subspace, characterized by a matrix 𝑻 ∈ ℝ!"×! and termed the 
total variability, in which the speaker discriminatory 
information is presumably retained as much as possible. Given 
the subspace, the acoustic characteristics or physical quantities 
within the utterance are assumed to be embedded in a set of 
values [8], called the i-vector, which is not only conceived as 
the coordinate where the utterance locates in the subspace 
specified by ! , but essentially the expectation of Gaussian 
distributed latent variables of a factor analyzer or a total 
variability model. With the latent vector ! ∈ ℝ! (𝑑 < 𝐶𝑝), 𝑴 
is modeled as !" + ! ! , where ! ! ! ℝ!"  is a bias term 
obtained by vertically stacking the mean vectors 
! ! ! ℝ! ! = 1,… ,𝐶  of a pre-trained GMM called the 

universal background model (UBM). 
Given an utterance, the i-vector is derived by computing 

! ! , i.e., the expectation over 𝒘 drawn from the conditional 
probability given the utterance. From the probabilistic 
modeling perspective, the formulation can be interpreted as an 
attempt to recover a parsimonious set of latent random 
variables that describe a distribution over the observed 
acoustic feature vectors within the utterance, while 
encouraging careful modeling of the measurement of noise [9]. 
In the presence of latent variables, the expectation-
maximization (EM) algorithm is employed to optimize the 
parameters with respect to the marginal likelihood, i.e., 
integrating the joint log likelihood over all values of the latent 
variables under their posterior probability. 

Furthermore, due to the linearity of the total variability 
model, 𝑴! , the 𝑐-th block of ! , can be modeled as 𝑻! ! ! ! ! , 
where ! ! ! ℝ! ×!  and 𝒎!  is the 𝑐-th block of ! !. That is, the 
super-vector based factor analyzer can be taken apart to form 
𝐶 factor analyzers; each corresponds to a mixture component 
of the UBM and has its own factor-loading matrix ! !, but all 
share the same latent factors ! . We call this viewpoint of the 
i-vector formulation as the UBM-based mixture of factor 
analyzers (UMFA). The UMFA interpretation neither serves to 
group data points by similarity between features as the mixture 
of factor analyzers (MFA) defined in [10, 11] or [12] does, nor 
functions for dimensionality reduction on the 𝑝-dimensional 
acoustic feature vectors as applied in [13]. In contrast, it aims 
at how to represent an utterance as a single vector, whose size 
is manipulably expanded to !  (! ! ! ), and how to use the pre-
existent UBM, each component of which characterizes some 
kind of sound characteristics, to locally guide the derivation of 
the total variability 𝑻. In this sense, we can briefly conclude 
that the UMFA method gives consideration to two aspects 
simultaneously. In regard to feature expansion, the information 



needed for discriminating utterances (not speakers) can be 
fairly preserved in a single vector by flexibly modifying the 
size of the vector. As for distribution-based clustering, since 
different acoustic features may be correlated within different 
mixture components of the UBM, the metric for feature 
expansion, which is controlled by the factor-loading matrix ! ! , 
may need to vary among different mixture components.  

In UMFA, each factor-loading matrix 𝑻! can be referred to 
as a subspace while the latent factors !  with respect to an 
utterance denote the associated coordinate representation that 
describes the location of the utterance when projected in the 
subspace. Consequently, a geometrical question arises: is it 
reasonable to assume that the coordinates of the utterance 
represented in different subspaces utterly coordinate with one 
another? The answer is obviously no. Is it possible to relax this 
strong assumption to some extent? In this paper, we attempt to 
figure out this issue by making a more reasonable assumption 
that each mixture component has its own subspace ! !  and the 
mixture components belonging to the same cluster share the 
same coordinate representation. This can be achieved by 
grouping the !  mixture components of the UBM into !  
different clusters, where ! ≤ 𝐶, according to their acoustic 
similarity. Since similar mixture components are likely to 
result in similar factor-loading matrices, the respective 
projection locations of the utterance in these subspaces can be 
supposed to be nearly identical. Therefore, the proposed 
proposition not only enables each utterance to be represented 
by a set of i-vectors ! 𝒘! 𝑔 ! ! , ! , !  in appearance, but 
also in essence extends the conventional i-vector scheme to a 
more general form. In an extreme case when 𝐺 ! ! , i.e., all 
mixture components belong to a single cluster, the proposed 
approach is apparently reduced to the UMFA method. In 
another extreme, when ! = !  and 𝑑 ! 𝑝, it becomes a special 
form of acoustic factor analysis (AFA) presented in [13], 
which is utilized to extract lower-dimensional enhanced 
features within each mixture component. Moreover, with the 
purpose of feature expansion, i.e., ! ! ! , two more issues will 
be addressed in this paper. First, since the UMFA model in 
each cluster can be treated as a system of linear equations, it is 
necessary to avoid the underdetermined case while keeping the 
solvability for ! !  by controlling the size of each cluster, the 
dimensionality of acoustic feature vectors, and the number of 
latent factors. Second, when ! ! ! , multiple i-vectors are 
produced for each utterance; thus, the integration or merging 
of these i-vectors becomes a new issue. 

The remainder of this paper is organized as follows. In 
Section 2, we briefly re-interpret the conventional i-vector 
formulation in terms of UMFA via a directed factor graph. 
Section 3 presents our proposed framework, which is divided 
into two parts: clustering-based UMFA and the integration of 
multiple i-vectors. Finally, experiments, conclusions and 
future work are outlined in Sections 4 and 5, respectively. 

2. UBM-based mixture of factor analyzers 
Given a pre-trained universal background model (UBM), we 
can view the conventional i-vector formulation as a special 
form of mixture of factor analyzers (MFA) called UBM-based 
MFA (UMFA). From a generative viewpoint of the UMFA 
method, the observed vector is obtained by first choosing a 
vector for the latent variables with respect to a mixture 
component of the UBM, and then sampling the observed 
variables conditioned on the latent variables. 

2.1. Formulation  

Let ! ! ! !" ! ! ! 𝑚 ! ! ! ! !𝑀! ! ! 1, ! , ! !  be the 
training data collected from !  utterances spoken by various 
speakers in diverse environments or channel conditions, where 
! !"  denotes the 𝑛 -th acoustic feature vector of the ! -th 
utterance expressed by 𝒴! = ! !" ! ! ! ! = ! , ! ,𝑁! . 
Additionally, let ! ! ! ! ! ! ! ! ! 1! ! ! !  be a set of 
latent or unobservable random vectors, where each element 
𝒘!  is associated with the ! -th utterance and assumed to 
identically and independently follow a standard normal 
distribution, i.e.,  

! ! ! ! 𝑁 ! , ! ! ! (1) 

where 𝑰! ∈ ! ! ×!  denotes the identity matrix. The expectation 
of the responsibility that 𝒘!  takes for explaining the 
observations ! ! , i.e., ! ! ! ! ! , is the so-called i-vector 
with respect to the ! -th utterance. 

Given a UBM with mixture components 𝑈! ! = ! , ! 𝐶 , 
the distribution of each observation ! !"  can be modeled as 

𝒙!" ! ! ! ! ! ! ! ! ! ! !  (2) 

with ! !" ! ! !" ! ! ! ! ! !"#
! ! ! ! , in which ! !"# !

𝑝 ! ! ! ! !  denotes the probability that ! !"  is generated by 
! ! . In (2), ! ! ! ! ! ! !  and ! ! ! ! !  refer to the total 
variability and the mean vector with respect to ! ! , respectively. 
Moreover, the errors or noise within ! !  are modeled by 
! ! ! ! ! ! !  distributed as ! ! ! ! ! , where ! !  is a diagonal 
matrix. As illustrated in the directed factor graph in Figure 1 
[14], the mixture component ! !  is first picked according to 
! !"# . Then, the observation ! !"  is generated by sampling 
! !  from a Gaussian prior, passing it through the ! !  matrix, 
and adding noise. Since the linear combination of two 
independent random variables having a Gaussian distribution 
also has a Gaussian distribution, the conditional density of 
each ! !" ! ! !  given ! !  and ! ! ! ! ! ! ! ! ! !  can be 
expressed by 

! !"#$ ! !" ! ! ! ! ! !" ! ! ! ! !
! !"#

!

! ! !

! (3) 

where ! ! ! ! ! ! ! ! ! !  [12]. 

Figure  1. The directed factor graph of the UMFA method. 
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2.2. Inference 

We can follow [12] and [15] in applying the expectation 
maximization (EM) algorithm for estimating the parameters of 
a UMFA model, i.e., ! !  and ! !  for each mixture component. 
First, we treat each ! !  as a missing-data vector, and take ! !  
along with ! !  as the complete-data vector. During the E-step, 
since the complete-data vector is related to a linear Gaussian 
model [16], the conditional distribution of ! !  given ! !  along 
with the conditional expectation of ! ! !  and ! ! ! ! !

!  can 
be derived by referring to Chapter 2 in [17] or through a 
similar way of Proposition 1 in [18]. During the M-step, the 
expected complete-data log-likelihood with ! ! !  and 
! ! ! ! !

!  is maximized with respect to the model parameters 
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! . The resulting close forms for updating 

the parameters can be found consistent with those in [18]. This 
is one of the reasons why we take the UMFA model as an 
alternative path to derive the i-vector. 

3. The proposed method 
As discussed in Section 1, the spirit of the UMFA-based 
interpretation of the i-vector formulation lies in that, each of 
the different acoustic traits, characterized by some mixture 
component of the UBM, has its own linear subspace for 
feature expansion. However, such a local dimension expansion 
scheme gives a seemingly unreasonable assumption in regard 
of the geometry of linear transformations that, the coordinates, 
where an utterance is projected in individual subspaces for 
different acoustic traits, are exactly the same. In this section, 
we give a supplementary assumption to make it more 
advisable: only similar acoustic traits (or mixture components) 
are likely to result in similar linear subspaces for feature 
expansion, and the locations of an utterance projected in these 
subspaces are supposed to be nearly identical. 

3.1. Formulation  

Suppose the mixture components ! ! ! ! ! ! ! ! !  of the 
UBM are grouped into !  clusters ! ! ! ! ! ! ! ! !  through 
some clustering algorithms, such as k-means clustering [22] 
conducted on the component mean vectors or other density-
based clustering methods [24]. Compared with Figure 1, the 
generative process of the proposed clustering-based UMFA 
(CMFA) method in Figure 2 adds one gate, which is indicated 

by a dashed rectangle with a condition, to represent selection. 
It means that ! !  would be affected by ! !"  if the ! -th 
component ! !  belongs to the ! -th cluster ! ! . Therefore, for 
each utterance, more than one i-vector will be generated when 
! ! ! , and ! !"  can be modeled by modifying (2) as 

! !" ! ! ! ! ! ! ! !" ! ! ! ! (4) 

subject to ! ! ! ! ! . In the proposed model, the definitions of 
! !" , ! ! , ! ! , ! ! , and the prior distribution of ! !"  are the 
same as those depicted in Section 2.1. For simplicity, we also 
assume that all clusters are statistically independent and 
uniformly distributed, i.e., ! ! ! ! ! ! , ! ! ! ! ! ! ! . The 
conditional density of each ! !" ! ! !  given ! !"  and 
! ! ! ! ! ! ! ! ! !  can be expressed by 

! !"#$ ! !" ! !" ! ! ! !" ! ! ! ! !
! !"#

! !! ! ! ! !

! (5) 

where ! ! ! ! ! ! ! ! ! !" , if ! ! ! ! ! . 

3.2. Inference 

In a similar vein to Section 2.2, the complete data becomes 
! !" ! ! !" ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  and its 

log likelihood is given by 

!"# ! !"#$ ! ! ! ! !
! ! ! ! ! ! !

! !  

! !"# !"# ! ! !" ! ! ! ! ! ! !" ! ! !

! !! ! ! ! !

!

! ! !

! !

! ! !

!

! ! !

! (6) 

Due to the assumption of cluster independence, the 
conditional distribution of ! !"  given ! !  can be derived one 
by one. Therefore, at the ! -th iteration, the EM algorithm is 
implemented as follows. In the E-step, given the current fits 
! !

! ! !  and ! !
! ! ! ! ! , ! ! ! ! ! !! ! ! ! ! ! , and the zero-order and 

the first-order statistics with respect to the ! -th utterance over 
! !  expressed by ! !" ! ! !"#! !! !" ! ! !

 and ! !" !
! !"# ! !" ! ! !! !! !" ! ! !

, respectively, the conditional 
expectations over ! !"  given ! !  can be derived through 

! !"#$
! ! ! ! !" ! ! ! ! ! ! ! ! !" ! ! !

! ! ! !" ! ! !"  

! !"# ! !" ! ! !"
!
! !"
! ! ! ! ! ! ! !" ! 

(7) 

where 

! !"
! ! ! ! ! ! ! !" ! !

! ! ! ! ! !
! ! ! ! ! ! ! ! !

! ! !

! !! ! ! ! !

! !

! !" ! ! !"
! ! ! !

! ! ! ! ! !
! ! ! ! ! ! ! ! !"

! !! ! ! ! !

!!!!!!!!!!!!!!!!!!!!!!!

! 

Then, the conditional expectations are given by 

! ! ! ! ! !" ! ! !" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! ! ! !" ! !"
! ! ! !" ! !"

! ! ! !"
! ! !!!!!!!!!!!!!!!!!!!!

! (8) 

The M-step is implemented by maximizing the expected 
complete-data log-likelihood ! !"# ! !"#$%  over !  with the 
results derived in the E-step. This yields the updated estimates 
of ! !  and ! ! , ! ! ! ! ! !! ! ! ! ! ! , as 

Figure  2. The directed factor graph of the clustering-based 
UMFA (CMFA) method. 
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where ! !  and ! !  are defined by ! !"#! !!  and 
! !"#! !! ! !" ! ! ! ! !" ! ! !

! , respectively. 

3.3. Utterance representation 

When ! ! ! , more than one i-vectors are produced for each 
utterance. Here we introduce two ways, namely pooling and 
augmentation, to integrate or merge multiple i-vectors 
! ! !" ! ! ! ! ! ! !  into a single vector.  

In the case of pooling, the ultimate i-vector ! !  is obtained 
by averaging ! ! !" ! ! ! ! ! ! !  over the posterior 
distribution of the cluster membership given ! ! ; that is, 

! ! ! ! !" ! ! !"

!

! ! !

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! !" !
! !"#! !! !! ! ! ! !

! !"#! !!
!!!!!!!!!!!!

! (9) 

The pooling strategy is an instinctively simple way to combine 
several vectors, but it might cause a query that the summation 
in (9) is problematic since the physical meanings of the !-th 
components in the vectors ! ! !" ! ! ! ! ! ! !  might differ 
due to their dissimilar subspaces ! ! ’s.  

In contrast, the augmentation strategy seems to be capable 
of avoiding the above problem by forming the ultimate i-
vector with larger dimensionality as 

! ! ! ! ! ! !
! ! ! ! !"

! ! ! (10) 

An advantage of the augmentation strategy is that most of 
metrics defined in the Euclidean space or the inner product 
space, such as the 2-norm distance and the cosine similarity, 
are plausible when applied to compare any pair of ! ! ’s. 
Moreover, although the size of ! !  becomes !" , which is 
larger than !  when the pooling strategy is used, it is still 
acceptable since !  is usually much smaller than !  and a 
smaller !  can be set in this case. 

4. Experiments 
All the experiments in this paper were carried out on the male 
portion of the core condition (1conv4w-1conv4w) in NIST 
SRE05, where each target speaker provided only one 5-min 
conversational utterance for enrollment [19]. The evaluation 
task contains 1,220 true trials and 11,513 false trials. We used 
equal error rate (EER) and normalized minimum decision cost 
function (minDCF) as acknowledged metrics for evaluation. 
With the frame length of 25 ms and the frame shift of 10 ms, 
speech parameters were represented by a 60-dimensional 
feature vector of Mel-frequency cepstral coefficients (MFCC) 
with first and second derivatives appended using a 2-frame 
window, followed by data distribution-based feature warping 
with a 300-frame window in order to compensate for the 
effects of environmental mismatch [20]. 

A gender-dependent UBM consisting of 2,048 Gaussian 
components with diagonal covariance matrices, the UMFA 
and CMFA models, as well as the back-end classifier, i.e., the 
PLDA model [25], were trained with the data drawn from 
SRE04, which contains 1,867 utterances spoken by 122 
speakers. For the sake of fair comparison, the dimensionality 

of the ultimate vector fed into the back-end classifier is fixed 
to 600, and the ranks of the matrices !  and ! , which pertain to 
the speaker and session variability in the PLDA model, are set 
to 300 and 300, respectively.  

To measure the difference between two subspaces ! !  and 
! !  that belong to the same cluster, we compute their Frobenius 
norm, ! ! ! ! ! ! ! ! ! ! ! ! !

 [23]. Table 1 shows the 
average Frobenius norm with respect to various numbers of 
clusters generated by the k-means method [22]. From the table, 
it is clear that the average Frobenius norm over a cluster 
becomes smaller with the increasing number of clusters. The 
results reveal that the subspaces associated with the mixture 
components in a cluster are indeed more similar to one another 
than those of ungrouped ones, and implicitly resolve our 
concerns discussed in Section 3. The results of the proposed 
CMFA model with the pooling strategy and the augmentation 
strategy are, respectively, shown in Tables 2 and 3, where the 
second column with ! ! !""  and!! ! !  denotes the baseline 
results of the conventional UMFA model. From Table 2, it is 
found that the proposed CMFA model with the pooling 
strategy does not offer any improvement over the conventional 
UMFA model. In contrast, from Table 3, we can see that the 
proposed CMFA model with the augmentation strategy 
outperforms the baseline when ! ! !""  and ! ! ! . The 
reason why the CMFA model did not perform well when 
! ! !  could be that, although the number of clusters controls 
the homogeneity of the mixture components in a cluster, the 
condition with a larger !  might suffer from the problem of 
data insufficiency. Actually, the CMFA model cannot 
guarantee that all mixture components are evenly allotted to 
the clusters, nor can it assure that each training utterance 
possesses all characteristics dwelling in each cluster.  

5. Conclusions 
This paper has presented a clustering-based scheme to solve 
the problem that the conventional i-vector formulation might 
meet. With a suitable merging mechanism, our proposed 
method can perform well on the NIST SRE corpus. Although a 
good start in this direction has been made, much more research 
is needed. E.g., more merging strategies should be studied. 
How to keep the clusters balanced is also worth study. 

# Clusters 1 2 4 8 16 32 
! ! ! ! ! !  181.20 106.93 70.11 46.83 29.59 18.20 

! , !!  600, 1 300, 2 200, 3 150, 4 
EER (%) 5.83 5.49 5.98 6.16 
minDCF 0.30 0.28 0.30 0.29 

! , !!  600, 1 600, 2 600, 4 600, 8 
EER (%) 5.83 8.29 13.36 20.25 
minDCF 0.30 0.39 0.54 0.73 

Table 1. The average Frobenius norm between any pair of ! !  
and ! ! , given that ! !  and ! !  belong to the same cluster, for 
various numbers of clusters generated by the k-means method. 

Table 2. EER (%) and minDCF with the pooling strategy for 
various !  and ! , which denote the size of the i-vector 
generated by each cluster and the number of clusters, 
respectively, evaluated on SRE05. 

Table 3. EER (%) and minDCF with the augmentation strategy 
for various !  and !  evaluated on SRE05. 
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