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Abstract
We present our methods and results on participating in the Inter-
speech 2014 Computational Paralinguistics ChallengE (Com-
ParE) of which the goal is to detect certain type of load of a
speaker using acoustic features. There are in total seven classifi-
cation models contributing to our final prediction, namely, neu-
ral network with rectified linear unit and dropout (ReLUNet),
conditional restricted Boltzmann machine (CRBM), logistic re-
gression (LR), support vector machine (SVM), Gaussian dis-
criminant analysis (GDA), k-nearest neighbors (KNN), and
random forest (RF). When linearly blending the predictions of
these models, we are able to get significant improvements over
the challenge baseline.
Index Terms: Physical Load Detection, Cognitive Load Detec-
tion, Neural Network, Classification Models

1. Introduction
Paralinguistic analysis such as the recognition of speech emo-
tion and pathology is increasingly turning into a mainstream
topic in speech and language processing. Automatic detection
of certain types of physical/mental or cognitive states of hu-
mans from the speech is becoming much more important. This
paper reports the results and the methodology of the two sub-
challenges in the INTERSPEECH 2014 Computational Par-
alinguistics Challenge (ComParE) [1]. In physical load sub-
challenge, given an input speech, we are to classify his/her ex-
ercising state as either running or resting and by that the heart
rate as either high pulse or low pulse. In the cognitive load sub-
challenge, we are to classify speaker’s cognitive load state as
either low, medium or high, based on the acoustic features.

In our system, we use the comprehensive features in the
standard datasets, which is a set of 6373 dimensional vectors,
and we build seven off-the-shelf classification models, of which
some are well-known to the machine learning society for a long
time, and some are recently developed techniques. The seven
classifiers we use are: neural network with rectified linear unit
and dropout (ReLUNet), conditional restricted Boltzmann ma-
chine (CRBM), logistic regression (LR), support vector ma-
chine (SVM), Gaussian discriminant analysis (GDA), k-nearest
neighbors (KNN), and random forest (RF). Training in our sys-
tem consists of two stages. First, each model is trained individ-
ually to fit the training data with the hyperparameters for each
model optimized via investigating the performance on the vali-
dation set. In the second stage, we ensemble these models lin-
early by training another logistic regression model that takes the

outputs given by the seven models as its input, and the weight
vector in this logistic regression model determines the relative
importance of each model that contributes to the final predic-
tions. The parameters in the logistic regression in the second
stage are learned using the validation set to avoid severe over-
fitting. At the testing phase, we simply predict the output by an
weighted average of individual predictions, where the weights
associated to each model’s individual prediction is determined
via the logistic regression model trained in the second stage.
Figure 1 shows the overall training procedure of our system.

The remaining sections are organized as follows: Section 2
briefly reviews five out of seven classifiers that are well-known
to the machine learning community, namely, SVM, LR, KNN,
GDA and RF. Section 3 gives details about two somewhat re-
cently developed techniques, called the conditional restricted
Boltzmann machine (CRBM) and the neural network along with
rectified linear units and dropout (ReLUNet). Section 4 pro-
vides description about how we ensemble the predictions of 7
models. Section 5 reports the experimental results on the val-
idation set and compares to the challenge baseline. Section 6
concludes this paper with a short summary.

From this point, we assume that we are given a training set
{(xtri , ytri )|i = 1 : N tr}, a validation set {(xvali , yvali )|i =
1 : Nval} and a unlabeled test set {(xtei )|i = 1 : N te}, where
x ∈ RD .

2. Off-The-Shelf Classifiers
2.1. Support Vector Machines and Logistic Regression

Support Vector Machine (SVM) is a popular classification
method that has been extensively used in many applications [3].
It offers promising results especially for a binary classification
problem. In particular, given a set of training data, it seeks a
weight vectorw that maximizes the ’margin’ by solving the fol-
lowing optimization problem

min
w

1

2
||w||22 + C

Ntr∑
i=1

εi

s.t. yi(w
Txi + b) ≥ 1− εi

εi ≥ 0, i = 1, ..., N tr

where C is the regularization parameter that allows the opti-
mization to work for a non-separable dataset and to prevent
overfitting. The core computation involved in SVM is a convex
quadratic programming problem. Usually, an efficient Sequen-
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Figure 1: Training in our system consists of two stages. In the
first stage, we learn parameters of individual classifiers sepa-
rately to fit the training data. In the second stage, we learn the
parameters of another logistic regression model that is respon-
sible for blending the predictions of each classifier.

tial Minimal Optimization (SMO) algorithm is used in train-
ing SVM [3]. For multi-class tasks, as in the cognitive load
sub-challenge, we adopt the common one-vs-all approach. The
balancing problem could be an issue in training because SVM
optimizes the global training accuracy and may bias towards
classes that have more training instances. This issue is explic-
itly pointed out in the challenge baseline documentation for the
cognitive load sub-challenge, and we follow the approach used
in the baseline by doing a down-sampling step before training
the SVM.

Logistic Regression (LR) is also a very popular classi-
fication model. It aims at maximizing the conditional log-
likelihood

Ntr∑
i=1

log p(ytri |xtri ) =

Ntr∑
i=1

log
1

1 + exp(−wTxtri − b)

with respect to a weight vector w and a bias parameter b. LR
can be generalized to multi-class problems via the softmax func-
tion. Both SVM and LR involve solving a convex optimization
objective and hence global optimum can be found.

2.2. K Nearest Neighbors

K-Nearest Neighbors (KNN), also called the lazy learning algo-
rithm, does not have any training. It makes predictions ’on-the-
fly’ by retrieving similar data from the training set, and deter-
mines the class label of a test query by combining information
from its retrieved neighbors. The simplest metric for retrieving
neighbors is the euclidean distance, and the simplest classifica-

tion rule is a simple majority vote,

vote(yli|xte) =
∑

{i|xi∈N (xte)}

yli

pred(xte) = arg max
l
vote(yli|xte)

Variants of KNN are used widely in various domains [13, 2]. In
our system, we use the above simplest version.

2.3. Gaussian Discriminant Analysis

Gaussian Discriminant Analysis (GDA) is another linear model
that treats the class conditional densities as Gaussian dis-
tributed. The model fits a Gaussian for each class and assumes
that all classes share the same covariance matrix. Specifically,
for each class it fits a Gaussian density model by learning its
mean and covariance matrix. Using Bayes rule we have the fol-
lowing optimization problem for each class c,

arg max
µc,Σ

∏
yi=c

p(yci = 1|xi) =

arg max
µc,Σ

∑
yi=c

log p(xi|yci ) + log p(yci )

where p(x|yci ) ∼ N (µc,Σ) is the conditional Gaussian and the
p(yci ) is the class prior for the class c. Using maximum a poste-
riori estimation, we could find the parameters in this model. At
the testing phase, it computes the posterior probability for each
class and selects the one that gives the highest probability.

2.4. Random Forest

Random Forest (RF), an ensemble model that averages the pre-
dictions of many decision trees, can give good generalization
ability on classification/regression problems [9]. It learns sev-
eral decision trees where each tree takes a different subset of
the training data. Presumably, each tree will learn very different
decision boundary hence when we average thousands of their
predictions, we could get much higher performance than using
a single decision tree. For more information about RF, we refer
to [9].

3. CRBM and ReLUNet
3.1. Conditional Restricted Boltzmann Machines

Conditional Restricted Boltzmann Machines (CRBMs) are
undirected models that learns the conditional distribution
p(y|x). The following energy function is defined,

E(x, h, y) = −xTWh− yTWh− cTh− dT y

where h and y are binary stochastic units that can take on val-
ues {0, 1}, and the input x provides bias to the hidden units.
{W,U} are weight matrices that capture the pair-wise interac-
tions between (x, h) and (y, h) respectively, and c, d are bias
terms for h and y. The conditional probability distribution is
thus defined by,

p(y|x) =

∑
h exp(−E(x, h, y))∑
h,y exp(−E(x, h, y))

Figure 2 shows the graphical representation of a CRBM. This
model can be viewed as using a single stochastic hidden layer h
to capture the correlations between input and output. Unlike
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Figure 2: A conditional restricted Boltzmann machine
(CRBM). The hidden layer captures the correlations between
visible input x and the label vector y.

the traditional restricted Boltzmann machine (RBM), CRBM
is usually not used for estimating the density of the data. In-
stead, such model (and its variants) has been used extensively
in discriminative learning tasks such automatic music tagging
[10], modelling the motion style [12]. Learning in a CRBM
can be done using gradient ascent in the log-likelihood, where
the gradient takes the following form (for some parameter θ ∈
{W,U, c, d}),

∂ log p(y|x)

∂θ
=∑

h

p(h|x, y)
∂ − E(x, h, y)

∂θ
−

∑
h,y

p(h, y|x)
∂ − E(x, h, y)

∂θ

where the first term is also referred to the data-dependent ex-
pectation, and the second is the model-dependent expectation.
Due to the special structure of this graphical model, the data-
dependent expectation can be computed exactly in time linear to
the number of hidden units. However, the second term is com-
putationally intractable because there are exponentially many
configurations to be visited. It is possible to define a Markov
Chain Monte Carlo (MCMC) procedure that attempts to draw
samples from the model distribution. Specifically, block Gibbs
sampling procedure can be defined by alternating between sam-
pling h and sampling y. However, since we have to run such
procedure until convergence for every data point in every gradi-
ent update, it is very slow in practice. Nonetheless, if we just run
a few steps of Gibbs sampling and take the ’truncated’ samples
anyway to update the parameters, it is very efficient. This algo-
rithm is called the contrastive divergence (CD) algorithm, and
it requires very little modification of the full MCMC algorithm
[7]. It clearly does not follow the correct maximum likelihood
gradient, but it works well in practice.

3.2. Neural Networks with ReLU and Dropout

Deep neural networks (DNN) have shown promising results
in speech recognition and classification in the past few years
[14, 4, 5]. Two major techniques proposed recently have im-
proved the performance of DNN significantly. First, a different
type of neurons called the rectified linear units (ReLU) works
much better than conventionally used logistic units for several
tasks. Mathematically, a feed-forward neural network consists
of multiple layers of hidden neurons, where each neuron is ac-
tivated via an activation function f(s) and s is the total input
it receives. Typical choices of activation functions are logis-
tic function: 1

1+exp(−s) and hyperbolic tangent: es−e−s

es+e−s . Re-

LUNet replaces the activation function by max(0, s). The ad-
vantage of ReLU is that it generalizes better than logistic units
and empirical results also show that it converges faster [11].

The second technique is called the dropout [11, 8]. Dropout
can be viewed as a strong regularization technique that prevents
the co-adaptation of hidden units, so that each hidden unit needs
to learn useful patterns in the data individually. It can also be
viewed as an approximation of an ensemble method that takes
the geometric average of exponentially many neural networks,
each with different architecture. Usually, it is easy for neural
network to overfit when the number of labelled training data is
scarce. Dropout allows us to use a big deep net and regularize
it without paying much cost.

4. Models Ensemble
Inevitably, the seven classifiers we use all overfit the data be-
cause the number of training data is very scarce. To eliminate
this problem, we need to average predictions made by differ-
ent models. Presumably, each model can output a probability
distribution over the classes which is treated as the confidence
of each model. We could then blend these results by learning
another set of weights to decide the relative importance of each
model given a test vector. Specifically, let pi be the predictive
distribution vector formed by concatenating the predictions of
the seven models we have learned, we train another LR,

arg max
wensemble

Nval∑
i=1

log p(yvali |pvali )

i.e., we use the predictions of the seven classifiers as our new
data, and train the ensemble weight to maximize the probability
of the correct predictions on the validation set. It is impor-
tant that we do not use the training set to learn these ensemble
weights because there is severe issue of overfitting and nearly
every classifier gets very high accuracy on the training set.

This process of learning the ensemble weights is referred
as the second stage of our system. At testing time, we get the
predictions of the seven classifiers, and treat those as data and
feed them into the model in the second stage to get the final
output.

5. Experiments
5.1. Dataset and Evaluation

The datasets for the two sub-challenges can be downloaded
from the competition website 1, where the baseline features, ex-
tracted by using the openSMILE feature extractor are provided
[6]. The features lie in 6373 dimensional space for both sub-
challenges. As mentioned in Section 2.1, in the cognitive load
sub-challenge, we down-sample instances tagged as high pulse
to make the training data more balanced.

D L N tr Nval N te

256 2 385 384 319

Table 1: Statistics of the physical load sub-challenge. D is the
feature dimension, L is the number of classes.

The evaluation metric used in the competition is the un-
weighted average recall (UAR). UAR is calculated by comput-
ing the recall rate for each class individually, and compute their

1http://emotion-research.net/sigs/speech-sig/is14-compare
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D L N tr Nval N te

400 3 1023 651 744

Table 2: Statistics of the cognitive load sub-challenge. D is the
feature dimension, L is the number of classes.

unweighted average. We follow this metric and the parameters
tuned on the validation set are all based on optimizing UAR.

5.2. Pre-processing

In our system, we did not use features other than the baseline
ones. However, to speed up computation and robustify the clas-
sifiers, we reduce its dimensionality by performing a PCA first.
We select the top-K principal components with the largest vari-
ances by investigating the performance achieved by SVMs of
the reduced features on the validation set. We found that for
K ranging between 200 and 500, the performance of SVMs are
similar to and sometimes even better than the results reported in
the baseline documentation. The final number of K is set to 256
for physical sub-challenge and 400 for cognitive sub-challenge.
We list some statistics about the (pre-processed) datasets in Ta-
ble 1 and 2.

Note that for correct evaluation of the classifiers, PCA is
performed on the training set only. We do not want to overesti-
mate the performance of each classifier by doing PCA on both
the training set and the validation set. Although, as pointed out
in the baseline paper, that the full test set (without labels) is
given to the participants and it should be okay to pre-process
features with all available data at hand. However, we focus on a
more reasonable scenario where the test query is coming to us
in an online fashion that we are not allowed to perform any kind
of learning using the test data.

5.3. Results

We now report the results of the seven classifiers as well as
the final ensemble model we use in our system on both sub-
challenges. For each classifier, we try several hyperparameters
from a predefined range of choices, e.g., the regularization pa-
rameter C for SVM and LR, the number of neighbors for KNN,
and the number of decision trees for RF. For CRBM, we choose
the number of hidden units beforehand. For ReLUNet, we try 1
to 3 hidden layers, but we found out that using more layers does
not give substantial performance improvements, probably be-
cause that the training data is too scarce, so using even 1 hidden
layer suffices to capture enough information in the data.

5.3.1. Physical sub-challenge

We first show the results on physical sub-challenge. In this task,
the baseline model, which normalize the features to zero-mean
and unit variance, and learns a linear SVM on it gets the UAR of
65.79. The results of different classifiers are shown in Table 3.
Due to the space limitation, we only show the hyperparameter
setting that achieves the best result on the validation set for each
model.

5.3.2. Cognitive sub-challenge

Subsequently, we report the results on the cognitive sub-
challenge. There is one difference for this sub-challenge from
the physical load sub-challenge that it is actually a multi-task
problem. There are three tasks that each speaker has to perform,
namely, readingspanSentence, strooptimepressure, and stroop-

Model UAR
baseline 65.79

SVM, C=0.5 68.22
LR , C=0.5 68.44

KNN, NN=20 60.66
RF, NT = 10000 68.04
CRBM, H = 100 69.20

ReLUNet,H = 500 67.66
GDA 65.64

ensemble 71.40

Table 3: UAR of SVM, LR, KNN, RF, CRBM, ReLUNet, GDA
and the ensemble model physical sub-challenge. C is the reg-
ularization parameter for LR and SVM. NN is the number of
neighbors in the KNN classifier, NT is the number of trees in RF
and H is the number of hidden units in CRBM and ReLUNet.

dualtask, all of which we need to predict speaker’s cognitive
load. We could learn separate model for each task, or we could
learn only one model to solve three tasks jointly. Here we take
the former approach, because it was reported in the baseline that
learning each model for each task performs much better than
learning a single classifier. Similarly, the results are shown in
Table 4.

Model UAR
baseline 62.26

SVM, C=0.0001 62.10
LR , C=0.001 61.87
KNN, NN=10 52.80
RF, NT = 500 53.92

CRBM, H = 1000 58.64
ReLUNet,H = 100 61.93

GDA 56.03
ensemble 64.05

Table 4: UAR of SVM, LR, KNN, RF, CRBM, ReLUNet, GDA
and the ensemble model for cognitive sub-challenge

Finally, we upload the results for the test set to the judge
system. Unfortunately, we found that our results are slightly
worse than the baseline method and we believe that the reason
is we are overfitting the validation set too much.

6. Conclusion
We have presented our method and results on the Interspeech
2014 Computational Paralinguistics ChallengE (ComParE). We
blend seven off-the-shelf classifiers for a better generalization
power. As shown in the experiments, we are able to signifi-
cantly improve upon the baseline model with our system. There
are however, several interesting future directions worth work-
ing on. First, we did not do anything special on the feature
engineering part. We used the openSMILE features and reduce
its dimensionality by PCA. Given that the task is load detec-
tion, there should be special kind of features that are particularly
suitable for such problems. Second, it is possible to perform a
multi-modal learning. For example, in the cognitive load sub-
challenge, the goal is to predict the objective load of the speak-
ers. However, the subjective load
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