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ABSTRACT 
 
This paper presents a deep similarity matching-based emotion-
oriented music video (MV) generation system, called DEMV-
matchmaker, which utilizes an emotion-oriented deep similarity 
matching (EDSM) metric as a bridge to connect music and video. 
Specifically, we adopt an emotional temporal course model 
(ETCM) to respectively learn the relationship between music and 
its emotional temporal phase sequence and the relationship 
between video and its emotional temporal phase sequence from an 
emotion-annotated MV corpus. An emotional temporal structure 
preserved histogram (ETPH) representation is proposed to keep the 
recognized emotional temporal phase sequence information for 
EDSM metric construction. A deep neural network (DNN) is then 
applied to learn an EDSM metric based on the ETPHs for the 
given positive (official) and negative (artificial) MV examples. For 
MV generation, the EDSM metric is applied to measure the 
similarity between ETPHs of video and music. The results of 
objective and subjective experiments demonstrate that DEMV-
matchmaker performs well and can generate appealing music 
videos that can enhance the viewing and listening experience. 
 

Index Terms— Automatic music video generation, deep 
similarity learning, cross-modal media retrieval 
 

1. INTRODUCTION 
 
With the prevalence of mobile devices, video is widely used to 
record memorable moments of daily events such as wedding, 
graduation, and birthday parties. Websites such as YouTube or 
Vimeo have furthered the phenomenon as sharing becomes easy. 
In addition, people enjoy listening to music to release their 
emotions. In psychology, it is argued that a musical experience 
may evoke emotions when a listener conjures up images of things 
and events that have never occurred, in the absence of any episodic 
memory from a previous event in time [1]. Thus, music and video 
are often accompanied to complement each other to enhance 
emotional resonance in movies and television programs. To 
enhance the entertaining quality and emotional resonance of user-
generated videos (UGVs), accompanying a UGV with music is 
thus desirable. For example, a wedding video can accompany with 
romantic music to enhance a sweet atmosphere. Nevertheless, to 
select good music for a video, music professionals are required. 
With the rapid growth of music collections, matching a video with 
suitable music becomes ever difficult. The advent of an automatic 
music video (MV) generation system is foreseeable. 

In response to this trend, machine-aided automatic MV 
composition has been studied in the past decade [2–7]. However, 
the performance of existing systems is usually limited, because 
most of them only consider the relationship between the low-level 
acoustic features and visual features [3–5]. It is difficult to 
establish a direct relationship between the music and video 
modalities from low-level features. Moreover, there is a so-called 
semantic gap between low-level acoustic (or visual) features and 
high-level human perception. To narrow down such gap, motivated 
by the recent development in affective computing of multimedia 
signals, research has begun to map the low-level acoustic and 
visual features into an emotional space [6,7]. A music-
accompanied video composed in this way is attractive, as the 
perception of emotion naturally occurs in video watching. 
However, most of the existing studies for MV generation [6,7] 
only model the relationship between low-level features (i.e., 
acoustic or visual features) and emotion labels, without 
considering the temporal course of emotional expression of music 
and video. Even the music and video are with the same emotional 
category, the nonsynchronous temporal courses of emotional 
expression may still result in bad viewing experience. Thus, we 
recently proposed an EMV-matchmaker framework [8], which 
consists of an emotional temporal course model (ETCM) to model 
the temporal structure of emotional expression and a stream 
matching method to measure the similarity between the recognized 
emotional temporal phase sequences of music and video, for music 
video generation. Although the EMV-matchmaker framework has 
been proved to outperform the state-of-the-art acoustic-visual 
emotion Gaussians (AVEG) framework [6], the fixed rigid 
similarity metric (i.e., string matching) used in EMV-matchmaker 
may not be always optimal. It cannot accommodate to the incorrect 
recognition of emotional temporal phase sequence. 

To handle the aforementioned problem, inspired by the recent 
advance in deep learning [9–13] and distance metric learning 
(DML) [14–19] techniques, we first attempt to apply a deep neural 
network (DNN) to learn a flexible nonlinear similarity matching 
metric to alleviate the effect of recognition errors in an emotional 
temporal phase sequence for MV generation. DML has been 
extensively studied in both machine learning and multimedia 
communities. The crux of similarity search lies in two key 
components: (i) an effective feature representation and (ii) a proper 
similarity matching function over the feature space. Existing DML 
methods can be grouped into different categories according to 
varied learning settings and methodologies. For example, most 
DML studies in multimedia mainly learn metrics from various 
types of side-information, including class labels or binary 



similar/dissimilar pairwise labels [15]. However, most learning 
methods aim to learn a linear distance metric in the form of 
Mahalanobis distance, which can be viewed as learning a linear 
projection to map the input feature space into another feature space. 
The linearity assumption inevitably limits the capacity of 
similarity measure for complex patterns. To tackle such challenges, 
inspired by the recent advance in deep learning techniques [9–13], 
researchers have begun to adopt a DNN to learn a nonlinear 
transformation function for similarity measure in many multimedia 
applications. For example, Hu et al. [17] proposed a discriminative 
deep metric learning method, which trains a DNN to learn a set of 
hierarchical nonlinear transformations to project face pairs into the 
same feature subspace for face verification in the wild. Srivastava 
et al. [16] employed a deep belief network to learn a generative 
model of the joint space of image and text inputs for cross-media 
information retrieval. Wu et al. [18] proposed an online 
multimodal deep similarity learning framework to learn a 
nonlinear transformation function for each feature modality and 
find an optimal combination of multiple modalities for image 
retrieval. 

In this paper, as shown in Figure 1, a deep similarity 
matching-based emotion-oriented music video generation system, 
called DEMV-matchmaker, is proposed, as an extended framework 
of the previous EMV-matchmaker. For a music (or video) clip, an 
acoustic (or visual) emotional temporal course model (ETCM) is 
firstly applied to recognize its emotional temporal phase sequence 
in an emotional quadrant in the valence-arousal (VA) emotional 
space [20] from its low-level acoustic (or visual) features. For MV 
generation, an emotion-oriented deep similarity matching (EDSM) 
metric is then applied to match music and video clips based on 
whether they are with similar emotional temporal structure 
preserved histogram (ETPH) representations. The acoustic and 
visual ETCMs can be learned from an emotion-annotated MV 
corpus. The EDSM metric can be learned for the given positive 
(official) and negative (artificial) MV examples. To the best of our 
knowledge, this is the first attempt to consider the deep similarity 
learning technique for emotion-oriented MV generation. 
 

2. METHODOLOGY 
 
In the proposed DEMV-matchmaker system, as shown in Figure 1, 
an acoustic (or visual) ETCM is used to predict the emotional 

temporal phase sequence of a music (or video) clip in the VA 
emotional space. An EDSM metric is then used to match music 
and video clips based on their ETPHs for MV generation. 
 
2.1. Emotional Temporal Phase Sequence Recognition and 
Representation 
 
The psychologist Ekman’s research [21] demonstrated that the 
complete temporal course of an emotional expression can be 
divided into three sequential temporal phases, namely onset 
(application), apex (release), and offset (relaxation), considering 
the manner and intensity of the expression. To precisely model and 
recognize the temporal course of emotional expression of a MV 
(including music and video contents), the ETCM developed in our 
previous work [8] is adopted. As shown in Figure 1, the DEMV-
matchmaker framework contains one acoustic ETCM and one 
visual ETCM for modeling music and video contents, respectively. 
 
2.1.1. ETCM Derivation 
In an ETCM, three emotional sub-states are defined to represent 
the temporal phases, namely onset, apex, and offset, of the 
emotional expression of a music clip (or a video clip), and a 
hidden Markov model (HMM) is used to model the temporal 
characteristics in an emotional sub-state.  

Given an observation (i.e., acoustic or visual feature) 
sequence 1 1 2, ,...,T

TO o o o o  , the emotion recognition task is 

defined as selecting one among the three emotional quadrants1 

 1 2 3, ,EQ EQ EQ EQ  in the VA space shown in Figure 1, i.e., 
* arg max ( | )

EQ
EQ P EQ O .                              (1) 

For each emotional quadrant, ( | )P EQ O  can be approximated as a 
posteriori probability of the best emotional sub-state (i.e., temporal 
phase) sequence 1 2, ,..., M

EQ EQ EQ EQES es es es  as follows, 

( | ) max ( | )
EQ

EQ
ES

P EQ O P ES O .                        (2) 

                                                 
1  The two emotional quadrants in the low arousal space were 
merged into one, as shown in Figure 1, since emotions mapped 
into the lower arousal space are difficult to differentiate [22]. 

 
Figure 1. Illustration of the DEMV-matchmaker framework. 



Therefore, the recognition problem is translated to finding out the 
emotional sub-state sequence that has the largest a posteriori 
probability over three emotional quadrants. 

By using the Bayes’ rule, the a posteriori probability 
( | )EQP ES O  can be decomposed as 

( | ) ( | ) ( ) ( )EQ EQ EQP ES O P O ES P ES P O ,               (3) 

where ( | )EQP O ES  is calculated by the corresponding emotional 

sub-state HMMs for the emotional quadrant EQ; 
1 2( ) ( , ,..., )M

EQ EQ EQ EQP ES P es es es  is the a priori probability of the 

corresponding emotional sub-state sequence for the emotional 
quadrant EQ, which can be calculated according to a pre-defined 
grammar, as shown in Figure 2; ( )P O  is identical for all possible 
emotional sub-state sequences, and thus can be omitted when (3) is 
applied in (1). Therefore, the task of emotion recognition with 
temporal phase sequence using ETCM can be expressed as 

* arg max max ( | ) ( )
EQ

EQ EQ
ESEQ

EQ P O ES P ES    
.               (4) 

 In ETCM training, for each emotional quadrant, we trained a 
set of HMMs (i.e., the acoustic (or visual) emotional sub-state 
HMMs, including the onset HMM, the apex HMM, and the offset 
HMM) from a set of official music videos (OMVs) that is 
annotated with the emotional temporal phase sequences, using the 
expectation-maximization (EM) algorithm. For each emotional 
sub-state HMM, a left-to-right HMM with three hidden states was 
used to model the emotional temporal characteristics. In addition, 
we also trained the sil HMMs (cf. Figure 2) to respectively absorb 
the black screen (for video) and the silence portion (for music) in 
the beginning and ending sections of an OMV, because these 
sections do not contain information of emotional expression. To 
permit the repetition of emotional temporal phases in an OMV, an 
emotional temporal course grammar, as shown in Figure 2, was 
used to guide the recognition process by referring to the emotional 
temporal phases. All the temporal phase transition probabilities in 
the grammar were assumed uniformly distributed in this study. 

 
2.1.2. Emotional Temporal Phase Sequence Representation 
Since a neural network cannot model a variable-length sequential 
input sequence, we convert an emotional temporal phase sequence 
into a fixed-dimensional emotional temporal structure preserved 
histogram (ETPH) vector for EDSM metric learning. Figure 3 
illustrates the construction of the ETPH vector, where the 
horizontal and vertical axes represent the ordered emotional 
temporal phase index and the corresponding normalized count in 
the recognized emotional temporal phase sequence, respectively. 
This example is recognized to be in quadrant 1; thus, the counts for 
the other quadrants are set to 0. Since music is constructed based 
on a temporal structure consisting of intro, verse, chorus, bridge, 
and outro sections as well as optional repeats in order to over and 
over pave and express emotion, we extract the first 5 repetitions in 
ETPH construction, even if a video or music clip contains more 
repetitions. For those video or music clips with fewer repetitions, 
the counts are set to 0 for the non-existing repetitions. In this way, 
the recognized emotional temporal phase sequence of a video (or 
music) clip is represented as a 47-dimensional V-ETPH (or M-
ETPH) vector. 
 
2.2. Emotion-oriented Deep Similarity Learning and Matching 
for MV Generation 
 
In this study, we regard the similarity learning problem as a 
classification similarity learning issue [19]. The goal is to learn a 
classifier (i.e., EDSM metric) that can decide whether a pair of V-
ETPH and M-ETPH is similar. In EDSM metric learning, as 
shown in Figure 4, a DNN is adopted to learn the classifier based 
on a set of positive training examples x+=(V-ETPH, M-ETPH+) 
and negative training examples x–=(V-ETPH, M-ETPH–) with 
binary class labels y+=(1,0) and y–=(0,1), respectively. A positive 
training example is directly extracted from the V-ETPH and M-
ETPH of an OMV; while a negative training example is artificially 
constructed from the V-ETPH of an OMV and the M-ETPH of 
another OMV in a different emotional quadrant. 

 Denoting a training example x+ or x– as x, we forward x 
layer-by-layer through a DNN to generate the representation of 
each layer, i.e., x(1),…, x(L). The l-th layer takes as input x(l) and 
uses a projection function to transform x(l) to x(l+1) as follows, 

( 1) ( ) ( ) ( ) ( )( )l l l l lx f W x b                                  (5) 
where x(l) and x(l+1) are the feature representation in the l-th and 
l+1-th layer, respectively; W(l) is a weight projection matrix; b(l) is 
a bias vector; and f(l)(.) is a non-linear activation function, which is 
a sigmoid function for l=1 to L-2, and a softmax function for l=L-1. 

 
Figure 2. Recognition network based on the predefined grammar
for characterizing an emotional quadrant expressed in a music or 
video clip. 

Figure 3. Illustration of the construction of the ETPH
representation, where on1, ap1, and off1 represent the onset, apex, 
and offset phases of emotional quadrant 1. 

 
Figure 4. Illustration of the EDSM metric learning, where blue and 
red arrows represent the forward and back propagation procedures, 
respectively. 



Given the class label y, we use the softmax regression [23] as the 
loss function in the output layer as 

( )( , ) ( , )Lx y KL x y                                    (6) 

where KL(.) is the KL-divergence function. The loss of the output 
layer will be back propagated to fine-tune the parameters W and b 
through the classical back-propagation method. Since side-
information (i.e., positive or negative class label) is considered for 
DNN to learn a nonlinear similarity matching metric, the 
constructed DNN classifier (i.e., EDSM metric) is expected to 
alleviate the effect of recognition errors in an emotional temporal 
phase sequence. 

In the MV generation phase, given a queried video clip, the 
goal is to find a ranked list of music clips for the query. 
Specifically, the queried video clip is paired with each music clip 
from the target music database to form a testing pair. The visual 
and acoustic ETCMs as well as the ETPH representation method 
are applied to obtain the corresponding V-ETPH and M-ETPH. 
The EDSM metric is then applied to measure the similarity 
between the V-ETPH and M-ETPH. Finally, all the music clips are 
ranked in descending order of scores obtained from the first output 
node of the EDSM metric, and the top one is regarded as the best 
recommendation for the queried video to generate the MV. 

Since every matching metric has its own advantage and 
disadvantage, we may further combine the ranking result of the 
proposed DEMV-matchmaker with that of the string matching-
based EMV-matchmaker [8] (we name the combined system 
“DEMV-matchmakerCOM” ) as 

COM EMV DEMVR (V, M)=R (V, M)+R (V, M)               (7) 

where RCOM(V, M) represents the combined rank for an arbitrary 
V-M pair; REMV is the rank given by EMV-matchmaker; and 
RDEMV is the rank given by DEMV-matchmaker. Finally, all the 
music clips are ranked in ascending order of RCOM, and the top one 
is regarded as the best recommendation for the queried video. 
 

3. EXPERIMENTS 
 
To evaluate the effectiveness of the proposed DEMV-matchmaker 
framework, we performed experiments on a set of OMVs 
downloaded from YouTube. 265 complete OMVs were collected, 
among which 65 OMVs downloaded according to the links 
provided in the DEAP database [24] were used to train the acoustic 
ETCM, the visual ETCM, and the EDSM metric. Each OMV was 
assigned one (out of three) emotional quadrant based on the VA 
annotations provided in the DEAP database. The emotional 
temporal phases of each OMV were annotated according to the 
repetitions of verse-chorus sections by referring to the lyrics [8]. 
The remaining 200 OMVs were used for testing. 

For music, we used MIRToolbox to extract four types of 
frame-based acoustic features, namely dynamic, spectral, timbre, 
and tonal features [25,26]. For video, the frame-based color themes 
and motion intensities were extracted as the visual features [27,28]. 
For training the EDSM metric, we used a DNN with 4 hidden 
layers with 100, 100, 80, and 10 neurons, respectively. We applied 
random initialization for the weights, a constant learning rate of 
0.001, and the L2 weight decay regularization to avoid over-fitting. 
The size of mini-batch for the stochastic gradient descent 
algorithm was set to 10. 

In the experiments, the video of each testing OMV was used 
in turn to search for the best matched music from the music tracks 
of the 200 testing OMVs, and the one corresponding to the test 

video was regarded as the ground truth. The ranking accuracy [5] 
defined as 

( ) 1
 1

1

rank g
Ranking Accuracy

C


 


,                       (8) 

was adopted as the objective performance measure, where rank(g) 
is the rank of the ground truth g, and |C| is the total number of 
music clips in the candidate set (|C|=200 in this study). We 
reported the average ranking accuracy over the testing set. 

The results in Table 1 demonstrate that the new DEMV-
matchmaker framework outperforms the previous EMV-
matchmaker framework.  We believe that it is because a fixed rigid 
similarity metric (i.e., string matching) used in EMV-matchmaker 
cannot accommodate to the incorrect recognition of emotional 
temporal phase sequence. A learning-based nonlinear similarity 
matching metric (i.e., EDSM metric) used in DEMV-matchmaker 
indeed alleviates to some extent the effect of recognition errors. 
DEMV-matchmakerCOM further improves the performance. Overall, 
DEMV-matchmakerCOM pushed ahead the rank of ground truth 
music by approximately 10 (i.e., the average ranking accuracy was 
improved from 0.6057 to 0.6519), compared to EMV-matchmaker. 

Subjective evaluation2 in terms of 5-point mean opinion score 
(MOS) was conducted on 5 MV sets. Each MV set contains the 
original official MV (ground truth) and the MVs generated by 
EMV-matchmaker and DEMV-matchmakerCOM. Each MV was 
evaluated by 14 subjects. The average MOS results in Figure 5 
show that DEMV-matchmakerCOM only very slightly outperforms 
EMV-matchmaker, and that the gap between an automatically 
generated MV and an official MV is quite small. 
 

4. CONCLUSIONS AND FUTURE WORK 
 
We have presented a deep similarity matching-based emotion-
oriented music video (MV) generation system, called DEMV-
matchmaker, which utilizes an emotion-oriented deep similarity 
matching (EDSM) metric as a bridge to connect music and video. 
The results of both subjective and objective evaluations have 
demonstrated that the proposed DEMV-matchmaker framework 
outperforms the state-of-the-art EMV-matchmaker framework, and 
can offer a satisfactory automatically generated music video to 
enhance human viewing and listening experience. Different DNN 
structures and objective functions can be applied to further address 
the similarity matching issue of automatic MV generation, which 
is important and will be studied in our future work. 

                                                 
2 MOS results for individual MVs are available at 
https://sites.google.com/site/demvmatchmakermosresult/ 

Figure 5. Results of subjective evaluation. 

Table 1. Average ranking accuracy of the DEMV-matchmaker and 
EMV-matchmaker frameworks. 

The Video Retrieving Music (V2M) Task 
EMV-matchmaker [8] DEMV-matchmaker DEMV-matchmakerCOM

0.6057 0.6414 0.6519 
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