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Abstract 

In the context of natural language processing, representation learning has emerged as a newly 
active research subject because of its excellent performance in many applications. Learning 
representations of words is a pioneering study in this school of research. However, paragraph 
(or sentence and document) embedding learning is more suitable/reasonable for some tasks, such 
as sentiment classification and document summarization. Nevertheless, as far as we are aware, 
there is relatively less work focusing on the development of unsupervised paragraph embedding 
methods. Classic paragraph embedding methods infer the representation of a given paragraph 
by considering all of the words occurring in the paragraph. Consequently, those stop or function 
words that occur frequently may mislead the embedding learning process to produce a misty 
paragraph representation. Motivated by these observations, our major contributions in this paper 
are twofold. First, we propose a novel unsupervised paragraph embedding method, named the 
essence vector (EV) model, which aims at not only distilling the most representative information 
from a paragraph but also excluding the general background information to produce a more 
informative low-dimensional vector representation for the paragraph. We evaluate the proposed 
EV model on benchmark sentiment classification and multi-document summarization tasks. The 
experimental results demonstrate the effectiveness and applicability of the proposed embedding 
method. Second, in view of the increasing importance of spoken content processing, an 
extension of the EV model, named the denoising essence vector (D-EV) model, is proposed. The 
D-EV model not only inherits the advantages of the EV model but also can infer a more robust 
representation for a given spoken paragraph against imperfect speech recognition. The utility of 
the D-EV model is evaluated on a spoken document summarization task, confirming the 
practical merits of the proposed embedding method in relation to several well-practiced and 
state-of-the-art summarization methods.  

1 Introduction 

Representation learning has gained significant interest of research and experimentation in many machine 
learning applications because of its remarkable performance. When it comes to the field of natural 
language processing (NLP), word embedding methods can be viewed as pioneering studies (Bengio et 
al., 2003; Mikolov et al., 2013; Pennington et al., 2014). The central idea of these methods is to learn 
continuously distributed vector representations of words using neural networks, which seeks to probe 
latent semantic and/or syntactic cues that can in turn be used to induce similarity measures among words. 
A common thread of leveraging word embedding methods to NLP-related tasks is to represent a given 
paragraph (or sentence and document) by simply taking an average over the word embeddings 
corresponding to the words occurring in the paragraph. By doing so, this thread of methods has recently 
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enjoyed substantial success in many NLP-related tasks (Collobert and Weston, 2008; Tang et al., 2014; 
Kageback et al., 2014). 

Although the empirical effectiveness of word embedding methods has been proven recently, the 
composite representation for a paragraph (or sentence and document) is a bit queer. Theoretically, 
paragraph-based representation learning is expected to be more suitable for such tasks as information 
retrieval, sentiment analysis and document summarization (Huang et al., 2013; Le and Mikolov, 2014; 
Palangi et al., 2015), to name but a few. However, to the best of our knowledge, unsupervised paragraph 
embedding has been largely under-explored on these tasks. Classic paragraph embedding methods infer 
the representation of a given paragraph by considering all of the words occurring in the paragraph. 
Consequently, those stop or function words that occur frequently in the paragraph may mislead the 
embedding learning process to produce a misty paragraph representation. In other words, the frequent 
words or modifiers may overshadow the indicative words, thereby drifting the main theme of the 
semantic content in the paragraph. As a result, the learned representation for the paragraph might be 
undesired. In order to address this shortcoming, we propose a novel unsupervised paragraph embedding 
method, named the essence vector (EV) model, which aims at not only distilling the most representative 
information from a paragraph but also excluding the general background information to produce a more 
informative and discriminative low-dimensional vector representation for the paragraph. 

On a separate front, with the popularity of the Internet and the increasing development of the digital 
storage capacity, unprecedented volumes of multimedia information, such as broadcast news, lecture 
recordings, voice mails and video streams, among others, have been quickly disseminated around the 
world and shared among people. Consequently, spoken content processing has become an important and 
urgent demand (Lee and Chen, 2005; Ostendorf, 2008; Liu and Hakkani-Tur, 2011). Obviously, speech 
is one of the most important sources of information about multimedia (Furui et al., 2012). A common 
school of processing multimedia is to transcribe the associated spoken content into text or lattice format 
by an automatic speech recognizer. After that, well-developed text processing frameworks can then be 
readily applied. However, such imperfect transcripts usually limit the associated efficacy. To bridge the 
performance gap between perfect and imperfect transcripts, we hence extend the proposed essence 
vector model to a denoising essence vector (D-EV) model, which not only inherits the advantages of the 
EV model but also can infer a more robust representation for a given spoken paragraph that is more 
resilient to imperfect speech recognition. 

The remainder of this paper is organized as follows. We first briefly review two classic paragraph 
embedding methods in Section 2. Section 3 sheds light on our proposed essence vector model and its 
extension, the denoising essence vector model. Then, a series of experiments are presented in Section 4 
to evaluate the proposed representation learning methods. Finally, Section 5 concludes the paper. 

2 Literature Review 

In contrast to the large body of work on developing various word embedding methods, there are 
relatively few studies concentrating on learning paragraph representations in an unsupervised manner 
(Huang et al., 2013; Le and Mikolov, 2014; Chen et al., 2014; Palangi et al., 2015). Representative 
methods include the distributed memory model (Le and Mikolov, 2014) and the distributed bag-of-
words model (Le and Mikolov, 2014; Chen et al., 2014). 

2.1 The Distributed Memory Model 

The distributed memory (DM) model is inspired and hybridized from the traditional feed-forward neural 
network language model (NNLM) (Bengio et al., 2003) and the recently proposed word embedding 
methods (Mikolov et al., 2013). Formally, given a sequence of words, {𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝐿𝐿}, the objective 
function of feed-forward NNLM is to maximize the total log-likelihood, 

∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1)𝐿𝐿
𝑙𝑙=1 .    (1) 

Obviously, NNLM is designed to predict the probability of a future word, given its 𝑛𝑛 − 1 previous 
words. The input of NNLM is a high-dimensional vector, which is constructed by concatenating (or 



taking an average over) the word representations of all words within the context (i.e., 𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1), 
and the output can be viewed as that of a multi-class classifier. By doing so, the 𝑛𝑛-gram probability can 
be calculated through a softmax function at the output layer: 

𝑃𝑃�𝑤𝑤𝑙𝑙�𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1� =
exp(𝑦𝑦𝑤𝑤𝑙𝑙)

∑ exp (𝑦𝑦𝑤𝑤𝑖𝑖)𝑤𝑤𝑖𝑖∈𝑉𝑉
,   (2) 

where 𝑦𝑦𝑤𝑤𝑖𝑖 denotes the output value for word 𝑤𝑤𝑖𝑖, and 𝑉𝑉 is the vocabulary.  

Based on the NNLM, the notion underlying the DM model is that a given paragraph also contributes 
to the prediction of the next word, given its previous words in the paragraph (Le and Mikolov, 2014). 
To make the idea work, the training objective function is defined by 

∑ ∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1,𝐷𝐷𝑡𝑡)
𝐿𝐿𝑡𝑡
𝑙𝑙=1

T
𝑡𝑡=1 ,   (3) 

where T denotes the number of paragraphs in the training corpus, 𝐷𝐷𝑡𝑡 denotes the 𝑡𝑡-th paragraph, and 𝐿𝐿𝑡𝑡 
is the length of 𝐷𝐷𝑡𝑡. Since the model acts as a memory unit that remembers what is missing from the 
current context, it is named the distributed memory (DM) model.  

2.2 The Distributed Bag-of-Words Model 

Opposite to the DM model, a simplified version is to only rely on the paragraph representation to predict 
all of the words occurring in the paragraph (Le and Mikolov, 2014; Chen et al., 2014). The training 
objective function can then be defined by maximizing the predictive probabilities all over the words 
occurring in the paragraph: 

∑ ∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝐷𝐷𝑡𝑡)
𝐿𝐿𝑡𝑡
𝑙𝑙=1

T
𝑡𝑡=1 .     (4) 

Since the simplified model ignores the contextual words at the input layer, the model is named the 
distributed bag-of-words (DBOW) model. In addition to being conceptually simple, the DBOW model 
only needs to store the softmax weights, whereas the DM model stores both softmax weights and word 
vectors (Le and Mikolov, 2014).  

3 Learning to Distill: The Proposed Essence Vector Modeling Framework 

3.1 The Essence Vector Model 

Classic paragraph embedding methods infer the representation of a paragraph by considering all of the 
words occurring in the paragraph. However, we all agree upon that the number of content words in a 
paragraph is usually less than that of stop or function words. Accordingly, those stop or function words 
may mislead the representation learning process to produce an ambiguous paragraph representation. In 
other words, the frequent words or modifiers may overshadow the indicative words, thereby making the 
learned representation deviate from the main theme of the semantic content expressed in the paragraph. 
Consequently, the associated capacity will be limited. In order to complement such deficiency, we hence 
strive to develop a novel unsupervised paragraph embedding method, which aims at not only distilling 
the most representative information from a paragraph but also diminishing the impact of the general 
background information (probably predominated by stop or function words), so as to deduce an 
informative and discriminative low-dimensional vector representation for the paragraph. We henceforth 
term this novel unsupervised paragraph embedding method the essence vector (EV) model. 

To turn the idea into a reality, we begin with an assumption that each paragraph (or sentence and 
document) can be assembled by two components: the paragraph specific information and the general 
background information. This assumption also holds in the low-dimensional representation space. 
Accordingly, the proposed method consists of three modules: a paragraph encoder 𝑓𝑓(∙), which can 
automatically infer the desired low-dimensional vector representation by considering only the 
paragraph-specific information; a background encoder 𝑔𝑔(∙) , which is used to map the general 
background information into a low-dimensional representation; and a decoder ℎ(∙) that can reconstruct 
the original paragraph by combining the paragraph representation and the background representation. 



More formally, given a set of training paragraphs {𝐷𝐷1,⋯ ,𝐷𝐷𝑡𝑡 ,⋯ ,𝐷𝐷T}, in order to modulate the effect 
of different lengths of paragraphs, each paragraph is first represented by a bag-of-words high-
dimensional vector 𝑃𝑃𝐷𝐷𝑡𝑡 ∈ ℝ

|𝑉𝑉|, where each element corresponds to the frequency count of a word/term 
in the vocabulary 𝑉𝑉, and the vector is normalized to unit-sum. Then, a paragraph encoder is applied to 
extract the most specific information from the paragraph and encapsulate it into a low-dimensional 
vector representation: 

𝑓𝑓�𝑃𝑃𝐷𝐷𝑡𝑡� = 𝑣𝑣𝐷𝐷𝑡𝑡.      (5) 

At the same time, the general background is also represented by a high-dimensional vector with 
normalized word/term frequency counts, 𝑃𝑃𝐵𝐵𝐵𝐵 ∈ ℝ|𝑉𝑉|, and a background encoder is used to compress the 
general background information into a low-dimensional vector representation: 

𝑔𝑔(𝑃𝑃𝐵𝐵𝐵𝐵) = 𝑣𝑣𝐵𝐵𝐵𝐵 .      (6) 

Both 𝑓𝑓(∙)  and 𝑔𝑔(∙) are fully connected deep networks with different model parameters 𝜃𝜃𝑓𝑓  and 𝜃𝜃𝑔𝑔 , 
respectively. It is worthy to note that 𝑓𝑓(∙) and 𝑔𝑔(∙) can have same or different architectures. Since each 
learned paragraph representation 𝑣𝑣𝐷𝐷𝑡𝑡 only contains the most informative/discriminative part of 𝑃𝑃𝐷𝐷𝑡𝑡, we 
assume that the weighted combination of 𝑣𝑣𝐷𝐷𝑡𝑡 and 𝑣𝑣𝐵𝐵𝐵𝐵  can be mapped back to 𝑃𝑃𝐷𝐷𝑡𝑡 by a decoder ℎ(∙): 

ℎ�𝛼𝛼𝐷𝐷𝑡𝑡 ∙ 𝑣𝑣𝐷𝐷𝑡𝑡 + �1 − 𝛼𝛼𝐷𝐷𝑡𝑡� ∙ 𝑣𝑣𝐵𝐵𝐵𝐵� = 𝑃𝑃𝐷𝐷𝑡𝑡
′ ,   (7) 

where ℎ(∙) is also a fully connected multilayer neural network with parameter 𝜃𝜃ℎ, and the interpolation 
weight can be determined by an attention function 𝑞𝑞(∙,∙): 

𝛼𝛼𝐷𝐷𝑡𝑡 = 𝑞𝑞(𝑣𝑣𝐷𝐷𝑡𝑡 ,𝑣𝑣𝐵𝐵𝐵𝐵).      (8) 

The attention function can be realized by a trainable network or a simple linear/non-linear function. 
Further, to ensure the quality of the learned background representation 𝑣𝑣𝐵𝐵𝐵𝐵 , it should also be mapped 
back to 𝑃𝑃𝐵𝐵𝐵𝐵  by ℎ(∙) appropriately: 

ℎ(𝑣𝑣𝐵𝐵𝐵𝐵) = 𝑃𝑃𝐵𝐵𝐵𝐵′ .      (9) 

In a nutshell, the training objective function of the proposed essence vector model is to minimize the 
total KL-divergence measure: 

min
𝜃𝜃𝑓𝑓,𝜃𝜃𝑔𝑔,𝜃𝜃ℎ

∑ �𝑃𝑃𝐷𝐷𝑡𝑡log
𝑃𝑃𝐷𝐷𝑡𝑡
𝑃𝑃𝐷𝐷𝑡𝑡
′ + 𝑃𝑃𝐵𝐵𝐵𝐵log 𝑃𝑃𝐵𝐵𝐵𝐵

𝑃𝑃𝐵𝐵𝐵𝐵
′ �T

𝑡𝑡=1 .   (10) 

The activation function used in the EV model is the hyperbolic tangent, except that the output layer in 
the decoder ℎ(∙) is the softmax (Goodfellow et al., 2016), the cosine distance is used to calculate the 

 

 
 

Figure 1: Illustrations of the essence vector model. 

 



attention coefficients, and the Adam (Kingma and Ba, 2015) is employed to solve the optimization 
problem. At test time, a given paragraph can obtain its own representation by being passed through the 
paragraph encoder (i.e., 𝑓𝑓(∙)). Figure 1 illustrates the architecture of the EV model. 

3.2 The Denoising Essence Vector Model  

Next, we turn to focus on learning representations for spoken paragraphs. In addition to the stop/function 
words and modifiers, the additional challenge facing spoken paragraph learning is the imperfect 
transcripts generated by automatic speech recognition. Therefore, our goal is not only to inherit the 
advantages of the EV model, but also to infer a more robust representation for a given spoken paragraph 
that withstands the errors of imperfect transcripts. The core idea is that the learned representation of a 
spoken paragraph should be able to interpret its corresponding manual transcript paragraph as much as 
possible. With the intention of equipping the ability that can distill the true information from a given 
spoken paragraph, we further incorporate a multi-task learning strategy in the EV modeling framework. 
To put the idea into a reality, an additional module, a denoising decoder 𝑠𝑠(∙), is introduced on top of the 
EV model. More formally, given a set of training spoken paragraphs {𝐷𝐷1,⋯ ,𝐷𝐷𝑡𝑡,⋯ ,𝐷𝐷T} and their 
manual transcripts {𝐷𝐷1𝑚𝑚,⋯ ,𝐷𝐷𝑡𝑡𝑚𝑚,⋯ ,𝐷𝐷T𝑚𝑚}, the EV model can first be constructed by referring to each pair 
of 𝐷𝐷𝑡𝑡 and the general background information (cf. Section 3.1). Since we target at making the learned 
paragraph representation 𝑣𝑣𝐷𝐷𝑡𝑡  contain the true information of 𝐷𝐷𝑡𝑡𝑚𝑚 , we assume that the weighted 
combination of 𝑣𝑣𝐷𝐷𝑡𝑡 and 𝑣𝑣𝐵𝐵𝐵𝐵  can also be well mapped back to 𝑃𝑃𝐷𝐷𝑡𝑡𝑚𝑚 by the decoder 𝑠𝑠(∙): 

𝑠𝑠�𝛼𝛼𝐷𝐷𝑡𝑡 ∙ 𝑣𝑣𝐷𝐷𝑡𝑡 + �1 − 𝛼𝛼𝐷𝐷𝑡𝑡� ∙ 𝑣𝑣𝐵𝐵𝐵𝐵� = 𝑃𝑃𝐷𝐷𝑡𝑡𝑚𝑚
′ ,   (11) 

where 𝑠𝑠(∙) is a fully connected neural network with parameter 𝜃𝜃𝑠𝑠. The activation function used in 𝑠𝑠(∙) 
is the hyperbolic tangent, except that the last layer is the softmax. We will henceforth term this extended 
unsupervised paragraph embedding method the denoising essence vector (D-EV) model. The training 
objective of the D-EV model is to minimize the following total KL-divergence measure: 

min
𝜃𝜃𝑓𝑓,𝜃𝜃𝑔𝑔,𝜃𝜃ℎ,𝜃𝜃𝑠𝑠

∑ �𝑃𝑃𝐷𝐷𝑡𝑡log
𝑃𝑃𝐷𝐷𝑡𝑡
𝑃𝑃𝐷𝐷𝑡𝑡
′ + 𝑃𝑃𝐷𝐷𝑡𝑡𝑚𝑚log

𝑃𝑃𝐷𝐷𝑡𝑡𝑚𝑚

𝑃𝑃𝐷𝐷𝑡𝑡𝑚𝑚
′ + 𝑃𝑃𝐵𝐵𝐵𝐵log 𝑃𝑃𝐵𝐵𝐵𝐵

𝑃𝑃𝐵𝐵𝐵𝐵
′ �T

𝑡𝑡=1 . (12) 

Figure 2 illustrates the architecture of the proposed D-EV model. 

  

 
 

Figure 2: Illustrations of the denoising essence vector model. 

 



4 Experimental Setup & Results 

4.1 Experiments on the EV Model for Sentiment Analysis 

At the outset, we evaluate the proposed EV model on the sentiment polarity classification task. Four 
widely-used benchmark multi-domain sentiment datasets are used in this study1 (Blitzer et al., 2007). 
They are product reviews taken from Amazon.com in four different domains: Books, DVD, Electronics, 
and Kitchen. Each of the reviews, ranging from Star-1 to Star-5, were rated by a customer. The reviews 
with Star-1 and Star-2 were labelled as Negative, and those with Star-4 and Star-5 were labeled as 
Positive. Each of the four datasets contains 1,000 positive reviews, 1,000 negative reviews, and a number 
of unlabeled reviews. Labeled reviews in each domain are randomly split up into ten folds (with nine 
folds serving as the training set and the remaining one as the test set). All of the following results are 
reported in terms of an average accuracy of ten-fold cross validation. The linear kernel SVM (Chang 
and Lin, 2011) is used as our classifier and all of the parameters are set to the default values. All of the 
unlabeled reviews are used to obtain the general background information and train the EV model. 

In this set of experiments, we first compare the EV model with PCA (Bengio et al., 2013), which is a 
standard dimension reduction method. It is worthy to note that PCA is a variation of an auto-encoder 
(Bengio et al., 2013) method; thus it can be treated as our baseline system. All of the experimental results 
are listed in Table 1. As expected, the proposed EV model consistently outperforms PCA in every 
domain by a significant margin. The reason might be that PCA maps data to a low-dimensional space 
by maximizing the statistical variance of data, but the implicitly denoising strategy and the linear 
formulation limit its model capability. On the contrary, the proposed EV model is designed to distill the 
most useful information from a given paragraph and exclude the general background information 
explicitly; it thus can deduce a more informative and discriminative representation.  

Next, we make a step forward to compare the EV model with other baseline systems based on literal 
bag-of-words features, including unigrams and bigrams. The results are also shown in Table 1. Several 
observations can be drawn from the results. First, although bigram features (denotes as Bigrams in Table 
1) are believed to be more discriminative than unigram features (denotes as Unigrams in Table 1), the 
results indicate that Unigrams outperform Bigrams in most cases. The reason might be probably due to 
the curse of dimensionality problem. Second, as expected, the combination of unigram and bigram 
features (denotes as Unigrams+Bigrams) achieves better results than using Unigrams and Bigrams in 
isolation for all cases. Third, both the proposed EV model and PCA can make further performance gains 
when paired with Unigrams, Bigrams, and their combination. Fourth, the proposed EV model 
demonstrates its ability in the sentiment classification task since it consistently outperforms PCA for all 
cases in the experiments. 

                                                 
1 https://www.cs.jhu.edu/~mdredze/datasets/sentiment/ 

 Books DVD Electronics Kitchen Average 
PCA 0.762 0.769 0.807 0.824 0.790 
EV 0.796 0.812 0.839 0.858 0.826 

Unigrams 0.797 0.805 0.837 0.860 0.824 
Bigrams 0.798 0.779 0.819 0.857 0.813 

Unigrams+Bigrams 0.810 0.821 0.852 0.884 0.842 
Unigrams+PCA 0.799 0.812 0.835 0.860 0.826 
Unigrams+EV 0.806 0.813 0.833 0.871 0.831 

Unigrams+Bigrams+PCA 0.810 0.821 0.852 0.884 0.842 
Unigrams+Bigrams+EV 0.838 0.824 0.862 0.890 0.853 

 
Table 1: Experimental results on sentiment analysis achieved by the proposed EV model and other baseline 

features, including unigrams, bigrams, PCA, and the combinations. 



4.2 Experiments on the EV Model for Multi-Document Summarization 

We further investigate the capability of the EV model on an extractive multi-document summarization 
task. In this study, we carry out the experiments with the DUC 2001, 2002, and 2004 datasets2. All the 
documents were compiled from newswires, and were grouped into various thematic clusters. The 
summary length was limited to 100 words for both DUC 2001 and DUC 2002, and 665 bytes for DUC 
2004. The general background information was inferred from the LDC Gigaword corpus3 (including 
Associated Press Worldstream (AP), New York Times Newswire Service (NYT), and Xinhua News 
Agency (XIN)). The most common belief in the document summarization community is that relevance 
and redundancy are two key factors for generating a concise summary. In this paper, we leverage a 
density peaks clustering summarization method (Rodriguez and Laio, 2014; Zhang et al., 2015), which 
can take both relevance and redundancy information into account at the same time. That is, a concise 
summary for a given document set can be automatically generated through a one-pass process instead 
of an iterative process. Recently, the summarization method has proven its empirical effectiveness 
(Zhang et al., 2015). For evaluation, we adopt the widely-used automatic evaluation metric ROUGE 
(Lin, 2003), and take ROUGE-1 and ROUGE-2 (in F-scores) as the main measures following Cao et al., 
(2015). 

We compare the proposed EV model with two baseline systems (the vector space model (VSM) 
(Gong and Liu, 2001) and the LexRank (Erkan and Radev, 2004) method), the best peer systems 
(including Peer T, Peer 26, and Peer 65) participating DUC evaluations, and the recently elaborated 
DNN-based systems (including CNN and PriorSum) (Cao et al., 2015). Owing to the space limitation, 
we omit the detailed introduction to these summarization methods; interested readers may refer to Penn 
and Zhu (2008), Liu and Hakkani-Tur (2011), Nenkova and McKeown (2011), and Cao et al., (2015) 
for more in-depth elaboration. It is worthy to note that the proposed EV model, the two baseline systems, 
and the best peer systems are unsupervised methods, while the DNN-based systems are supervised ones. 
The experimental results are listed in Table 2. Several interesting observations can be concluded from 
the results. First, the proposed EV model outperforms VSM by a large margin in all cases, and performs 
comparably to other well-designed unsupervised summarization methods. Second, both LexRank and 
EV (with the density peaks clustering method) take pairwise information into account globally, so their 
results are almost the same. Third, although the proposed EV model is an unsupervised method and is 
                                                 
2 http://www-nlpir.nist.gov/projects/duc/ 
3 https://catalog.ldc.upenn.edu/LDC2011T07 

  ROUGE-1 ROUGE-2 

2001 

Peer T 0.330 0.079 
VSM 0.286 0.049 
LexRank 0.334 0.061 
EV 0.332 0.059 
CNN 0.352 0.076 
PriorSum 0.360 0.079 

2002 

Peer 26 0.352 0.076 
VSM 0.304 0.056 
LexRank 0.353 0.075 
EV 0.354 0.074 
CNN 0.357 0.087 
PriorSum 0.366 0.090 

2004 

Peer 65 0.379 0.092 
VSM 0.337 0.072 
LexRank 0.379 0.089 
EV 0.376 0.084 
CNN 0.379 0.099 
PriorSum 0.389 0.101 

 
Table 2: Experimental results of multi-document summarization achieved by the proposed EV model and 

several state-of-the-art summarization methods. 



not specifically designed toward summarization, it almost achieves the same performance level as the 
complicated DNN-based supervised methods (i.e., CNN and PriorSum), which confirms the power of 
the EV model again. 

4.3 Experiments on the D-EV Model for Spoken Document Summarization 

In order to assess the utility of the proposed D-EV model, we perform a series of experiments on the 
extractive spoken document summarization task. All of experiments are conducted on a Mandarin 
benchmark broadcast new corpus4 (Wang et al., 2005). The MATBN dataset is publicly available and 
has been widely used to evaluate several NLP-related tasks, including speech recognition (Chien, 2015), 
information retrieval (Huang and Wu, 2007) and summarization (Liu et al., 2015). As such, we follow 
the experimental setting used in previous studies for speech summarization in the literature. The 
vocabulary size is about 72 thousand words. The average word error rate of the automatic transcripts of 
these broadcast news documents is about 38%. The reference summaries were generated by ranking the 
sentences in the manual transcript of a broadcast news document by importance without assigning a 
score to each sentence. Each document has three reference summaries annotated by three subjects. For 
the assessment of summarization performance, we adopt the commonly-used ROUGE metric (Lin, 
2003), and take ROUGE-1, ROUGE-2 and ROUGE-L (in F-scores) as the main measures. The 
summarization ratio is set to 10%. An external set of about 100,000 text news documents, which was 
assembled by the Central News Agency (CNA) during the same period as the broadcast news documents 
to be summarized (extracted from the Chinese Gigaword Corpus5 released by LDC), is used to obtain 
the background representation. 

To begin with, we compare the performance levels of the proposed EV and D-EV models and two 
classic paragraph embedding methods (i.e., DM and DBOW) for spoken document summarization. All 
the models are paired with the density peaks clustering summarization method. The results are shown 
in Table 3, from which several observations can be drawn. First, DBOW outperforms DM in our 
experiments, though DBOW is a simplified version of DM. Second, the proposed EV model outperforms 
DM and DBOW by a large margin, as expected. The results confirm that EV can modulate the impact 
of those stop or function words when inferring representations for paragraphs. That is to say, the 
proposed paragraph embedding method EV can indeed distill the most important aspects of a given 
paragraph and meanwhile suppress the impact of the general background information for producing a 
more discriminative paragraph representation. Thus, the relevance degree between any pair of sentence 
and document representations can be estimated more accurately. Third, the D-EV model consistently 
outperforms other paragraph embedding methods, including our own EV model. The outcome reveals 
that, although EV can achieve better performance than other classic paragraph embedding methods, the 
recognition errors inevitably make the inferred representations deviate from the original semantic 
content of spoken paragraphs. Accordingly, the results signal that the D-EV model can complement the 

                                                 
4 http://slam.iis.sinica.edu.tw/corpus/MATBN-corpus.htm 
5 https://catalog.ldc.upenn.edu/LDC2011T13 

 ROUGE-1 ROUGE-2 ROUGE-L 
DM 0.387 0.242 0.337 

DBOW 0.396 0.250 0.344 
EV 0.414 0.264 0.361 

D-EV 0.414 0.278 0.374 
MRW 0.332 0.191 0.291 

LexRank 0.305 0.146 0.254 
SM 0.332 0.204 0.303 
ILP 0.348 0.209 0.306 

 
Table 3: Experimental results of spoken document summarization achieved by the proposed EV and D-EV 

models and several state-of-the-art summarization methods. 



deficiency of the EV model in spoken document summarization; we thus believe that it is more suitable 
for use in spoken content processing. 

In the last set of experiments, we compare the results mentioned above with that of several well-
practiced, state-of-the-art unsupervised summarization methods, including the graph-based methods (i.e., 
the Markov random walk (MRW) method (Wan and Yang, 2008) and the LexRank method (Erkan and 
Radev, 2004)) and the combinatorial optimization methods (i.e., the submodularity-based (SM) method 
(Lin and Bilmes, 2010) and the integer linear programming (ILP) method (Riedhammer et al., 2010)). 
Among them, the ability of reducing redundant information has been aptly incorporated into the 
submodular-based method and the ILP method. Interested readers may refer to Penn and Zhu (2008), 
Liu and Hakkani-Tur (2011), and Nenkova and McKeown (2011) for comprehensive reviews and new 
insights into the major methods that have been developed and applied with good success to a wide range 
of spoken document summarization tasks. The results are also listed in Table 3. Several noteworthy 
observations can be drawn from the results of these methods. First, although the two graph-based 
methods (i.e., MRW and LexRank) have similar motivations, MRW outperforms LexRank by a large 
margin. Second, although both SM and ILP have the ability to reduce redundant information when 
selecting indicative sentences to form a summary for a given document, ILP consistently outperforms 
SM. The reason might be that ILP performs a global optimization process to select representative 
sentences, whereas SM chooses sentences with a recursive strategy. Comparing the results of these 
strong baseline systems to that of the paragraph embedding methods (including DM, DBOW, EV, and 
D-EV) paired with the density peaks clustering summarization method, it is clear that all the paragraph 
embedding methods are better than the baseline methods. The results corroborate that, instead of only 
considering literal term matching for determining the similarity degree between a pair of sentence and 
document, incorporating concept (semantic) matching into the similarity measure leads to better 
performance. In particular, the proposed D-EV model is the most robust among all the methods 
compared in the paper, which supports the important notion of the proposed “learning to distilling” 
framework. We also want to note that the proposed methods (i.e., EV and D-EV) can also be 
incorporated with the graph-based methods and the combinatorial optimization methods. We leave this 
exploration for future work. 

5 Conclusions 

In this paper, we have proposed a novel paragraph embedding framework, which is embodied with the 
essence vector (EV) model and the denoising essence vector (D-EV) model, and made a step forward to 
evaluate the proposed methods on benchmark sentiment classification and document summarization 
tasks. Experimental results demonstrate that the proposed framework is the most robust among all the 
methods (including several well-practiced or/and state-of-the-art methods) compared in the paper, 
thereby indicating the potential of the new paragraph embedding framework. For future work, we will 
first focus on pairing the (denoising) essence vector model with other summarization methods. 
Moreover, we will explore other effective ways to integrate extra cues, such as speaker identities and 
relevance information, into the proposed framework. Furthermore, we also plan to extend the 
applications of the proposed framework to information retrieval and language modeling, among others. 
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