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ABSTRACT 
Because unprecedented volumes of multimedia data associated with 
spoken documents have been made available to the public, spoken 
document retrieval (SDR) has become an important research area in 
the past decades. Recently, representation learning has emerged as 
an active research topic in many machine learning applications 
owing largely to its excellent performance. In the context of natural 
language processing, the pioneering work can date back to the word 
embedding methods. However, learning of paragraph (or sentence 
and document) representations is more reasonable and suitable for 
some tasks, such as information retrieval and document 
summarization. Nevertheless, as far as we are aware, there is 
relatively less work focusing on launching paragraph embedding 
methods into SDR. Motivated by these observations, this paper 
proposes a novel paragraph embedding method, named the locality-
preserving essence vector (LPEV) model. LPEV is designed with 
consideration to two aspects. First, the model aims at not only 
distilling the most representative information from a paragraph but 
also getting rid of the general background information. Second, 
inspired by the local invariance perspective, which is a celebrated 
principle used in manifold learning techniques, LPEV also manages 
to preserve semantic locality in the learned low-dimensional 
embedding space for producing more informative and 
discriminative vector representations of paragraphs. On top of the 
proposed framework, a series of empirical SDR experiments 
conducted on the TDT-2 (Topic Detection and Tracking) collection 
demonstrate the good efficacy of our SDR methods as compared to 
existing strong baselines. 

Index Terms— Representation, spoken document retrieval, 
locality, distill 

1. INTRODUCTION 
Over the past two decades, spoken document retrieval (SDR) [1, 2] 
has become an interesting research subject in the speech processing 
community due to large volumes of multimedia data associated with 
spoken documents made available to the public. A significant 
amount of research effort has been devoted towards developing 
robust indexing (or representation) techniques [3-6] so as to extract 
probable spoken terms or phrases inherent in a spoken document that 
could match the query words or phrases literally. More recently, 
SDR research has also revolved around the notion of relevance of a 
spoken document in response to a query. It is generally agreed that 
a document is relevant to a query if it can address the stated 
information need of the query, but not because it happens to contain 
all the words in the query [7]. In the past, the vector space model 
(VSM) [7, 8], the Okapi BM25 model [7, 9], and the unigram 
language model [10, 11] are well-representative ones for many 
information retrieval (IR) and SDR applications. Their efficient and 

effective abilities have been validated by many researchers and 
practitioners for a wide variety of IR-related tasks. Yet, the later 
effort for further extending these methods to capture context 
dependence based on n-grams of various orders or some grammar 
structures mostly lead to mild gains or even spoiled results [10, 11]. 
The reasons for this phenomenon are twofold. First, this is due to the 
fact that these methods might suffer from the problem of word usage 
diversity, which sometimes degrades the retrieval performance 
severely as a given query and its relevant documents may use quite 
different sets of words (e.g. synonyms). Second, lots of polysemy 
words have different meanings in different contexts. As such, 
merely matching words occurring in the original query and a 
document may not capture the semantic intent of the query. 

On a separate front, representation learning has gained significant 
interest of research and experimentation in many machine learning 
applications because of its amazing performance. When it comes to 
the field of natural language processing (NLP), word embedding 
methods can be viewed as pioneering studies [12-14]. A common 
thread of leveraging word embedding methods to NLP-related tasks 
is to represent a given paragraph (or sentence and document) by 
simply taking an average over the word embeddings corresponding 
to the words occurring in the paragraph. By doing so, this thread of 
methods has enjoyed substantial success in many tasks [15-17]. 
Although the empirical effectiveness of word embedding methods 
has been proven recently, the composite representation for a 
paragraph (or sentence and document) is a bit queer. Theoretically, 
paragraph-based representation learning is expected to be more 
suitable for such tasks as information retrieval, sentiment analysis 
and document summarization [18-21], to name but a few. However, 
to the best of our knowledge, paragraph embedding has been largely 
under-explored on these tasks.  

Classic paragraph embedding methods infer the representation of 
a given paragraph by considering all of the words occurring in the 
paragraph. Consequently, those stop or function words that occur 
frequently in the paragraph may mislead the embedding learning 
process to produce a misty paragraph representation. In other words, 
the frequent words or modifiers may overshadow the indicative 
words, thereby drifting the main theme of the semantic content in 
the paragraph. As a result, the learned representation for the 
paragraph might be undesired. Moreover, it is obvious that classic 
paragraph embedding methods only take surface statistics (term, 
word, or character) into account. By doing so, the deduced 
representation might suffer from the problem of word usage 
diversity and could not accurately embed the semantic relationship 
among paragraphs. In order to address these shortcomings, we 
propose a novel locality-preserving essence vector (LPEV) model, 
which aims at not only distilling the most representative information 
from a paragraph but also preserving semantic locality to produce a 
more informative and discriminative low-dimensional vector 
representation for a given paragraph. 



2. RELATED WORK 
In contrast to the large body of work on developing various word 
embedding methods, there are relatively few studies concentrating 
on learning paragraph representations [18-21]. Representative 
methods include the distributed memory model [18] and the 
distributed bag-of-words model [18, 19]. 
2.1. The Distributed Memory Model 
The distributed memory (DM) model is inspired and hybridized 
from the traditional feed-forward neural network language model 
(NNLM) [12] and the recently proposed word embedding methods 
[13]. Formally, given a sequence of words, {𝑤𝑤1, 𝑤𝑤2,⋯ ,𝑤𝑤𝐿𝐿}, the 
objective function of feed-forward NNLM is to maximize the total 
log-likelihood, 

∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1)𝐿𝐿
𝑙𝑙=1 .    (1) 

Obviously, NNLM is designed to predict the probability of the 
future word, given its 𝑛𝑛 − 1 previous words. The input of NNLM is 
a high-dimensional vector, which is constructed by concatenating 
(or taking an average over) the word representations of all words 
within the context (i.e., 𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1), and the output can be 
viewed as that of a multi-class classifier. By doing so, the 𝑛𝑛-gram 
probability can be calculated through a softmax function at the 
output layer. 

Based on the NNLM, the idea underlying the DM model is that a 
given paragraph also contributes to the prediction of the next word, 
given its previous words in the paragraph [18]. To make the idea 
work, the training objective function is defined by 

∑ ∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝑤𝑤𝑙𝑙−𝑛𝑛+1,⋯ ,𝑤𝑤𝑙𝑙−1, 𝐷𝐷𝑡𝑡)
𝐿𝐿𝑡𝑡
𝑙𝑙=1

T
𝑡𝑡=1 ,   (2) 

where T denotes the number of paragraphs in the training corpus, 𝐷𝐷𝑡𝑡 
denotes the 𝑡𝑡-th paragraph, and 𝐿𝐿𝑡𝑡  is the length of 𝐷𝐷𝑡𝑡 . Since the 
paragraph representation (i.e., 𝐷𝐷𝑡𝑡 ) acts as a memory unit that 
remembers what is missing from the current context, the model is 
named the distributed memory model. 
2.2. The Distributed Bag-of-Words Model 
Opposite to the DM model, a simplified version is to only leverage 
the paragraph representation to predict all of the words occurring in 
the paragraph [18, 19]. The training objective function can then be 
defined by maximizing the predictive probabilities all over the 
words occurring in the paragraph: 

∑ ∑ log𝑃𝑃(𝑤𝑤𝑙𝑙|𝐷𝐷𝑡𝑡)
𝐿𝐿𝑡𝑡
𝑙𝑙=1

T
𝑡𝑡=1 .    (3) 

Since the simplified model ignores the contextual words at the input 
layer, the model is named the distributed bag-of-words (DBOW) 
model. In addition to being conceptually simple, the DBOW model 
only needs to store the softmax weights, whereas the DM model 
stores both softmax weights and word vectors [18]. 

3. THE LOCALITY-PRESERVING ESSENCE 
VECTOR MODELING FRAMEWORK 

Classic paragraph embedding methods infer the representation for a 
given paragraph by considering all of the words occurring in the 
paragraph. However, we all agree upon that the number of content 
words in a paragraph is usually less than that of stop or function 
words. Namely, those stop or function words may misguide the 
representation learning process to produce an ambiguous paragraph 
representation. Consequently, the associated performance gains will 
be limited. Another flaw of these methods is that they only take 
surface statistics (such as term, word, or character) into account 
when inferring the representation for a given paragraph. 
Consequently, the deduced representations might suffer from the 

problem of word usage diversity and could not accurately embed the 
semantic relationship among paragraphs so as to degrade the 
associated performance. In order to remedy the aforementioned 
flaws, we hence strive to develop a novel paragraph embedding 
method with two orthogonal objectives: 1) it aims at not only 
distilling the most representative information from a given 
paragraph but also getting rid of the general background information 
(probably caused by stop or function words); 2) it also targets at 
preserving semantic locality in the learned low-dimensional 
embedding space, so as to deduce an informative and discriminative 
low-dimensional vector representation for a given paragraph. More 
formally, the proposed method is divided into two major 
mechanisms: an essence vector (EV) model and a locality preserving 
(LP) model. 

3.1. The Essence Vector Model 
In order to realize the first idea, we begin with an assumption that 
each paragraph can be assembled by two components: the paragraph 
specific information and the general background information [22]. 
The assumption also holds in the low-dimensional representation 
space. Accordingly, the essence vector (EV) model consists of three 
modules: a paragraph encoder 𝑓𝑓(∙), which can automatically infer 
the desired low-dimensional vector representation by considering 
only the paragraph-specific information; a background encoder  
𝑔𝑔(∙), which is used to map the general background information into 
a low-dimensional representation; and a decoder ℎ(∙)  that can 
reconstruct the original paragraph by combining the paragraph 
representation and the background representation. 

Formally, given a set of training paragraphs {𝐷𝐷1,⋯ , 𝐷𝐷𝑡𝑡,⋯ , 𝐷𝐷T}, 
in order to modulate the effect of different lengths of paragraphs, 
each paragraph is first represented by a bag-of-words high-
dimensional probabilistic vector 𝑃𝑃𝐷𝐷𝑡𝑡 ∈ ℝ

|𝑉𝑉| , where each element 
corresponds to the frequency count of a word/term in the vocabulary 
𝑉𝑉 , and the vector is normalized to unit-sum. Then, a paragraph 
encoder is applied to extract the most specific information from the 
paragraph and encapsulate it into a low-dimensional vector 
representation: 

𝑓𝑓�𝑃𝑃𝐷𝐷𝑡𝑡� = 𝑣𝑣𝐷𝐷𝑡𝑡 .     (4) 

At the same time, the general background is also represented by a 
high-dimensional probabilistic vector with normalized word/term 
frequency counts, 𝑃𝑃𝐵𝐵𝐵𝐵 ∈ ℝ|𝑉𝑉|, and a background encoder is used to 
compress the general background information into a low-
dimensional vector representation: 

𝑔𝑔(𝑃𝑃𝐵𝐵𝐵𝐵) = 𝑣𝑣𝐵𝐵𝐵𝐵 .     (5) 

Both 𝑓𝑓(∙) and 𝑔𝑔(∙) are fully connected multilayer neural networks 
with different model parameters 𝜃𝜃𝑓𝑓 and 𝜃𝜃𝑔𝑔, respectively. It is worthy 
to note that the model structures of 𝑓𝑓(∙) and 𝑔𝑔(∙) can be either the 
same or different. Since each learned paragraph representation 𝑣𝑣𝐷𝐷𝑡𝑡 
only contains the most informative/discriminative part of 𝑃𝑃𝐷𝐷𝑡𝑡 , we 
assume that the weighted combination of 𝑣𝑣𝐷𝐷𝑡𝑡  and 𝑣𝑣𝐵𝐵𝐵𝐵  can be 
mapped back to 𝑃𝑃𝐷𝐷𝑡𝑡 by a decoder ℎ(∙): 

ℎ�𝛼𝛼𝐷𝐷𝑡𝑡 ∙ 𝑣𝑣𝐷𝐷𝑡𝑡 + �1 − 𝛼𝛼𝐷𝐷𝑡𝑡� ∙ 𝑣𝑣𝐵𝐵𝐵𝐵� = 𝑃𝑃𝐷𝐷𝑡𝑡
′ ,   (6) 

where ℎ(∙) is also a fully connected multilayer neural network with 
parameter 𝜃𝜃ℎ, and the interpolation weight can be determined by an 
attention function 𝑞𝑞(∙,∙): 

𝛼𝛼𝐷𝐷𝑡𝑡 = 𝑞𝑞(𝑣𝑣𝐷𝐷𝑡𝑡, 𝑣𝑣𝐵𝐵𝐵𝐵).     (7) 

The attention function can be realized by a trainable network or a 
simple linear/non-linear function. Further, to ensure the quality of 



the learned background representation 𝑣𝑣𝐵𝐵𝐵𝐵 , it should also be able to 
be mapped back to 𝑃𝑃𝐵𝐵𝐵𝐵 by ℎ(∙): 

ℎ(𝑣𝑣𝐵𝐵𝐵𝐵) = 𝑃𝑃𝐵𝐵𝐵𝐵′ .     (8) 

In a nutshell, the objective function of the EV model is to minimize 
the total KL-divergence measure: 

min
𝜃𝜃𝑓𝑓,𝜃𝜃𝑔𝑔,𝜃𝜃ℎ

∑ �𝑃𝑃𝐷𝐷𝑡𝑡log 𝑃𝑃𝐷𝐷𝑡𝑡
𝑃𝑃𝐷𝐷𝑡𝑡
′ + 𝑃𝑃𝐵𝐵𝐵𝐵log 𝑃𝑃𝐵𝐵𝐵𝐵

𝑃𝑃𝐵𝐵𝐵𝐵
′ �𝑇𝑇

𝑡𝑡=1 .   (9) 

Fig. 1(a) illustrates the architecture of the EV model employed in 
the proposed paragraph embedding method. 
3.2. The Locality Preserving Model 
For the second modeling concept, similar to the EV model, we begin 
with a paragraph encoder 𝑓𝑓(∙)  and a decoder ℎ(∙)  that can 
reconstruct the original paragraph by referring to the deduced 
paragraph representation. Again, both 𝑓𝑓(∙)  and ℎ(∙)  are fully 
connected multilayer neural networks with different model 
parameters 𝜃𝜃𝑓𝑓  and 𝜃𝜃ℎ , respectively. 𝑣𝑣𝐷𝐷𝑖𝑖  is the learned paragraph 
embedding for paragraph 𝐷𝐷𝑖𝑖 . Next, from the local invariance 
perspective [23], which is a well-established principle adopted in 
manifold learning techniques [23-25], our idea is that the “nearby” 
paragraphs are likely to have similar embeddings in the learned low-
dimensional space. More formally, at each training step, we first 
randomly select a set of nearby paragraphs, denoted by 𝐃𝐃+, and a 
set of paragraphs that occur far apart as negative examples, denoted 
by 𝐃𝐃−. Subsequently, for each pair of nearby paragraphs 𝐷𝐷𝑖𝑖 ∈ 𝐃𝐃+ 
and 𝐷𝐷𝑗𝑗 ∈ 𝐃𝐃+, a likelihood function can be defined to indicate how 
likely the two paragraphs are adjacent to each other: 

𝑃𝑃′(𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗) = 𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝐷𝐷𝑖𝑖,𝑣𝑣𝐷𝐷𝑗𝑗)

∑ ∑ 𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣𝐷𝐷𝑖𝑖′

,𝑣𝑣𝐷𝐷𝑗𝑗′
)

𝐷𝐷𝑗𝑗′∈�𝐃𝐃+⋃𝐃𝐃−�
𝑠𝑠.𝑡𝑡.  𝐷𝐷𝑖𝑖′≠𝐷𝐷𝑗𝑗′

𝐷𝐷𝑖𝑖′∈𝐃𝐃
+

.   (10) 

It is worthy to note that we only ensure that any pairs of paragraphs 
in 𝐃𝐃+ are nearby to each other and that a paragraph in 𝐃𝐃− should be 
located far away from a paragraph in 𝐃𝐃+, but we cannot guarantee 
the relationship (i.e., being neighbors or not) between each pair of 
paragraphs in 𝐃𝐃−. Therefore, we exclude the pairs of paragraphs in 
𝐃𝐃−  in the denominator. Another notable issue is that we do not 
consider the order in constructing the pair of paragraphs, i.e., 
(𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗 )=(𝐷𝐷𝑗𝑗, 𝐷𝐷𝑖𝑖), thus they will be counted only once. Moreover, 
“nearby” can be determined by a variety of characteristics pertaining 
to the associated tasks. In the context of NLP, the semantic distance 

is a reasonable and intuitive manner. Detailed implementations and 
experimentations will be described in Section 4. To recap, given a 
set of training instances {(𝐃𝐃1+,𝐃𝐃1−),⋯ , (𝐃𝐃𝑡𝑡

+, 𝐃𝐃𝑡𝑡
−),⋯ , (𝐃𝐃𝑇𝑇

+, 𝐃𝐃𝑇𝑇
−)}, the 

objective function of the locality preserving (LP) model is to 
minimize the total KL-divergence measure: 

min
𝜃𝜃𝑓𝑓,𝜃𝜃ℎ

∑ ��∑ ∑ 𝑃𝑃�𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗�log 𝑃𝑃�𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗�

𝑃𝑃′�𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗�𝐷𝐷𝑗𝑗∈�𝐃𝐃𝑡𝑡
+⋃𝐃𝐃𝑡𝑡

−�
𝑠𝑠.𝑡𝑡.  𝐷𝐷𝑖𝑖≠𝐷𝐷𝑗𝑗

𝐷𝐷𝑖𝑖∈𝐃𝐃𝑡𝑡
+ �𝑇𝑇

𝑡𝑡=1

                                          + �∑ 𝑃𝑃𝐷𝐷𝑖𝑖log
𝑃𝑃𝐷𝐷𝑖𝑖
𝑃𝑃𝐷𝐷𝑖𝑖
′𝐷𝐷𝑖𝑖∈�𝐃𝐃𝑡𝑡

+⋃𝐃𝐃𝑡𝑡
−� ��

, (11) 

where 𝑃𝑃(𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗) is the desired distribution: 

𝑃𝑃�𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗� = �
1

∁2
|𝐃𝐃+|    , 𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖 ∈ 𝐃𝐃+, 𝐷𝐷𝑗𝑗 ∈ 𝐃𝐃+, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝑖𝑖 ≠ 𝐷𝐷𝑗𝑗  

0      , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                             
, (12) 

where |𝐃𝐃+|  denotes the number of paragraphs in 𝐃𝐃+ . In 
implementation, the cosine similarities between paragraphs can be 
calculated first, and then the similarity scores are concatenated to a 
vector. After that, a softmax layer is stacked upon the vector (i.e., 
the concatenated vector is treated as an input) to obtain the final 
predicted distribution. Fig. 1(b) illustrates an example, where 
paragraphs 1 and 2 belong to 𝐃𝐃−, and paragraphs 3 and 4 belong to 
𝐃𝐃+. In this example, the desired distribution is (0,0,0,0,1). 
3.3. The Locality-Preserving Essence Vector Model 
The essence vector model and the locality preserving model can be 
combined as a locality-preserving essence vector (LPEV) model. In 
this way, the resulting paragraph representation not only contains 
the most representative information from the paragraph (done by EV) 
but also preserves important semantic locality information (done by 
LP). To put everything together, given a set of training instances 
{(𝐃𝐃1+, 𝐃𝐃1−),⋯ , (𝐃𝐃𝑡𝑡

+, 𝐃𝐃𝑡𝑡
−),⋯ , (𝐃𝐃𝑇𝑇

+, 𝐃𝐃𝑇𝑇
−)} , LPEV has three sets of 

parameters 𝜃𝜃𝑓𝑓, 𝜃𝜃𝑔𝑔 and 𝜃𝜃ℎ, and the objective function becomes: 

min
𝜃𝜃𝑓𝑓,𝜃𝜃𝑔𝑔,𝜃𝜃ℎ

∑ ��∑ ∑ 𝑃𝑃�𝐷𝐷𝑖𝑖, 𝐷𝐷𝑗𝑗�log 𝑃𝑃�𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗�

𝑃𝑃′�𝐷𝐷𝑖𝑖,𝐷𝐷𝑗𝑗�𝐷𝐷𝑗𝑗∈�𝐃𝐃𝑡𝑡
+⋃𝐃𝐃𝑡𝑡

−�
𝑠𝑠.𝑡𝑡.  𝐷𝐷𝑖𝑖≠𝐷𝐷𝑗𝑗

𝐷𝐷𝑖𝑖∈𝐃𝐃𝑡𝑡
+ �𝑇𝑇

𝑡𝑡=1

                              +∑ �𝑃𝑃𝐷𝐷𝑖𝑖log
𝑃𝑃𝐷𝐷𝑖𝑖
𝑃𝑃𝐷𝐷𝑖𝑖
′ + 𝑃𝑃𝐵𝐵𝐵𝐵log 𝑃𝑃𝐵𝐵𝐵𝐵

𝑃𝑃𝐵𝐵𝐵𝐵
′ �𝐷𝐷𝑖𝑖∈�𝐃𝐃𝑡𝑡

+⋃𝐃𝐃𝑡𝑡
−� �

. (13) 

The activation function used in the proposed models (including EV, 

 
(a)      (b) 
Figure1. Running examples for (a) the essence vector model and (b) the locality preserving model. 
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LP, and LPEV) is the hyperbolic tangent, except that the output 
layers in the decoder ℎ(∙) and LP are the softmax function [26], and 
the Adam [27] is employed to solve the optimization problem. 

4. EXPERIMENTAL SETUP & RESULTS 
4.1. Experimental Setup 
We used the Topic Detection and Tracking collection (TDT-2) [28] 
for our spoken document retrieval experiments. The Mandarin news 
stories from Voice of America news broadcasts were used as the 
spoken documents. All news stories were exhaustively tagged with 
event-based topic labels, which served as the relevance judgments 
for performance evaluation. The average word error rate (WER) 
obtained for the spoken documents is about 35% [29]. The Chinese 
news stories from Xinhua News Agency were used as our test 
queries. More specifically, in the following experiments, we will 
either use a whole news story as a “long query,” or merely extract 
the title field from a news story as a “short query.” The retrieval 
performance is evaluated with the commonly-used non-interpolated 
mean average precision (MAP) [30] metric. 
4.2. Experimental Results 
To begin with, we investigate the utilities of the vector space model 
(VSM) and two classic paragraph embedding methods (i.e., DM and 
DBOW) for SDR. The results are shown in Table 1, where “Text 
Documents” denotes the results obtained based on the manual 
transcripts of spoken documents and “Spoken Documents” denotes 
the results using the speech recognition transcripts that may contain 
recognition errors. Inspection of Table 1 reveals two noteworthy 
points. First, the performance gap between the retrieval using the 
manual transcripts and the recognition transcripts is about 0.05 in 
terms of MAP, such degradation is apparently less pronounced as 
compared to the high WER of spoken documents. Second, both of 
the two celebrated paragraph embedding methods outperform VSM 
in most cases, and DBOW consistently outperforms DM by a large 
margin when using either text documents or spoken documents. The 
results also evidence the success of employing representation 
learning techniques for SDR. 

Next, we evaluate the proposed framework. In different NLP-
related applications, “nearby paragraphs” may have different 
definitions. For (spoken) document retrieval, a reasonable and 
straightforward definition of “nearby paragraphs” refers to 
semantically related paragraphs. In this paper, we explore two ways 
to collect such information for training the LP and LPEV models.  

In the first way, we perform experiments that simulate a scenario 
in which a set of training query exemplars and the corresponding 
query-document relevance information (i.e., the click-through 
information that to some extent reflects users’ relative preferences 
of document relevance) can be utilized. 819 training query 
exemplars with the corresponding query-document relevance 
information are compiled. Based on that, a set of training instances 
is generated by 1) randomly selecting a training query, 2) picking 
two relevant (clicked) documents to the query to be 𝐃𝐃+ , and 3) 
choosing an irrelevant document to the query to form 𝐃𝐃−. Thus, the 
desired distribution is (0,0,1) (cf. Section 3.2 and Fig. 1(b)). The 
results are listed in Table 2. It is obvious that LP outperforms EV in 
all cases, and the hybrid model, LPEV, achieves the best results in 
most cases as expected. One possible reason is that EV only focuses 
on distilling the most representative information from a paragraph 
and getting rid of the general background information, but does not 
leverage the click-through information to benefit the performance 
gains. LPEV outperforms EV and LP because it inherits advantages 
from both models. Comparing Tables 2 and 1, we can see all the new 
paragraph embedding methods outperform the baseline methods. 

In the second way, we evaluate LP and LPEV under the condition 
that query-document relevance information of the training query 

exemplars is not readily available. A natural solution is to conduct a 
run of retrieval and take the top-ranked documents in response to 
each training query exemplar as the pseudo-relevant documents of 
the query for training the models. Such strategy is known as the 
pseudo-relevance feedback process [31]. In our experiments, the top 
3 retrieved documents for each training query are treated as relevant 
documents. Thereupon, a set of training instances is generated in the 
same way as mentioned in the previous set of experiment. The 
results are listed in Table 3. There are some interesting observations. 
First, LPEV can still outperform EV and LP in the text document 
case as expected, while the superiority is not as obvious in the case 
of using spoken documents. Second, when compared to Table 2, the 
results signal that their associated performance heavily relies on the 
information used in model training. Third, although all of the models 
compared in Table 3 outperform VSM and DM, they only achieve 
comparable results with DBOW (cf. Table 1). One possible reason 
might be that the pseudo-relevant documents are obtained by using 
the unigram language model [11] method, which might not offer 
sufficient/suitable semantic locality information. 

5. CONCLUSIONS 
In this paper, we have proposed a novel paragraph embedding 
framework, which is embodied with the essence vector (EV) model, 
the locality preserving (LP) model, and the locality-preserving 
essence vector (LPEV) model. We also made a step forward to 
evaluate these models on a representative SDR task. Experimental 
results demonstrate that the proposed framework is the most robust 
in relation to the strong baselines compared in the paper, thereby 
indicating the potential of the new paragraph embedding framework. 
For future work, we will first focus on pairing the proposed 
framework with more other state-of-the-art retrieval methods. 
Moreover, we will explore other effective ways to integrate extra 
cues, such as syntactic information, into the proposed framework. 
Furthermore, we also plan to extend the applications to language 
modeling and among others. 
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Table 1. Retrieval results achieved by baseline systems for both 
short and long queries. 

 Text Documents Spoken Documents 
 Long Short Long Short 

VSM 0.548 0.338 0.484 0.273 
DM 0.558 0.344 0.484 0.302 

DBOW 0.579 0.362 0.540 0.345 

Table 2. Retrieval results achieved by the proposed EV, LP, and 
LPEV models for both short and long queries with click-through 

information. 
 Text Documents Spoken Documents 

Long Short Long Short 
EV 0.571 0.382 0.518 0.364 
LP 0.620 0.410 0.567 0.381 

LPEV 0.684 0.418 0.556 0.390 

Table 3. Retrieval results achieved by the proposed EV, LP, and 
LPEV models for both short and long queries with semantic 
information obtained by pseudo-relevance feedback process. 

 Text Documents Spoken Documents 
Long Short Long Short 

EV 0.571 0.382 0.518 0.364 
LP 0.573 0.383 0.507 0.339 

LPEV 0.580 0.392 0.533 0.339 
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