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ABSTRACT 
An automated process that can suggest a soundtrack to a user-
generated video (UGV) and make the UGV a music-compliant 
professional-like video is challenging but desirable. To this end, 
this paper presents an automatic music video (MV) generation 
system that conducts soundtrack recommendation and video 
editing simultaneously. Given a long UGV, it is first divided into 
a sequence of fixed-length short (e.g., 2 seconds) segments, and 
then a multi-task deep neural network (MDNN) is applied to 
predict the pseudo acoustic (music) features (or called the pseudo 
song) from the visual (video) features of each video segment. In 
this way, the distance between any pair of video and music 
segments of same length can be computed in the music feature 
space. Second, the sequence of pseudo acoustic (music) features 
of the UGV and the sequence of the acoustic (music) features of 
each music track in the music collection are temporarily aligned 
by the dynamic time warping (DTW) algorithm with a pseudo-
song-based deep similarity matching (PDSM) metric. Third, for 
each music track, the video editing module selects and 
concatenates the segments of the UGV based on the target and 
concatenation costs given by a pseudo-song-based deep 
concatenation cost (PDCC) metric according to the DTW-aligned 
result to generate a music-compliant professional-like video. 
Finally, all the generated MVs are ranked, and the best MV is 
recommended to the user. The MDNN for pseudo song prediction 
and the PDSM and PDCC metrics are trained by an annotated 
official music video (OMV) corpus. The results of objective and 
subjective experiments demonstrate that the proposed system 
performs well and can generate appealing MVs with better 
viewing and listening experiences. 
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1 INTRODUCTION 
With the prevalence of mobile devices, video is widely used to 
record memorable moments such as weddings, graduations, and 
birthday parties. Popular websites such as YouTube and Vimeo 
have further boosted the phenomenon as broadcasting becomes 
easy. However, in music videos (MVs), movies, and television 
programs, music and video are often accompanied to complement 
each other to enhance emotional resonance and viewing 
experiences. Without soundtracks, most user-generated videos 
(UGVs) might look boring. Therefore, accompanying a UGV with 
music to enhance the entertaining quality and emotional resonance 
is highly desirable. For example, a wedding video with a romantic 
soundtrack can enhance a sweet atmosphere. Nevertheless, 
selecting the right music for a video requires music professionals. 
With the rapid growth of music collections, the task becomes even 
more difficult. Furthermore, a UGV often consists of unedited 
long-running and redundant content. Manually editing through the 
staggering number of images of a UGV entails significant human 
labor. Therefore, an automated process, which can edit a long 
UGV into a music-compliant professional-like video, is preferable. 
Under these circumstances, we propose a fully automatic MV 
generation system, which is able to conduct soundtrack 
recommendation and video editing simultaneously. 

Machine-aided MV composition has been studied over the past 
decade [1–8]. However, previous research addressed either video 
editing or soundtrack recommendation [1–8], and none of them 
handled both tasks simultaneously. In the early period, most 
research effort was devoted to video editing [1–3]. Given a music 
track specified by a user, the goal is to generate an MV by 
selecting and concatenating suitable video clips to best match the 
music track [1–3]. The performance of such systems is usually 
limited, because only the relation between the low-level acoustic 
and visual features is considered, while the higher-level semantics 
(e.g., emotion) that can really catch the feeling of a human being 
is not. Even the low-level visual features of the selected video 
clips match well with the low-level acoustic features of music, the 
mismatched semantic structures may still result in bad viewing 
and listening experiences. For example, it has been demonstrated 
in [7] that the nonsynchronous temporal courses of emotional 
expression between video and music will result in bad viewing 
experiences. Moreover, there is a so-called semantic gap between 
the low-level acoustic (or visual) features and the high-level 
human perception. Different from editing a video to fit a specified 
music track, soundtrack recommendation is to suggest a matched 
music track to the video. Motivated by the recent development in 
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affective computing of multimedia signals, most soundtrack 
recommendation systems map the low-level acoustic and visual 
features into an emotional space [5–8], and match these two 
modalities there. A music-accompanied video composed in this 
way could be attractive, as the perception of emotion naturally 
occurs during video watching and music listening. However, these 
systems [5–8] model the relation between the low-level acoustic 
(or visual) features and the emotion labels separately, whereas 
ignoring the correlation between music and video. Since the music 
and video contents in a professionally edited official music video 
(OMV) are always highly synchronized and carefully composed 
to match each other in terms of emotional storytelling, without 
considering the relation between the music and video modalities 
in soundtrack recommendation may still result in bad viewing and 
listening experiences. In addition, the redundant content in a long 
unedited UGV will also dramatically ruin the viewing experience, 
even with a soundtrack. Such redundancy will inevitably cause a 
nonsynchronous emotional storytelling between the music and the 

UGV. In summary, an advanced MV generation system should 
address both video editing and soundtrack recommendation. The 
correlation among music, video, and semantic annotations such as 
emotion should also be actively explored and modeled. 

Our idea to jointly handle the aforementioned problems is first 
inspired by the recent computational models of the brain [9,10], in 
particular the memory-prediction framework [10], which 
emphasizes the notion of multisensory spatiotemporal predictions. 
For example, based on the input from one sense, e.g., vision, the 
brain can predict the current and future events in other senses, e.g., 
hearing. Similar findings have also been reported in psychology 
and cognitive science. For example, it has been suggested in [11] 
that visual information has a predictive role in processing audio 
information. Driven by these findings, we propose a novel 
automatic MV generation framework based on semantic-oriented 
pseudo song prediction, matching, and video editing, as shown in 
Figure 1. Given a long UGV, it is first divided into a sequence of 
fixed-length short (e.g., 2 seconds) segments. For each video 
segment, a multi-task deep neural network (MDNN) [12,13] is 
used to predict the pseudo acoustic (music) features (or called the 
pseudo song) from the visual (video) features of the video 
segment. The MDNN is trained by jointly learning the relation 
among acoustic (music) features, visual (video) features, and 
semantic annotations including emotion and music style labels 
from an annotated OMV corpus. Each music track in the music 
collection is also divided into a sequence of fixed-length short 
segments. Soundtrack recommendation and video editing are 
conducted simultaneously by aligning the UGV and a candidate 
music track in the acoustic (music) feature space using a sequence 
alignment technique. As shown in Figure 1, a dynamic time 
warping (DTW) algorithm with a pseudo-song-based deep 
similarity matching (PDSM) metric is applied to align the UGV 
and the candidate music track by evaluating the similarity 
between the pseudo acoustic features of the segments of the UGV 
and the acoustic features of the segments of the candidate music 
track. The PDSM metric is realized by a deep neural network 
(DNN) trained on the positive (official), less-positive (artificial), 
and negative (artificial) MV examples. The video editing module 
based on the target and concatenation costs then selects and 
concatenates the segments of the UGV according to the DTW-
alignment with the candidate music track to generate a music-
compliant professional-like video. The pseudo-song-based deep 
concatenation cost (PDCC) metric for evaluating the 
concatenation cost is another DNN designed to learn the visual 
storytelling, which can judge whether the concatenation of two 
video segments conforms to a professional way. The target cost is 
given by the PDSM metric. Finally, the cost ranking module will 
rank all the generated MVs and recommend the best MV to the 
user. Under this framework, our system not only recommends the 
matched music track to the UGV but also edits the UGV into a 
music-compliant professional-like video. That is, the length and 
the content of the UGV are edited to fit the matched music track. 
In summary, the main contributions of this paper include: 

1. We have implemented a complete automatic music video 
generation system that can automatically edit a long user-

 
Figure 1: The proposed MV generation framework based on
semantic-oriented pseudo song prediction, matching, and
video editing. 



  
 

 3 

generated video into a music-compliant professional-like 
video. 

2. This is the first work to simultaneously address both 
soundtrack recommendation and video editing issues in 
automatic MV generation. 

3. We explore the correlation among music, video, and 
semantic annotations in OMVs by using the MDNN. 

4. We propose the PDSM metric to alleviate the impact of 
pseudo song prediction errors on the similarity measure 
between the pseudo song and the candidate music. 

5. We propose the PDCC metric for video editing to select 
video segments to concatenate in a more professional way. 

The remainder of this paper is organized as follows. Previous 
research on video editing and soundtrack recommendation is 
reviewed in Section 2. The methodology is described in detail in 
Section 3. Finally, the experimental results are presented in 
Section 4, and conclusions are made in Section 5. 

2  RELATED WORK 
In this section, we briefly review the recent progress on video 
editing and soundtrack recommendation in automatic MV 
generation. In the field of video editing, Hua et al. [1] employed 
the correlation coefficient to measure the correlation between the 
tempo sequence (music patterns) and the motion intensity 
sequence (video scene series) to select the scenes of video that 
best matched the specified music for MV generation. Wang et al. 
[2] employed a dynamic programming algorithm to measure the 
similarity between video shot attributes (i.e., normalized duration 
and motion) and music beat attributes (i.e., normalized length and 
tempo) to find a set of video shots that best matched the music 
track. They further analyzed the music structure (e.g., verse and 
chorus) and considered the events in a broadcast sports video in 
the extended work [3]. For soundtrack recommendation, Kuo et al. 
[4] employed multi-modal latent semantic analysis to learn the co-
occurrence of the low-level acoustic and visual features, such as 
Mel-frequency cepstral coefficients, loudness, spectral centroid, 
color, and motion. To narrow the semantic gap between the low-
level features and the high-level human perception, Wang et al. [5] 
proposed an acoustic-visual emotion Gaussians (AVEG) model to 
respectively map the acoustic features and the visual features into 
the same valence-arousal (VA) emotional space to measure the 
distance between a music clip and a video clip. Shah et al. [6] 
employed a support vector machine (SVM) to model the 
categorical emotion, including sweet, funny, and sad, from the 
acoustic, visual, and geographic features. Lin et al. [7] adopted an 
emotional temporal course model (ETCM) to respectively model 
the temporal structure of emotional expression of music and video 
and a stream matching method to measure the similarity between 
the recognized emotional temporal phase sequences of music and 
video. They further proposed an emotion-oriented deep similarity 
matching (EDSM) metric to measure the similarity between the 
recognized emotional temporal phase sequences [8]. 

3  METHODOLOGY 

In our MV generation system, as shown in Figure 1, uniform 
segmentation is first applied to divide a UGV into a sequence of 
fixed-length video segments. For each video segment, an MDNN 
is used to predict the acoustic (music) features from the visual 
(video) features, and the process is called pseudo song prediction. 
A DTW algorithm with a PDSM metric is used to align the UGV 
with a music track based on the acoustic features. Finally, the 
video editing and cost ranking modules generate the MV. 

3.1  Video Segmentation  
Consider that a UGV usually contains tens of thousands of image 
frames, it would be more efficient to conduct pseudo song 
prediction, matching, and video editing at the segment level 
instead of the frame level. In addition, since the DTW algorithm 
for aligning a UGV with a candidate music track requires an equal 
measurement unit, both the UGV and the music track are 
uniformly segmented into a sequence of fixed-length (e.g., 2 
seconds) segments. The segment-based visual (or acoustic) 
features are constructed by the statistics of the component frame-
based visual (or acoustic) features. 

3.2  Pseudo Song Prediction via a Multi-Task 
Deep Neural Network 

Multi-task learning [14] aims at improving the generalization 
performance of a learning task by jointly learning multiple related 
tasks together. It has been found that if the tasks are related and 
share some internal representation, through joint learning, they 
can transfer knowledge to one another. The common internal 
representation learned in this way helps the models generalize 
better for the future unseen data. Consequently, for pseudo song 
prediction, we adopt an MDNN [12,13] to predict the acoustic 
(music) features from the visual (video) features by jointly 
learning the relation among the acoustic (music) features, visual 
(video) features, and semantic annotations including emotion and 
music style labels from an annotated OMV database. 

Assume that there are K tasks  1 2, ..., KT T T T  to learn under 

the MDNN framework. The MDNN parameters are represented 

by    0 1 2, ,..., K      , where 0  consists of the model 

parameters shared by all tasks and k  consists of the model 

parameters specific to task Tk. In this study, 0  denotes the shared 

weights from all hidden layers, whereas k  denotes the weights 

associated with the task-specific output layer of Tk. Without loss 
of generality, T1 will be taken as the primary task, and the rest as 
the secondary tasks. The objective function   is formulated as 
the weighted sum of the error functions of all tasks as follows, 

 0
1

( , ) ; ,
K

k k k
x D k

D x    
 

 
   

 
  , (1) 

where k  and k  are the error function and weight of task Tk 

subject to 
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1
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 , x is an input vector, and D is the whole set 

of training vectors for all tasks. After training, only the model 
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parameters associated with the primary task T1 (i.e., 0  and 1 ) 

are needed, and those of the secondary task(s) can be discarded. 
We use emotion (i.e., the VA emotional quadrant labels) and 

music style (i.e., the slow-rhythm and fast-rhythm labels) as the 
secondary task T2 to learn the MDNN for predicting the acoustic 
features (the primary task T1) from the input visual features x. The 
emotion and music style labels provide a semantic constraint for 

MDNN learning so as to improve the prediction accuracy. k  

(k=1,2) is set to 0.5, and the error function k  of task Tk (k=1,2) is 

the sum of squared error as follows, 

   2( ) ( )
0

1

1
; ,

2

kN
k k

k k i i
i

x d s  


   , (2) 

where ( )k
id  is the target value of the i-th output neuron for Tk, ( )k

is  

is the predicted value of the i-th output neuron for Tk, and Nk is the 
total number of output neurons for Tk. Specifically, x is the 
segment-based visual feature vector constructed from the 

component frame-based visual feature vectors, (1)
id is the i-th 

element of the corresponding segment-based acoustic feature 

vector, (2)
id  is the i-th semantic label, (1)

is  is the i-th element of 

the predicted pseudo acoustic feature vector, while (2)
is  is the 

predicted value of the i-th semantic label. 

3.3  Video-Music Alignment via DTW 
We assume that a UGV is longer than a candidate music track. 
Therefore, a DTW algorithm is used to find the best alignment 
between them. For a short UGV, there is no need to perform 
video-music alignment and video editing, as will be explained 
later in Section 4. 

Let   1

T

t t
P p  and   1

M

m m
C c  be, respectively, the pseudo 

acoustic feature vector sequence of the UGV and the acoustic 
feature vector sequence of the candidate music track, where T and 

M denote the length, T>M, and tp  and mc  represent the pseudo 

acoustic feature vector for the t-th segment of the UGV and the 
acoustic feature vector for the m-th segment of the candidate 

music track. To find the time alignment between P  and C , a 

T M  distance matrix  ( , )
T M

D t m


D  is constructed, where 

( , )D t m  is the distance between  1 2, ,..., tp p p  and  1 2, ,..., mc c c  

computed by 

( 1, )
( , ) min    1, 1   

( 1, 1)

( , )                                        1, 1( , )

                                             1, 1

( , ) ( 1, )                   1,

D t m
d t m t m

D t m

d t m t mD t m

t m

d t m D t m t m

      
 

   

    1








 

, (3) 

where ( , )d t m  is the distance between tp  and mc . 

Since the goal is to edit the UGV into a music-compliant 
professional-like video, we allow a single music segment to be 

aligned with consecutive video segments in the UGV, but do not 
allow a single video segment in the UGV to be aligned with 
consecutive music segments in the candidate music track. That is, 

for any given node ( , )t m , 1t   and 1m  , in the path, the 

possible fan-in nodes are restricted to node ( 1, )t m  and node

( 1, 1)t m   (cf. (3)). 

After the distance matrix D  has been constructed, the distance 

between P  and C  is evaluated as ( , )D T M . The time-aligned 

path between P  and C  can be obtained by back tracking, and 
then used in the following video editing and cost ranking modules. 

3.4  Pseudo-song-based Deep Similarity Metric 

Directly calculating the distance between tp  and mc  by a rigid 

metric (e.g., the absolute or Euclidean distance) may not work 
well here, because a rigid distance metric cannot accommodate 
the prediction errors in the pseudo acoustic feature vector. To this 
end, a PDSM metric is adopted to learn a flexible nonlinear 
similarity metric to alleviate the impact of the prediction errors on 

the similarity measure between tp  and mc . That is, ( , )d t m  in (3) 

is computed as the reciprocal of the score of the PDSM metric 

( , ) 1 ( , )t md t m PDSM p c . (4) 

In this study, we regard PDSM metric learning as a regression 
problem. The goal is to learn a regression model (i.e., the PDSM 
metric) that can judge whether the acoustic features of a pseudo 
song and a music segment of same length are similar. In PDSM 
metric learning, a DNN is adopted to learn the regression model 
based on a set of positive training examples v++=(pseudo song, 
official music++), less-positive training examples v+=(pseudo song, 
official music+), and negative training examples v-=(pseudo song, 
official music-) with labels y++=3, y+=2, and y-=1, respectively. A 
positive training example is formed by the pseudo song and the 
music segment associated with a video segment of an OMV. A 
less-positive training example is constructed from the pseudo song 
of a video segment of an OMV and the music segment of another 
OMV in the same VA emotional quadrant. A negative training 
example is constructed from the pseudo song of a video segment 
of an OMV and the music segment of another OMV in a different 
VA emotional quadrant. 

By denoting a training example v++, v+ or v- as v, we forward v 
layer-by-layer through the DNN to generate the representation of 
each layer, i.e., v(1),…, v(L). The l-th layer takes v(l) as input and 
transforms v(l) to the output v(l+1) as follows, 

( 1) ( ) ( ) ( ) ( )( )l l l l lv f W v b   , (5) 

where W(l) is a weight projection matrix; b(l) is a bias vector; and 
f(l)(.) is an activation function, which is a sigmoid function for l=1 
to L-2, and a linear function for l=L-1. Given the label y, the loss 
function in the output layer is the sum of squared error (SSE), 

( )( , ) ( , )Lv y SSE v y . (6) 

The loss of the output layer will be back propagated to fine-
tune the parameters W and b through a back-propagation method. 
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Since the side-information (i.e., the positive, less-positive or 
negative label) is considered in learning a nonlinear similarity 
matching metric, the resulting DNN regression model (i.e., the 
PDSM metric) is expected to alleviate the impact of the pseudo-
song prediction errors on the similarity measure. The difference 
between the proposed PDSM metric and the EDSM metric in [8] 
is that we regard similarity learning as a regression problem rather 
than a classification problem. By additionally considering the 
less-positive training examples, the learned PDSM metric should 
have a better generalization ability. 

3.5  Video Editing Based on the Target and 
Concatenation Costs 

After obtaining the time-aligned path for a UGV and a candidate 
music track, in the video editing stage, we first keep the segments 
of the UGV that correspond to the local paths at 45 degrees, as 
shown in Figure 2. Because such locations indicate the 
synchronization of the time series between the video segments 
and the music segments. As a result, the remaining issue of video 
editing is how to select, for a music segment corresponding to 
consecutive video segments (cf. the local paths at zero degrees in 
Figure 2), a suitable video segment from the consecutive video 
segments. Our idea to address this issue is inspired by the target 
and concatenation costs widely used in unit selection-based text-
to-speech (TTS) synthesis [15,16], whose goal is to synthesize a 
speech utterance that pronounces a given sentence with fluent 
quality. The target cost is to estimate the perceptual difference 
between a target speech unit and a candidate speech unit, while 
the concatenation cost is to reflect a level of perceived 
discontinuity between consecutive speech units [15]. To edit the 
UGV into a music-compliant professional-like video, we apply 
the target and concatenation costs to select the suitable video 
segment from a local path at zero degrees. That is, the selected 
video segment should not only match the target music segment 
well (with a low target cost) but also keep the continuity (with a 
low concatenation cost) with the immediately preceding and 
succeeding video segments that are already selected (associated 
with the local path at 45 degrees). 

Checking through the time-aligned path, the target cost (TC) 

for the t-th segment of the UGV is defined as ( , )tTC d t m , the 

distance between its pseudo acoustic feature vector and the 
acoustic feature vector of the aligned m-th segment of the 
candidate music track. For the concatenation cost (CC), we use a 
pseudo-song-based deep concatenation cost (PDCC) metric to 
learn the visual storytelling literacy of professional video directors. 
Again, the learning of the PDCC metric is regarded as a 
regression problem. The goal is to learn a regression model (i.e., 
the PDCC metric) that can judge whether the concatenation of the 
pseudo acoustic features of two video segments conforms to a 
professional way. Similar to the PDSM metric learning, a DNN is 
adopted to learn a regression model based on a set of positive 
training examples c++=(the pseudo songs of two consecutive 
video segments), less-positive training examples c+=(the pseudo 
songs of two video segments separated by one segment), and 
negative training examples c-=(the pseudo songs of two video 
segments separated by two segments) with labels u++=3, u+=2, 
and u-=1, respectively. The increase of segment interval indicates 
the decrease of continuity. The training procedure of the PDCC 
metric is the same as that of the PDSM metric in Subsection 3.4. 
The resulting DNN regression model (i.e., the PDCC metric) is 
expected to have the ability to judge whether the concatenation of 
two video segments conforms to a professional way. 

For a video segment t from a local path at zero degrees, the 

concatenation cost tCC  is calculated as 

 45 0 0 451
1 ( , ) 1 ( , )

2t pcd t t scdCC PDCC PDCC
   

 p p p p , (7) 

where 0
t



p  denotes the pseudo acoustic feature vector of the t-th 

segment; 45
pcd



p  and 45
scd



p  denote the pseudo acoustic feature 

vectors of the preceding and succeeding segments from the local 
paths at 45 degrees. Then, the overall cost (OC) is calculated as 

t t tOC TC CC  . (8) 

For each local path at zero degrees, the t*-th segment that has 
the minimum OC will be included in the edited video. In this way, 
we can edit the UGV into the music-compliant professional-like 
video, i.e., both the length and the content of the UGV are edited 
to fit a specific candidate music track. 

3.6  MV Generation via Cost Ranking 
The final stage of the MV generation system is to rank all the 
edited music-compliant professional-like videos. The cost ranking 
module computes the average cost (AC) for each edited UGV (i.e., 
each music-compliant professional-like video) as 

 time indice of selected UGV segments

1
t

t

AC OC
M 

  , (9) 

where M is the length of the candidate music track. For the video 
segment associated with the local path at 45 degrees, the OCt 
equals to the TCt, while for the segment associated with the local 
path at zero degrees, the OCt is given by (8), as shown in Figure 2. 
Note that the lengths of the generated MVs for a UGV are 
different, depending on the lengths of the accompanying music 

 
Figure 2: Illustration of the DTW-derived time-aligned path
for a UGV and a candidate music track and the computation
of the overall cost (OC) for a local path at 0 and 45 degrees. 
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tracks. The generated MVs are ranked in ascending order of the 
average costs, and the top one is regarded as the best MV 
recommended to the user. Since every CCt contributes an 
additional cost to the average cost, our ranking strategy will favor 
the music track that makes the edited UGV contain less 
concatenation points. 

4  EXPERIMENTS  
To evaluate the effectiveness of the proposed MV generation 
framework, two scenarios are considered in the experiments. The 
first scenario concerns soundtrack recommendation only. Given a 
short video (e.g., about the same length of a general popular song 
or shorter), the goal is to find a ranked list of music candidates for 
the video. Therefore, there is no need to perform DTW video-
music alignment and video editing in Figure 1, and cost ranking is 
replaced by a simple similarity ranking scheme. Specifically, the 
video is paired with each music track from the target music 
database to form a testing pair. After video segmentation, the 
MDNN is applied to obtain the pseudo song for each video 
segment. The PDSM metric is then applied to measure the 
similarity between the acoustic features of the pseudo song and 
the music segment, in a segment-by-segment manner. For each 
testing pair, the total similarity score is summed from the 
similarity scores of all video segments. Finally, the music tracks 
are ranked in descending order of the similarity scores, and the top 
one is used to generate the MV. By contrast, the second scenario 
executes the complete MV generation process proposed in this 
paper. That is, the first scenario is a simplified case of the second 
scenario. 

For the first scenario, we performed experiments on a set of 
OMVs downloaded from YouTube. 2651 complete OMVs were 
collected, among which 65 OMVs downloaded according to the 
links provided in the DEAP database [17] were used to train the 
MDNN and the PDSM metric. Each training OMV was assigned 
one (out of three) emotional quadrant based on the valence-
arousal annotations provided in the DEAP database. The two 
emotional quadrants in the low arousal space were merged into 
one [7,8], since emotions mapped into the lower arousal space are 
difficult to differentiate [18]. In addition, each training OMV was 
also annotated with a slow-rhythm label or a fast-rhythm label by 
the authors. The remaining 200 OMVs were used for testing.  

For the second scenario, five long UGVs (covering the topics 
of proposal, wedding, graduation, and travel) collected from 
YouTube were used as the test videos. The MDNN, the PDSM 
metric, and the PDCC metric were trained by the same annotated 
65 OMVs. Specifically, 8,176 segments (2 seconds long) were 
generated for MDNN learning; 21,967 pseudo song-music 
segment pairs were generated for training the PDSM metric; while 
14,734 preceding-succeeding segment pairs were generated for 
training the PDCC metric. 

For music analysis, we used MIRToolbox to extract four types 
of frame-based acoustic features, namely dynamic, spectral, 
timbre, and tonal features [19,20]. In total, 46-dimensional 

                                                                 
1 The video links are available at 
https://sites.google.com/site/automvgeneration/our-dataset 

acoustic features were extracted for each audio frame. Uniform 
segmentation was applied to each music track. We then extracted 
the mean features from the audio frames corresponding to a music 
segment as the 46-dimensional segment-based acoustic features. 
For video analysis, the frame-based color themes and motion 
intensities were extracted as the 8-dimensional low-level visual 
features [21,22]. The minimum, mean, and maximum values from 
the frame-based low-level visual features in each video segment 
were extracted to generate the 24-dimensional segment-based 
low-level visual features. For high-level visual feature extraction, 
inspired by the recent success in learning convolutional neural 
networks (CNNs) for object classification [23–25], we used the 
16-layer VGG-Net [25] to obtain the high-level visual features. 
The VGG-Net was trained on the ImageNet large-scale visual 
recognition challenge 2012 (ILSVRC-2012) dataset [24]. This 
collection includes 1.3 million images over 1,000 object 
categories. Along with the forward propagation in VGG-Net, we 
extracted 1,000 features from the output layer for each input 
image. The mean values from the frame-based high-level visual 
features in each video segment were extracted to generate the 
1,000-dimensional segment-based high-level visual features. 
Finally, the 1024-dimensional segment-based visual features were 
used as the representation of a video segment. The MDNN 
contained 3 hidden layers, each with 230, 120, and 30 neurons, 
respectively. The size of mini-batch for the stochastic gradient 
descent algorithm was set to 20. For the PDSM metric, we used a 
DNN with 3 hidden layers, each with 230, 120, and 130 neurons, 
respectively. The size of mini-batch for the stochastic gradient 
descent algorithm was set to 1. For the PDCC metric, we used a 
DNN with 3 hidden layers, each with 230, 120, and 60 neurons, 
respectively. The size of mini-batch for the stochastic gradient 
descent algorithm was set to 1. For all the three DNNs, we applied 
random initialization for the weights, a constant learning rate of 
0.05, and the L2 weight decay regularization to avoid over-fitting. 

4.1  The First Scenario: Soundtrack 
Recommendation  

For the evaluation of soundtrack recommendation, we compared 
the proposed pseudo-song-based matching framework with the 
state-of-the-art DEMV-matchmakercom framework in [8]. We 
applied the setting of DEMV-matchmakercom framework in [8] to 
the proposed framework, i.e., only the acoustic features, low-level 
visual features and emotion labels were used in both systems. In 
the experiments, the video of each test OMV was used in turn to 
search for the best matched music from the music tracks of the 
200 test OMVs, and the one corresponding to the test video was 
regarded as the ground truth. The ranking accuracy [4] defined as 

( ) 1
 1

1

rank g
Ranking Accuracy

C


 


, (10) 

was adopted as the objective performance measure, where rank(g) 
is the rank of the ground truth g, and |C| is the total number of 
candidates in the music set (|C|=200 in this study). We reported 
the average ranking accuracy over the testing set. 
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The results in Table 1 demonstrate that the proposed 
framework outperforms DEMV-matchmakercom. One reason is 
that DEMV-matchmakercom did not consider the relation between 
music and video modalities in the respective emotion recognition 
model construction. It might lose information useful for music (or 
video) emotion recognition, since the music and video contents in 
an OMV are always highly synchronized and carefully composed 
to match each other in terms of emotional storytelling. The multi-
task deep neural network (i.e., MDNN) used in the proposed 
framework seems to indeed model the relation among the acoustic 
(music) features, visual (video) features, and emotion labels. The 
results may also be attributed to the relatively higher risk in the 
DEMV-matchmakercom framework, since it needs two mapping 
processes (i.e., mapping the music and video modalities into the 
same emotional space separately), while the proposed framework 
conducts only one mapping process (i.e., mapping the video into 
the music space). Even DEMV-matchmakercom has used a 
similarity learning metric (i.e., the EDSM metric) [8] to alleviate 
the impact of emotion recognition errors, the performance is still 
limited. Compared to the EDSM metric, the PDSM metric learned 
with additional less-positive training examples may have a better 
generalization ability. Overall, the proposed framework pushed 
ahead the rank of ground truth music by approximately 20, 
compared to DEMV-matchmakercom. The average ranking 
accuracy was improved from 0.6519 to 0.7542. 

The next set of experiments was conducted to evaluate the 
MDNN. We investigated whether the high-level visual features 
(i.e., the object representations) and the label of slow-rhythm/fast-
rhythm music style could further boost the average ranking 
accuracy for the proposed framework. The results are shown in 
Table 2. Compared to MDNNset1, which used only the low-level 
visual features as input, MDNNset2 improved the average ranking 
accuracy by additionally considering the high-level visual features 
in the input layer. The improvement is expectable because the 
shot/scene can be represented as a set of object composition 
[26,27]. In fact, the literature has shown that, in video production 
(such as a film or OMV), an experienced director is good at 
applying different shots or scenes to match music to convey the 
emotion, ideas, and art [28,29]. Accordingly, the segment-based 
object representations improve the prediction of segment-based 
pseudo acoustic features, thereby improving the average ranking 

accuracy. MDNNset3 outperformed MDNNset1 by additionally 
including the music style label (i.e., the slow-rhythm/fast-rhythm 
label) in the output layer. Since the music style and the acoustic 
features are highly correlated, through the MDNN joint learning 
architecture, they can transfer knowledge to each other in the 
common internal (hidden layer) representation to help the MDNN 
generalize better in pseudo acoustic feature prediction for the 
unseen video. Finally, by jointly considering all the visual, 
acoustic, and semantic information, MDNNset4 achieved the best 
average ranking accuracy. It pushed ahead the rank of ground 
truth music by approximately 30, compared to DEMV-
matchmakercom. The average ranking accuracy was improved 
from 0.6519 to 0.8061. 

Subjective evaluation2 in terms of 5-point mean opinion score 
(MOS) was conducted on 5 MV sets. Each MV set contained the 
original official MV (the ground truth) and the MVs generated by 
DEMV-matchmakercom and the proposed framework with 
MDNNset4. The three MVs were provided in a random order. 
After viewing each MV, the subject was asked to rate a MOS for 
the indicator “whether the music track matches the video?”. Each 
MV was evaluated by 17 subjects (recruited from the authors’ 
laboratory and university). The average MOS over all MVs and 
subjects is shown in Figure 3. It is clear that the proposed 
framework outperforms DEMV-matchmakercom. The results 
reveal that modeling the relation among music, video, and 
semantic annotations (i.e., emotion and music style) and 
considering the high-level visual features can indeed generate 
more attractive MVs that enhance subjects’ viewing and listening 
experiences. The results also show that the MOS of the MVs 
generated by the proposed framework is quite close to that of the 
ground truth MVs, which is really encouraging. 

4.2  The Second Scenario: Simultaneous 
Soundtrack Recommendation and Video 
Editing  

For the evaluation of simultaneous soundtrack recommendation 
and video editing, we compared the complete pseudo-song-based 
MV generation framework (cf. Figure 1) to its simplified version. 
For both systems, MDNNset4 was used for pseudo acoustic feature 
prediction, and DTW with a PDSM metric was applied to align 
the UGV with the candidate music track by evaluating the 
similarity between the pseudo acoustic features of the segments of 
the UGV and the acoustic features of the segments of the music 
track. The PDCC metric for video editing was not applied in the 
simplified version. Specifically, for the simplified version, after 
obtaining the time-aligned path for a UGV and a candidate music 
track, the video editing stage kept the segments of the UGV that 
correspond to the local paths at 45 degrees and selected the 
segment with the minimum target cost (i.e., the reciprocal of the 
score of the PDSM metric) from each local path at zero degrees to 
generate the edited MV. The sum and average of the target costs 

                                                                 
2 The MOS results and 5 MV sets for the first scenario are available at 
https://sites.google.com/site/automvgeneration/home/senario1-demo 

Table 2: Average ranking accuracy of the pseudo-song-based 
framework with different MDNN input/output (I/O) settings 

MDNNset1 MDNNset2 MDNNset3 MDNNset4 
I: LVFs 
O: AFs (main task) 
and E (second task) 

I: LVFs+HVFs 
O: AFs (main task) 
and E (second task) 

I: LVFs 
O: AFs (main task) 
E+MS (second task) 

I: LVFs+HVFs 
O: AFs (main task) 
E+MS (second task) 

0.7542 0.7825 0.7796 0.8061 
LVFs: low-level visual features, HVFs: high-level visual features, AFs: acoustic 
features, E: the emotion label, MS: the music style label 

Table 1: Average ranking accuracy of the DEMV-
matchmakercom and pseudo-song-based frameworks 
DEMV-matchmakercom [8] Pseudo-song-based Matching 

0.6519 0.7542 
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over all segments (including the local paths at zero and 45 degrees) 
for each edited video were then calculated. Finally, the generated 
MVs were ranked in ascending order of the average target costs, 
and the top one was regarded as the best MV recommended to the 
user. 

For the second scenario, since there is no ground truth music 
track for a UGV, objective evaluation is not possible. Therefore, 
we performed a subjective MOS test on 5 long UGV sets3. A 
subject was asked to watch the entire original UGV in order to 
understand the whole story of the video. Then, the subject was 
asked to rate two MVs generated automatically for the UGV: one 
was generated by our complete system as shown in Figure 1, and 
the other was generated by the simplified system. The two MVs 
were shown to the subject in a random order. The subject was 
asked to rate the MOS for three indicators: (1) Does the 
recommended music track match the UGV? (2) Does the edited 
video show the progress of the story in a professional way? (3) 
Does the generated MV show a music-compliant professional-like 
video? Each edited UGV was evaluated by 15 subjects. The 
average MOS scores for the three indicators over all MVs and 
subjects are shown in Figure 4. It is clear that the complete system 
outperforms the simplified system in all indicators. The result 
with respect to the first indicator clearly demonstrates that, by 
further considering the PDCC metric (i.e., the concatenation cost) 
in video editing, the complete system can indeed recommend a 
more matched music track for a UGV than the simplified system. 
In other words, the concatenation cost given by the PDCC metric 
is crucial to not only video editing but also soundtrack 
recommendation, because the concatenation cost will affect the 
                                                                 
3 The MOS results, 5 UGVs and generated MVs for the second scenario are 
available at https://sites.google.com/site/automvgeneration/senario2-demo 

ranking of the music tracks. In terms of the second indicator, the 
result indicates that, by applying the PDCC metric in the complete 
system to select the segments of the UGV, the resulting edited 
video can show a better progress of the story, compared to the 
simplified system without using the PDCC metric. Such a result 
confirms that the PDCC metric can learn, to some extent, the 
visual storytelling (i.e., the concatenation of 
segments/shots/scenes) of OMVs. Finally, the strong average 
MOS score confirms that our complete system performs well and 
can generate appealing music-compliant professional-like videos 
with better viewing and listening experiences. 

5  CONCLUSIONS AND FUTURE WORK 
In this paper, a novel content-based MV generation system is 
proposed based on semantic-oriented pseudo song prediction, 
matching, and video editing. The proposed system addresses the 
soundtrack recommendation and video editing challenges 
simultaneously. Two scenarios have been considered in the 
experiments, including soundtrack recommendation and 
simultaneous soundtrack recommendation and video editing. For 
the first scenario, the proposed pseudo-song-based matching 

framework outperforms the state-of-the-art DEMV-
matchmakercom framework in both subjective and objective 
evaluations. The results have demonstrated the positive effect of 
exploring the correlation among music, video, and semantic 
annotations to automatic music video generation and the ability of 
the PDSM metric to alleviate the impact of the prediction errors in 
the pseudo acoustic features on the similarity measure. For the 
second scenario, the results of subjective evaluation have also 
demonstrated that, by further considering the PDCC metric, our 
system can not only recommend a matched music track to a UGV 
but also edit the UGV into a music-compliant professional-like 
video according to the matched music track. The generated music 
video is generally satisfactory and can enhance human viewing 
and listening experiences. 

To further improve the quality of the generated music video, 
we will investigate how to predict lyrics from the video content in 
our future work. While a lot of video description tasks have been 
actively explored, such a task is nontrivial because the lyrics of a 
music track usually contain a lot of metaphor rather than just 
declarative sentences. However, we believe that if the pseudo 
lyrics (cf. the pseudo song in this study) can be correctly predicted 
from the video content, the selected music track will be more 
suitable or accurate by additionally considering the matching 
between the pseudo lyrics of the video and the lyrics of the music 
track. We will also explore the correlation among the music, video, 
lyrics, and semantic annotations. In addition, benefiting from rich 
music video resources on the websites such as YouTube or Vimeo, 
developing an end-to-end deep neural network learning technique 
for automatic MV generation is desirable and will be studied in 
our future work as well. 

ACKNOWLEDGMENTS 
This work was partially supported by the Ministry of Science and 
Technology of Taiwan under Grant: MOST 105-2221-E-001-012-MY3. 

 
Figure 4: Results of the subjective MOS test for the second
scenario (i.e., simultaneous soundtrack recommendation and
video editing). 

 
Figure 3: Results of the subjective MOS test for the first
scenario (i.e., soundtrack recommendation). 
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