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Abstract—The locally linear embedding (LLE) algorithm has
been proven to have high output quality and applicability for
voice conversion (VC) tasks. However, the major shortcoming of
the LLE-based VC approach is the time complexity (especially
in the matrix inversion process) during the conversion phase. In
this paper, we propose a fast version of the LLE algorithm that
significantly reduces the complexity. In the proposed method,
each locally linear patch on the data manifold is described by
a pre-computed cluster of exemplars, and thus the major part
of on-line computation can be carried out beforehand in the
off-line phase. Experimental results demonstrate that the VC
performance of the proposed fast LLE algorithm is comparable
to that of the original LLE algorithm and that a real-time VC
system becomes possible because of the highly reduced time
complexity.

I. INTRODUCTION

Voice conversion (VC) is a technique that transforms one
type of speech to another, without changing the linguistic
content. A typical application is speaker VC, which modifies a
source speaker’s speech to sound as if it is spoken by a target
speaker. Generally speaking, speaker VC involves spectral
and prosodic conversions. In this study, we focus on spectral
conversion, whereas a simple linear transformation of F0 is
applied for prosodic conversion in our VC system. So far, a
variety of approaches have been proposed to tackle VC, such
as the Gaussian mixture model (GMM) [1], [2], frequency
warping [3], [4], neural networks (NN) [5], [6], and exemplar-
base methods [7], [8], [9].

Recently, we have proposed an exemplar-based VC ap-
proach [9] based on the locally linear embedding (LLE)
algorithm [10], which is a manifold learning algorithm. The
LLE algorithm is readily applicable to VC when a parallel
speech corpus is available because the source-target relation
is intuitively linked. Assuming that the local structures of
the source speech space and that of the target speech space
are similar, we can use LLE to find the relationship between
an input source spectral feature vector and its neighboring
exemplars and apply this relationship to the corresponding
target exemplars to obtain the desired target spectral feature
vector. Note that the LLE-based VC approach can be applied
on-the-fly once the parallel dictionary is available; all of
the remaining computation is executed during the on-line
(conversion) stage.

Fig. 1: The LLE-based VC framework.

The advantage of this non-parametric approach is that it
does not require training. However, the shortcoming is that
the LLE-based VC approach is computationally demanding
during the conversion phase, leading to difficulty for real-
time applications. To address this problem, we propose an
accelerated version of the LLE algorithm called fast-LLE that
utilizes exemplars while enjoying faster conversion.

The remainder of this paper is organized as follows. We
briefly summarize LLE-based VC in Sec. II, and introduce
the proposed fast-LLE algorithm and fast-LLE-based VC in
Sec. III. The experimental results are presented in Sec. IV.
Finally, we differentiate the fast-LLE algorithm with related
works in Sec. V, and conclude the paper in Sec. VI.

II. LLE-BASED VC

The simplest version of conventional exemplar-based VC
from a parallel corpus seeks to convert the voice characteristics
on a frame-by-frame basis. Suppose that we have N pairs
of speech frames; every pair is made of one frame ai from
the source speaker and one corresponding frame bi that has
same or similar linguistic content from the target speaker. Let
A = {ai}Ni=1 denote the source dictionary, B = {bi}Ni=1

denote the target dictionary, and X = {xt}Tt=1 denote the
input sequence (an utterance of T frames) from the source
speaker. Let At denotes a local subset of A with respect to a
given (external) vector xt and Bt denotes the corresponding
subset of B. Note that both At and Bt are made of column
vectors and the dimensions are both D (the feature dimension)
by K (the number of nearest neighbors). The goal is to convert
xt into yt that has the target speaker’s voice characteristics.
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Fig. 2: Flow charts of the on-line and off-line stages of the
fast-LLE VC system. The transfer function is the same as (8).

The LLE-based VC approach [9] integrates the LLE algo-
rithm [10] with a conventional exemplar-based VC approach;
it assumes that the geometry of At is locally linear and
resembles that of Bt. Exploiting data parallelism and geometry
resemblance, we can approach conversion via reconstruction:[

xt

yt

]
≈
[
At

Bt

]
wt. (1)

To be more specific, we first find the weight vector that
minimizes the reconstruction error between xt and Atwt; then
we apply the same wt to Bt to obtain the converted frame yt.

Fig. 1 depicts the system architecture of LLE-based VC.
We construct a pair of parallel dictionaries A and B from a
parallel speech corpus in the off-line stage. During the on-
line (conversion) stage, given a speech utterance of the source
speaker, the LLE algorithm is employed to perform frame-by-
frame conversion in the following three steps:

1) Identifying the locally linear patch (LLP) At from the
source dictionary A by finding a set of K nearest neigh-
bors (using the k-nearest neighbors (k-NN) algorithm)
with respect to the input frame xt.

2) Characterizing the local geometry by solving a weight
vector wt that minimizes the reconstruction error
‖xt −Atwt‖2.

3) Converting the input frame to the output frame by
applying the same wt to the corresponding target LLP
Bt, i.e., ŷt = Btwt.

III. FAST-LLE VC

In LLE-based VC, the three steps in the on-line stage are
conducted sequentially, i.e., we have to determine At, the LLP
with respect to an input frame xt, solve the weight wt, and
finally convert the frame. However, solving the reconstruction
weight is highly time consuming, preventing us from a real-
time application.

Fig. 3: LLPs in fast-LLE. Blue dots are exemplars, red dots
are the cluster centroids, and magenta dots are the inputs. Left:
the LLP identified by LLE. Right: the LLP identified by fast-
LLE. In fast-LLE, the LLP with respect to the input is defined
by the set of exemplars whose cluster centroid is closest to the
input.

In order to accelerate the conversion, we propose fast-LLE
– a simplification that allows most of the computation to be
done off-line. The keystone of fast-LLE is to approximate the
data manifold by a fixed number of pre-defined LLPs. With
pre-defined LLPs, we can compute necessary matrix inversions
during the off-line stage, thereby reducing time complexity by
orders of magnitude in the on-line conversion stage.

A. The Modification Made in fast-LLE

As shown in Fig. 2, the initial step of the off-line pro-
cedures is identical to that of LLE-based VC, which is to
build a source-target paired dictionary. The fast-LLE algorithm
diverges from the LLE algorithm afterwards with the following
steps:

1) The data manifold is scaffolded by M anchors which
can be cluster centroids or simply samples from the
dictionary. We used the cluster centroids determined by
k-means in this study.

2) For each anchor, an accompanying LLP is built by
retrieving the K nearest neighbors with respect to it
(measured in the Euclidean distance). These exemplars
then become the bases of the LLP (Fig. 3). Note that
LLPs can have overlapping exemplars, i.e., one exemplar
can belong to multiple LLPs.

3) Each anchor represents the accompanying LLP; the
distance between an input xt and an anchor is regarded
as the proxy of the distance between the input and an
LLP.

By doing so, we can replace the computation required for a
k-NN search from the whole dictionary of cardinality N with
a 1-NN search from a candidate set of cardinality M during
the on-line stage.

Note that even in the extreme case where M = N , the
fast-LLE algorithm still differs from the LLE algorithm in
that fast-LLE retrieves K nearest neighbors with respect to an
anchor instead of the input itself.

B. The Statistics in fast-LLE (off-line stage)

Consider the solution of LLE-based VC. The loss function
is defined as

L = ‖xt −Atwt‖2 + λ(1Twt − 1), (2)
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TABLE I: Comparison of the computational complexity for the
conversion of a frame.

LLE fast-LLE
Identifying LLP k-NN 1-NN

O(DN +KN) O(DM)
Weight estimation O(DK2 +K3) None

Conversion O(DK) O(D2)

Complexity O(DN +KN +DK2 +K3) O(D2 +DM)

D: frame dimension (72 in our case).
K: number of nearest neighboring exemplars in LLE, which is 1024 in
our case.
M : number of LLPs generated in the off-line stage, which is 128 in our
case.
N : number of exemplars in the (parallel) dictionary, typically several tens
of thousands. It is about 11000 in our case.

where λ is the Lagrange multiplier of the constraint and 1
is an all-one vector of length K. We can derive an analytic
solution by setting the derivatives ∂L

∂wt
to zero:

wt = (AT
t At)

−1(AT
t xt + λ1), (3)

λ =
1− 1T(AT

t At)
−1AT

t xt

1T(AT
t At)−11

. (4)

Although we still have to identify to which LLP the input xt

belongs to, the corresponding LLP At is now a fixed set of
exemplars, as opposed to a dynamically determined set with
combinatorially many possibilities in LLE.

The computation that can be carried out during the off-line
stage is described as follows. First, we can reformulate (3) as

wt = Dtxt + et, (5)

where

Dt = (AT
t At)

−1AT
t −

(AT
t At)

−111T(AT
t At)

−1AT
t

1T(AT
t At)−11

, (6)

and

et =
(AT

t At)
−11

1T(AT
t At)−11

. (7)

The statistics Dt and et can be computed off-line because they
do not depend on the input xt.

In addition, from (1) and (5), we have

ŷt = Btwt = BtDtxt +Btet := D
(y)
t xt + e

(y)
t . (8)

We can further save a matrix multiplication by pre-computing
D

(y)
t = BtDt and e

(y)
t = Btet, and take (8) as the transfer

function in Fig. 2. We compare the complexity of the on-line
stages in LLE-based VC and fast-LLE-based VC in Table I.

C. Conversion

During the on-line stage, we first identify to which LLP an
input xt belongs, by finding the LLP whose centroid is closest
to xt. Then we fetch the pre-computed statistics D(y)

t and e
(y)
t

and use the transfer function (8) to convert xt into ŷt.

IV. EXPERIMENTS

A. The Speech Corpus

Our experiments were conducted on the Sinica COSPRO
speech corpus [11]. The corpus contained 9 datasets. The
intonation-balanced dataset (i.e., COSPRO 03) consisting of
Mandarin parallel speech utterances of 3 females and 2 males
was used in the experiments. There were 20 pairs of conver-
sions: 8 intra-gender and 12 inter-gender. For each conversion
pair, 10 utterance pairs were randomly selected as the training
set, 40 as the development set, and 43 as the test set. Speech
signals were recorded in 16 kHz 16-bit wav format. Silence
segments at the start and end of each utterance in the training
set were discarded based on the segmentation information in
the corpus.

B. Feature Extraction and Waveform Generation

We used the STRAIGHT vocoder [12] for feature extrac-
tion and waveform generation. During feature extraction, the
speech signals were parametrized into the smoothed spectral
envelopes (SEs), aperiodicity components (APs), and F0 con-
tours. The frame shift was 5 milliseconds. The FFT length
was set to 1024; thus, the AP and SE vectors for each frame
were 513-dimensional. We further extracted the 24-order mel-
cepstral coefficients (MCCs) from the SEs of each frame. The
static, delta, and delta-delta features were used. Accordingly,
the final MCC feature vector of a frame was 72-dimensional.
LLE (or fast-LLE)-based conversion was applied to the MCC
feature vectors. The linear mean-variance transformation was
used to convert the log F0. The 0-th MCC and the APs were
kept unmodified. The converted MCCs were reverted back to
the SEs. Finally, the converted SEs, converted F0, and source
APs were passed to the STRAIGHT vocoder for waveform
synthesis.

C. The VC Systems with Post-processing

We compared two VC systems:
• LLE (baseline): Our previously proposed LLE-based VC

system [9].
• fast-LLE (proposed): The proposed VC system that is

based on the accelerated LLE algorithm.
For both systems, the number of nearest neighbors for the LLE
algorithm was set to 1024 following our previous work in [9].

To further improve the quality of the converted speech, for
both systems, we applied two post-processing procedures to
the converted features, including the global variance (GV)
post-filtering method [13] and the maximum likelihood pa-
rameter generation (MLPG) algorithm [14], [15].

D. The Effect of the Number of Clusters

We adopted Mel-cepstral distortion (MCD) as the the objec-
tive evaluation measure in the experiments. The MCD between
a target frame and a converted frame is defined as follows:

MCD [dB] =
10

ln 10

√√√√2

24∑
d=1

(
mc

(y)
d − m̂c

(y)
d

)2
, (9)
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Fig. 4: Mean MCD versus the number of clusters (i.e., pre-
generated LLPs). The blue line is the result of the LLE
baseline system and the red curve is the result of the fast-
LLE system.

TABLE II: Comparison of computational time.

Method MCD Speed (seconds per frame)
Baseline (LLE) 5.5907 6.09e-2

fast-LLE 5.2355 9.63e-5

where mc
(y)
d and m̂c

(y)
d is the d-th element of the target

and converted MCC vector, respectively [16]. A lower MCD
indicates less spectral distortion. The MCD of an utterance
pair was obtained by averaging over the MCDs of all the frame
pairs in the utterance. We reported the mean MCD of all the
test utterance pairs.

Fig. 4 shows the mean MCD versus the number of clusters
(i.e., pre-generated LLPs), M . As M increased, the mean
MCD was lowered; however, when M reached 128, the mean
MCD started to saturate. Therefore, we set M to 128 in the
following experiments. Surprisingly, the mean MCD of the
fast-LLE system was lower than that of the LLE baseline sys-
tem. This result indicated that using k-NN to identify an LLP
might be suboptimal in LLE. However, the difference in mean
MCD did not reflect significance in subjective evaluations, as
will be discussed later.

E. Subjective Evaluation

For the subjective evaluation, we randomly selected two
conversion pairs from each category (including f-f, m-m, m-
f, and f-m; m: male, f: female), resulting in eight conversion
pairs. For each conversion pair, eight sentences were randomly
selected from the test set, thereby resulting in 64 (8x8)
test sentences. Ten Chinese-native listeners were recruited to
conduct the speech quality and speaker similarity tests.

1) Speech Quality: We conducted a mean opinion score
(MOS) test to evaluate the quality of the converted speech.
Specifically, each pair of converted speeches by systems LLE
and fast-LLE were presented in a random order to the
listeners. The listeners were asked to judge which sample
sounded more natural and to grade them from 1 (bad) to
5 (good) points. Fig. 5 shows the overall average results of
the preference test. The performance of the fast-LLE system
is indistinguishable from that of the LLE baseline system,
indicating that the fast-LLE algorithm is a good simplification
of the LLE algorithm.

Fig. 5: Subjective test result. The error bars indicates confi-
dence intervals.

2) Speaker Similarity: We conducted an ABX test for
each system independently to evaluate the speaker similarity
performance. In an ABX test, we presented 3 utterances to
a listener: utterances A, B, and X. Utterances A and B were
a pair of natural utterances from the source speaker and the
target speaker with the same linguistic content in a shuffled
order; utterance X was a converted speech with different
linguistic content from utterances A and B so as to prevent
listeners from exploiting the prosodic cues [16]. Listeners were
asked to judge whether the speaker identity is the same as
utterance A or utterance B. Note that we only reported the
results of intra-gender conversion because all the inter-gender
conversion pairs were identified correctly in our preliminary
result. Similar results have also been reported in [8]. As
shown in Fig. 5, the two methods achieved almost the same
performance in terms of speaker similarity.

In summary, the performance of the fast-LLE system in
terms of both voice quality and speaker similarity is indis-
tinguishable from that of the LLE baseline system in the
experiments. Since the fast-LLE algorithm has a computation
time less than the frame shift in feature extraction (see Table
II), it facilitates real-time VC applications.

V. RELATED WORKS

The fast-LLE VC system is very similar to the GMM-
based VC system [1], [2] in the sense that both are mixture
models. While GMM assigns soft labels to each data point
upon computing statistics, fast-LLE imposes hard labels based
on locality. In fast-LLE, a patch is regarded as locally linear
and all the K members contribute equally to the statistics; in
contrast, data points that do not belong to this LLP contribute
none to the statistics. A final empirical result worth mentioning
is that the LLE-based VC system has been proven to be
effective even when the dimensionality of spectral features is
high [9]. But the GMM-based VC system could only work on
the low-dimensional spectral features.

Another kin to the fast-LLE algorithm is the exemplar-
based non-negative matrix factorization (ENMF) method. The
ENMF-based VC system [17] imposes an additional sparsity
constraint to ensure better quality of synthetic speech. In addi-
tion, ENMF demands a large dictionary to have a satisfactory
quality of synthetic speech at the cost of slow conversion.
In contrast, we have demonstrated that it is beneficial to
choose exemplars with a cluster-based scheme and that the
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computation can be drastically reduced without deteriorating
the performance.

VI. CONCLUSIONS

We have proposed the fast-LLE algorithm as an accelerated
alternative to the LLE algorithm and successfully applied it
to realize a real-time VC system. The fast-LLE algorithm
defined a number of locally linear patches that allowed us
to shift most computation in the on-line conversion stage to
the off-line stage, making real-time applications possible. The
experimental results demonstrated that the performance of the
fast-LLE VC system remained as good as that of the LLE
VC system. For future extensions, we plan to explore the fast-
LLE algorithm in more theoretical details and apply the fast-
LLE algorithm to many-to-many VC and speech enhancement
tasks.
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