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ABSTRACT 

 

This paper aims to improve speaker embedding 

representation based on x-vector for extracting more detailed 

information for speaker verification. We propose a statistics 

pooling time delay neural network (TDNN), in which the 

TDNN structure integrates statistics pooling for each layer, to 

consider the variation of temporal context in frame-level 

transformation. The proposed feature vector, named as stats-

vector, are compared with the baseline x-vector features on 

the VoxCeleb dataset and the Speakers in the Wild (SITW) 

dataset for speaker verification. The experimental results 

showed that the proposed stats-vector with score fusion 

achieved the best performance on VoxCeleb1 dataset. 

Furthermore, considering the interference from other 

speakers in the recordings, we found that the proposed stats-

vector efficiently reduced the interference and improved the 

speaker verification performance on the SITW dataset.  

 

Index Terms— Speaker verification, time delay neural 

network, statistics pooling 

 

1. INTRODUCTION 

 

Recently, deep neural networks (DNN) have been widely 

applied to capture speaker characteristics and produce 

speaker embedding as speaker representation in speaker 

verification (SV) tasks [1-5]. In previous studies, most SV 

systems were based on x-vector features [6-7], and the 

architecture consists of frame-level and segment-level feature 

transformations. The frame-level feature transformation is 

based on time delay neural network (TDNN) structure [8]. It 

has been proven that using TDNNs for extracting speech 

characteristics through multi-frame signals with shift-

invariance is more efficient than single-frame signals [9]. The 

segment-level feature transformation applies statistics 

pooling to aggregate variable-length features to obtain a 

fixed-dimensional vector. In addition, most of the research 

used probabilistic linear discriminant analysis (PLDA) to 

compare embedding pairs for speaker verification [10]. 

Nowadays, many studies were focused on improving 

performance for speaker verification. Zhu et al. [11] proposed 

a self-attention mechanism for DNN embedding and 

computed the embedding as a weighted average of speaker’s 

frame-level features. Tang et al. [12] integrated TDNN and 

long short-term memory (LSTM) to capture speaker 

information at different levels. Rahman et al. [13] explored 

the possibilities of improving speaker recognition 

performance by employing phonetic information for 

embedding network training. 

On the other hand, speaker verification applied in real-

world environments not only accepts speech data from one 

speaker, but also multi-speakers talking at the same time, 

especially conversations. Therefore, embeddings extracted 

from multi-speaker recordings will cause the confusion of 

speaker characteristics and decrease the recognition 

performance [14]. This paper proposes a statistics pooling 

TDNN structure to effectively improve the ability of x-vector 

learning by capturing more robust speaker characteristics. 

 

2. RELATED WORK 

 

Fig. 1 depicted the baseline x-vector features for speaker 

verification; the architecture is similar to that in [7]. In this 

system, a speaker discriminative DNN model is trained by the 

speech data from a large amount of speakers. We assume that 

in DNN model learning to capture the characteristics of 

different speakers from training speakers’ recordings, the 

high-level embedding can be treated as classifiable features 

in this model and produce speaker embedding called x-

vectors. After that, a PLDA backend is used to compare 

embedding pairs to determine whether the two embeddings 

are from the same speaker. 

In this figure, the first six layers are frame-level 

transformations that are constructed by a TDNN structure. In 

this example, 𝑡 is the current time step; the first layer is the 

spliced output of a context of frames from 𝑡 − 2 to 𝑡 + 2, and 

the second and third layers are the spliced output of the 

previous layer at frames {𝑡 − 2, 𝑡, 𝑡 + 2} and {𝑡 − 3, 𝑡, 𝑡 + 3}, 

respectively. In this study, the fourth layer is added as the 



spliced output of the third layer at frames {𝑡 − 4, 𝑡, 𝑡 + 4}. 

Thus, the fourth layer covers a total temporal context of 23 

frames. The fifth and sixth layers are the transformations 

without considering temporal context. 

The statistics pooling aggregates all sixth layer outputs 

to form a fixed-length vector, which computes the mean and 

standard deviation of all sixth layer outputs and concatenates 

them together as the segment-level features. After that, the 

features are forwarded to the seventh dense layer, the eighth 

dense layer and finally the softmax output layer. The x-vector 

is extracted from the seventh dense output, and the PLDA 

backend is used for scoring. 

 
Fig. 1. Structure of the baseline system using x-vector  

 

 

3. FRAME-LEVEL STATISTICS POOLING TDNN 

 

This paper proposes a new structure to improve the x-vector 

representation, which is regarded as the state of the art feature 

representation for speaker verification. As the TDNN layer 

focuses on local feature extraction, high-level feature 

extraction through non-linear transformations with low 

weights in preceding layers may lose some important 

information using low-level features. Therefore, this study 

integrates TDNN with the statistics pooling to exploit the 

potential of the network by considering the variation of 

temporal context. Fig. 2 shows the proposed new architecture 

in this study. In order to further improve the information 

representation in TDNN, we propose a feature combination 

method for each time delay layer. Given a subsequence of 𝐹 

output vectors 𝐻𝑝
𝑙−1 = {ℎ𝑝,1

𝑙−1, ℎ𝑝,2
𝑙−1, … , ℎ𝑝,𝐹

𝑙−1}  from the 

previous (𝑙 − 1)th layer at time step 𝑝, the time delay layer 

output vector ℎ𝑝
𝑙  at the l-th layer is obtained as follows. 

 

ℎ𝑝
𝑙 = 𝛼(𝑊𝑙𝐻𝑝

𝑙−1 + 𝑏𝑙) (1) 

 

where 𝑊𝑙 ∈ ℝ𝐷𝑙×𝑄𝑙
 is the weight matrix of size 𝐷𝑙 × 𝑄𝑙 , 𝐷𝑙  

is the number of output nodes and 𝑄𝑙  is the number of input 

nodes; 𝑏𝑙  is the bias vector in layer 𝑙  and 𝛼(∙)  is the 

activation function. 

To further consider the variation in the input features, we 

directly combine 𝐻𝑝
𝑙−1 and statistics pooling result of 𝐻𝑝

𝑙−1 to 

form a new input feature vector, which is then fed into the 

next layer: 

 

ℎ̂𝑝
𝑙 = 𝛼(𝑊𝑙[𝐻𝑝

𝑙−1 ⊕ 𝑠𝑡𝑎𝑡(𝐻𝑝
𝑙−1)] + 𝑏𝑙) (2) 

 

where ⨁  denotes a concatenation operation, 𝑠𝑡𝑎𝑡(∙)  is the 

statistics pooling function that computes the mean and 

standard deviation. Considering that TDNN input is the 

spliced output of previous layer at different frames, and the 

continuity of speech means that different frames features are 

similar to each other, the statistics pooling can represent the 

variation of local features. 

 
Fig. 2. Structure of the proposed system. 

 

Assuming that the input is stationary speech, each output 

vector is similar to the other output vectors. The 

transformation can thus be simplified as follows. 

 

𝐻̂𝑝
𝑙−1 = {ℎ̂𝑝,1

𝑙−1, ℎ̂𝑝,2
𝑙−1, … , ℎ̂𝑝,𝐹

𝑙−1} (3) 

𝐻̂𝑙−1 = {𝐻̂1
𝑙−1, 𝐻̂2

𝑙−1, … , 𝐻̂𝑃
𝑙−1} (4) 

ℎ̂𝑝
𝑙  

 ≈ 𝛼 (
𝑊𝑙[𝐸[𝐻̂𝑙−1] ⊕ 𝑚𝑒𝑎𝑛(𝐸[𝐻̂𝑙−1]) ⊕ 𝑠𝑡𝑑(𝐸[𝐻̂𝑙−1])]

+𝑏𝑙
) 

 ≈ 𝛼(𝑊𝑙[𝐻̂𝑝
𝑙−1 ⊕ ℎ̂𝑝,𝑓

𝑙−1 ⊕ 𝑠𝑡𝑑(𝐻̂𝑝
𝑙−1)] + 𝑏𝑙) (5) 

 

where 𝐻̂𝑙−1 is a set of subsequences corresponding to 𝑃 time 

steps obtained from the previous (𝑙 − 1)th layer, 𝑚𝑒𝑎𝑛(∙) is 

the mean function and 𝑠𝑡𝑑(∙)  is the standard deviation 

function. If the all vectors are equal in layer 𝑙, the expectation 



𝐸[𝐻̂𝑙−1] is a mean vector of 𝐻̂𝑙−1, each 𝑠𝑡𝑑(∙) operation will 

produce a zero vector, and the equation can use any output 

vector ℎ̂𝑝,𝑓
𝑙−1 instead of 𝑚𝑒𝑎𝑛(𝐸[𝐻̂𝑙−1]) in the previous layer. 

Thus, ℎ̂𝑝
𝑙  is an approximation of ℎ𝑝

𝑙  as a result of the 

assumptions on stationarity. Furthermore, if there are 

different phonemes in the input speech, the features in the 

preceding layers will obtain different local means and 

standard deviations. This means that the transformation 

represents high resolution results, and the statistics pooling 

represents the low resolution results.  

 

4. EXPERIMENTS AND RESULTS 
 

4.1. Training data 
 

The baseline system and the proposed system were trained on 

VoxCeleb2 [15] dataset. The VoxCeleb2 dataset provided 

two datasets for evaluation, in which the DEV dataset was 

used to train the speaker verification systems in this study. 

The DEV set of VoxCeleb2 contained 1,092,009 utterances 

from 5,994 celebrities, which were obtained from YouTube 

videos. Because this paper focuses on improving the x-vector 

for learning more robust speaker representation, data 

augmentation and noise addition will not be considered. The 

PLDA model was trained on the same DEV dataset of 

VoxCeleb2. Before PLDA training, the linear discriminant 

analysis (LDA) was used for dimensionality reduction and 

the representations were length-normalized. 
 

4.2. Testing data 
 

In this paper, two datasets were used for speaker verification 

evaluation, including VoxCeleb1 [16] dataset and the 

Speakers in the Wild (SITW) [17] dataset. The VoxCeleb1 

dataset contained 153,516 utterances from 1,251 celebrities, 

which was also obtained from YouTube videos. VoxCeleb1 

dataset was used to evaluate the speaker verification 

performance on the assumption that the training data and the 

testing data were collected under the same conditions. The 

SITW dataset provided samples of approximately 300 

individuals across different scenarios and contained multi-

speaker presentations in the same utterances. The EVAL 

dataset was used to evaluate the speaker verification 

performance, which contained 2,883 recordings from 180 

speakers.  
 

4.3. Experimental setup 
 

The input features were 40-dimentional Mel-frequency 

cepstral coefficients (MFCCs), and the spectrogram was 

extracted from a 25ms window with a stride of 10ms. The 

baseline system using x-vector and the proposed system were 

built on the same architecture. In frame-level transformation, 

there were 512 output nodes in the first five layers and 1,500 

output nodes in the sixth layer, while the statistics pooling 

produced the output nodes that was twice the length of the 

input nodes. The seventh dense layer and the eighth dense 

layer also consisted of 512 output nodes. Additionally, if the 

time delay layer input is a temporal context (not single-frame 

vector), we concatenated the subsequence 𝐻𝑝
𝑙−1  of output 

vectors from previous layer with the statistics pooling results 

𝑠𝑡𝑎𝑡(𝐻𝑝
𝑙−1) in the same context, to form a new input feature 

vector, e.g., second, third and fourth layers. Batch 

normalization (BN) and rectified linear unit (ReLU) 

activation function were applied to each transformation layer 

for non-linear mapping. All systems were implemented by 

Kaldi toolkit. 

We reported speaker verification results in term of equal 

error rate (EER) and the minimum detection cost function 

(DCF) at 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 0.01  (DCF 10−2 ) and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 0.001 

(DCF10−3). 
 

4.4. Experimental results 
 

In the following results, “x-vector” refers to baseline system 

using x-vector described in Section 2. “stats-vector” refers to 

the system using the proposed feature representation 

described in Section 3. Finally, the term “fusion” refers to the 

score fusion method as follows. 
 

𝑠𝑐𝑜𝑟𝑒𝐹𝑖 =
1

𝐾
∑ (𝑠𝑐𝑜𝑟𝑒𝑖(𝑘) −

1

𝑆
∑ 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)

𝑆

𝑠=1

)

𝐾

𝑘=1

+
1

𝐾𝑆
∑ ∑ 𝑠𝑐𝑜𝑟𝑒𝑠(𝑘)

𝑆

𝑠=1

𝐾

𝑘=1

 
(6) 

 

where 𝐾 is the number of speaker verification systems, 𝑆 is 

the number of embedding pairs, and 𝑠𝑐𝑜𝑟𝑒𝐹𝑖  is the 𝑖-th score 

that was determined by the average score of each system and 

total average score of all systems. 
 

4.4.1. Evaluation on VoxCeleb1 

Table 1 shows the performance of the systems on VoxCeleb1 

dataset. The three evaluation conditions are formed by 

pairing an enrollment condition with a test condition. In 

general, the stats-vector system outperformed the baseline x-

vector system by considering the variation of temporal 

context in frame-level TDNN. Compared to the baseline x-

vector system, the stats-vector system performed better by 

6.0%, 1.7% and 1.3% in EER, respectively. Furthermore, the 

system using score fusion significantly improved the 

performances on the list of trial pairs in VoxCeleb1 (cleaned), 

which was improved by 15.4% in EER and 11.6% in 

DCF10−2 . Fig.3 shows the detection error tradeoff (DET) 

curves for the systems. 
 

4.4.2. Evaluation on SITW 

The SITW dataset contained different conditions for speaker 

verification. The four evaluation conditions were formed by 

pairing an enrollment condition with a test condition. Table 2 

shows the performance on SITW EVAL dataset. The first trial 

name refers to the enrollment conditions, and the second trial 

name refers to the test conditions, e.g., “core” denotes only 



one speaker in the recordings, “assist” denotes one or more 

speakers in the enroll recordings and “multi” denotes one or 

more speakers in the test recordings. The EVAL core-core is 

a common list of trial pairs, in which there is no interference 

from other speakers. Compared to the baseline x-vector, the 

stats-vector performed better by 2.7% in EER and 3.9% in 

DCF10−2. Score fusion further improved the performance by 

3.7% in EER and 4.2% in DCF10−2. In addition, considering 

the interference from other speakers in the recordings, the 

other three trial lists were used for evaluation. As shown in 

Table 2, compared to baseline x-vector, the stats-vector 

obtained the best performance on EVAL assist-multi trial list, 

outperforming by 4.8% in EER and 3.5% in DCF10−2. This 

means that the stats-vector can efficiently reduce the 

interference when there are multiple speaker presentations in 

the recordings. Fig. 4 shows the DET curves comparison on 

the EVAL assist-multi trial pair list. Interestingly, the 

performance of the method using score fusion did not 

perform better than the stats-vector. This is because the score 

fusion is similar to arithmetic mean; different learning errors 

of interference from other speakers in each system will cause 

these errors to be accumulated. According to the law of large 

numbers, the average score obtained from a large amount of 

systems will tend to the expected value and reduce the effect 

of prediction errors.  
 

5. CONCLUSIONS 

 

This paper proposes a statistics pooling TDNN architecture 

for speaker verification. The new structure integrating TDNN 

with statistics pooling for each layer can effectively consider 

the variation of temporal context and improve the 

performance for speaker verification. The experiments were 

evaluated on VoxCeleb dataset and SITW dataset. We found 

that stats-vector with score fusion can significantly improve 

the speaker verification performance on VoxCeleb1 dataset. 

Furthermore, we evaluated the system performance on the 

SITW dataset which presented the multiple speakers 

conversation conditions, and found that the stats-vector can 

efficiently reduce the interference from other speakers in the 

recordings. In fact, this study only changed three layers in the 

frame-level transformation which could improve the 

performance of speaker verification. In future work, we will 

use the proposed structure to build a deeper network to further 

capture more important information with local characteristics 

to achieve a better performance. Moreover, statistics pooling 

replaced by attention mechanism has been proven that 

providing different speaker discriminative information of 

frames can achieve better performance; we will investigate 

the potential of different attention methods such as combining 

articulatory features to further consider the pronunciation 

manners and places in speech. 

 

 
Fig. 3. DET curve for the trial pairs in VoxCeleb1 (cleaned) 

 

 
Fig. 4. DET curve for the trial pairs in EVAL assist-multi 

Table 1. Results on the VoxCeleb1. 

System 
VoxCeleb1 (cleaned) VoxCeleb1-E (cleaned) VoxCeleb1-H (cleaned) 

EER DCF10−2 DCF10−3 EER DCF10−2 DCF10−3 EER DCF10−2 DCF10−3 

x-vector 3.50 0.4009 0.6012 3.45 0.3915 0.6248 6.02 0.5387 0.7740 

stats-vector 3.29 0.3633 0.4820 3.39 0.3844 0.6276 5.94 0.5439 0.7849 

fusion 2.96 0.3542 0.5238 3.11 0.3629 0.6065 5.48 0.5184 0.7597 

 

Table 2. Results on the SITW EVAL set. 

System 
EVAL core-core EVAL core-multi EVAL assist-core EVAL assist-multi 

EER DCF10−2 DCF10−3 EER DCF10−2 DCF10−3 EER DCF10−2 DCF10−3 EER DCF10−2 DCF10−3 

x-vector 4.87 0.4691 0.7023 7.72 0.5635 0.7744 7.67 0.5134 0.7279 9.22 0.5705 0.7859 

stats-vector 4.74 0.4506 0.6635 7.37 0.5427 0.7524 7.31 0.4987 0.6835 8.78 0.5507 0.7493 

fusion 4.69 0.4495 0.6773 7.44 0.5450 0.7581 7.43 0.5005 0.7014 8.97 0.5545 0.7627 
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