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ABSTRACT 

 
Speaker verification based on the log-likelihood ratio (LLR) is 
essentially a task of modeling and testing two hypotheses: the null 
hypothesis and the alternative hypothesis. Since the alternative 
hypothesis involves unknown imposters, it is usually hard to 
characterize a priori. In this paper, we propose a framework to 
better characterize the alternative hypothesis with the goal of 
optimally separating client speakers from imposters. The proposed 
framework is built on either a weighted arithmetic combination or 
a weighted geometric combination of useful information extracted 
from a set of pre-trained anti-speaker models. The parameters 
associated with the combinations are then optimized using 
Minimum Verification Error training such that both the false 
acceptance probability and the false rejection probability are 
minimized. Our experiment results show that the proposed 
framework outperforms conventional LLR-based approaches. 
 

Index Terms— Speaker recognition, minimization methods, 
hypothesis testing, minimum verification error. 
 

1. INTRODUCTION 
 
Speaker verification is usually formulated as a statistical 
hypothesis testing problem and solved using a log-likelihood ratio 
(LLR) test [1]. Given an input utterance U, the LLR test for 
determining whether or not U is spoken by the hypothesized 
speaker is performed as follows 




<
≥

=
, )reject  ( accept   

                    accept   
  

)|(
)|(

log)(
01

0

1

0
HH

H
HUp
HUp

UL
θ
θ

      (1) 

where H0 represents that U is spoken by the hypothesized speaker 
(called the null hypothesis); H1 represents that U is not spoken by 
the hypothesized speaker (called the alternative hypothesis); 

)|( iHUp , i = 0 or 1, is the likelihood of hypothesis Hi given 
utterance U; and θ  is a decision threshold. In practical 
implementations, H0 and H1 are usually characterized by some 
parametric models, such as Gaussian mixture models (GMMs) [1]. 
However, even though H0 can be modeled straightforwardly using 
speech utterances from the hypothesized speaker, H1 does not 
involve any specific speaker, and hence lacks explicit data for 
modeling. Thus, a number of approaches have been proposed to 
better characterize H1. The common strategy is to generate one or 
multiple models using speech from a large number of non-

hypothesized speakers, and then compute the likelihood P(U | H1) 
using [2]: 
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where Ψ(⋅) denotes a certain function of the likelihoods computed 
for a set of background models {λ1, λ2,…, λN} representing the 
potential imposters. For example, if Ψ(⋅) is an arithmetic mean [1], 
the LLR is of the form 
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where λ denotes a model generated for the hypothesized speaker. 
Alternatively, the arithmetic mean can be replaced by a maximum 
function [4], which yields the LLR  
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or by a geometric mean [5], which yields the LLR 
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A special case arises when N = 1, where a single background 
model is usually trained by pooling all the available data; this is 
called a world model [2]. The LLR in this case becomes 
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where Ω denotes the world model. 
However, there is no theoretical evidence to indicate which 

method of characterizing H1 is optimal, and the selection of Ψ(⋅) is 
usually application and training data dependent. In particular, a 
simple function, such as the arithmetic mean, the maximum, or the 
geometric mean, is a heuristic that does not involve an 
optimization process. Thus, the resulting system is far from 
optimal in terms of verification accuracy. To better handle this 
problem, we propose a framework that characterizes the alternative 
hypothesis by exploiting information available from background 
models, such that utterances from the imposters and the 
hypothesized speaker can be separated more effectively. The 
framework is built on either a weighted geometric combination or 
a weighted arithmetic combination of the likelihoods computed for 
background models. In contrast to the geometric mean L3(U) or the 
arithmetic mean L1(U), which are independent of the system 
training, our combination scheme treats the background models 
unequally according to how close each individual is to the 
hypothesized speaker model, and quantifies the unequal nature of 
the background models by a set of weights optimized in the 
training phase. The optimization is carried out by Minimum 



Verification Error (MVE) training [6,7], which minimizes both the 
false acceptance probability and the false rejection probability. 

The remainder of the paper is organized as follows. Section 2 
introduces the proposed methods for characterizing the alternative 
hypothesis. Section 3 describes an MVE training method used to 
optimize our methods. Section 4, contains the experiment results. 
Finally, in Section 5, we present our conclusions. 
 
2. CHARACTERIZATION OF THE ALTERNATIVE 

HYPOTHESIS 
 
Instead of using the heuristic arithmetic mean or geometric mean, 
our goal is to design a function Ψ(⋅) that optimally exploits the 
information available from background models. This section 
presents our design approach, which is based on either the 
weighted arithmetic combination or the weighted geometric 
combination of the useful information available. 
 
2.1. The Weighted Arithmetic Combination (WAC) 
 
The weighted arithmetic combination is defined as 
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where wi is the weight of the likelihood p(U | λi) subject to 
∑ ==

N
i iw1 1 . This function assigns different weights to N 

background models to indicate their individual contribution to the 
alternative hypothesis. Suppose all the N background models are 
Gaussian Mixture Models (GMMs). Eq. (7) constitutes a two–layer 
structure of a GMM, in which one layer represents each 
background model and the other represents the combination of 
background models. 
 
2.2. The Weighted Geometric Combination (WGC) 
 
Alternatively, we can define the function Ψ(⋅) in Eq. (2) from the 
perspective of the weighted geometric combination as 

. )λ|())λ|( ),...,λ|(()|(
1

11
iw

i
N

i
N UpUpUpHUp

=
∏=Ψ=   (8) 

Similar to the weighted arithmetic combination, Eq. (8) considers 
the individual contribution of a background model to the 
alternative hypothesis by assigning a weight to each likelihood 
probability. One additional advantage of WGC is that it avoids the 
problem where p(U | H1) = 0, which could happen with the 
heuristic geometric mean because some values of the likelihood 
may be rather small when the background models are irrelevant to 
an input utterance U. With a weight attached to each background 
model, Ψ(⋅) defined in Eq. (8) should be less sensitive to a tiny 
value of the likelihood; hence, it should be more robust than the 
heuristic geometric mean.  
 
2.3. Relations to the conventional LLRs 
 
We observe that Eq. (7) and Eq. (8) are equivalent to the arithmetic 
mean in Eq. (3) and the geometric mean in Eq. (5), respectively, 
when wi = 1/N, i = 1,2,…, N, i.e., all the background models are 
assumed to contribute equally. It can also be observed that both Eq. 
(7) and Eq. (8) will degenerate to a maximum function in Eq. (4), 
if we set wi = 0, ∀ i, except 1* =iw , where 

)λ|(maxarg* 1 iNi Upi ≤≤= . Furthermore, Eqs. (7) and (8) will 
degenerate to L4(U) in Eq. (6), if only a world model Ω is used as 
the background model. Thus, both WAC and WGC can be viewed 
as generalized and trainable versions of L1(U), L2(U), L3(U) or 
L4(U).  
 

3. MINIMUM VERIFICATION ERROR TRAINING 
 
After representing Ψ(⋅) as a trainable combination of likelihoods, 
the task is reduced to solving the associated weights. To obtain an 
optimal set of weights, we propose using Minimum Verification 
Error (MVE) training [6,7].  

In order for the decision threshold θ to be included in the 
optimization, we express Eq. (1) as the following equivalent test 
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and define a mis-verification measure 
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The measure is then converted into a value between 0 and 1 using 
a sigmoid function s(d(U)) = 1/[1+exp(-a·d (U))], where a is a 
scalar, so that it reflects the verification error probability. Next, a 
loss function li(U), i = 0 or 1, is used to describe the average false 
rejection errors (i = 0) or false acceptance errors (i = 1): 
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where N0 and N1 are the numbers of utterances from true speakers 
and impostors, respectively. Finally, an overall expected loss is 
defined by 
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where x0 and x1 reflect which type of error is of more concern than 
the other in a practical application. 

Accordingly, our goal is to find the weights wi in Eq. (7) and 
Eq. (8) such that Eq. (12) is minimized. This can be achieved by 
using the Gradient Probabilistic Descent (GPD) method [6]. To 
ensure that the weights satisfy ∑ ==

N
i iw1 1 , we solve wi by means 

of an intermediate parameter αi, where ∑= j jiiw )exp(/)exp( αα , 

similar to the strategy used in [6]. Parameter αi is iteratively 
optimized using 
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where η is the step size, and 
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If WAC is used, then 
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If WGC is used, then 
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The threshold θ in Eq. (9) can be estimated using [7]: 
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In our implementation, the overall expected loss is set 
according to the Detection Cost Function (DCF) [8]: 
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where PMiss is the miss (false rejection) probability, PFalseAlarm is the 
false alarm (false acceptance) probability, PTarget is the a priori 
probability of the target (hypothesized) speaker, and CMiss and 
CFalseAlarm are the relative costs of the missed error and false alarm 
error, respectively. A special case of DCF is known as the Half 
Total Error Rate (HTER), where CMiss and CFalseAlarm are both equal 
to 1, and PTarget = 0.5, i.e., HTER = (PMiss + PFalseAlarm) / 2. Then, 
approximating PMiss and PFalseAlarm by l0(U) and l1(U), respectively, 
we set the overall expected loss specifically as
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4. EXPERIMENTS 

 
4.1. Experiment setup 
 
We conducted speaker-verification experiments on speech data 
extracted from the XM2VTSDB multi-modal database [10]. In 
accordance with “Configuration II” described in [10], the database 
was divided into three subsets: “Training”, “Evaluation”, and 
“Test”. We used “Training” to build each client model and the 
background models, and used “Evaluation” to optimize the weights 
wi in Eq. (7) or Eq. (8), along with the threshold θ. Then, the 
speaker verification performance was evaluated on “Test”. As 
shown in Table 1, a total of 293 speakers1 in the database were 
divided into 199 clients, 25 “evaluation impostors”, and 69 “test 
impostors”. Each speaker participated in 4 recording sessions at 
about one-month intervals, and each recording session consisted of 
2 shots. In each shot, the speaker was prompted to utter 3 
sentences “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and “Joe took 

                                                 
1 We discarded 2 speakers (ID numbers 313 and 342) because of 
partial data corruption. 

father’s green shoe bench out”. Each utterance, sampled at 32 kHz, 
was converted into a stream of 24-order feature vectors, each 
consisting of 12 Mel-scale frequency cepstral coefficients [11] and 
their first time derivatives, by a 32-ms Hamming-windowed frame 
with 10-ms shifts. 

Table 1. Configuration of the speech database. 
Session Shot 199 clients 25 impostors 69 impostors

1 1 2 
1 2 2 

Training 

1 3 2 Evaluation

1 4 2 Test 

Evaluation Test 

 
We used 12 (2×2×3) utterances/speaker from sessions 1 and 2 

to train each client model, represented by a GMM with 64 mixture 
components. For each client, the other 198 clients’ utterances from 
sessions 1 and 2 were used to generate the world model, 
represented by a GMM with 256 mixture components. Meanwhile, 
B speakers were chosen from these 198 clients as the cohort [3] to 
yield B background models. Then, to optimize the weights, wi, and 
the threshold, θ, we used 6 utterances/client from session 3, along 
with 24 (4×2×3) utterances/evaluation-impostor over the four 
sessions, which yielded 1,194 (6×199) client samples and 119,400 
(24×25×199) impostor samples. In the performance evaluation, we 
tested 6 utterances/client in session 4 and 24 utterances/test-
impostor over the four sessions, which involved 1,194 (6×199) 
client trials and 329,544 (24×69×199) impostor trials. 

In addition, we used the B cohort set of models for L1(U) in 
Eq. (3), L2(U) in Eq. (4), and L3(U) in Eq. (5), and B+1 
background models, consisting of the B cohort set of models and 
one world model for our WAC and WGC methods. B was 
empirically set to 20. Two cohort selection methods [1] were used. 
One selected the closest B speakers for each client; and the other 
selected the closest B/2 speakers, plus the farthest B/2 speakers for 
each client. Here, the degree of closeness is measured in terms of 
the pairwise distance defined by [1]: 
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where λi and λj are speaker models trained using the i-th speaker’s 
utterances Xi and the j-th speaker’s utterances Xj, respectively.  
 
4.2. Experiment results 
 
The proposed weighted combination methods were implemented in 
three ways: 1) WAC with the world model and the 10 closest 
cohort models, plus the 10 farthest cohort models 
(“WAC_w_10c_10f”); 2) WAC with the world model plus the 20 
closest cohort models (“WAC_w_20c”); and 3) WGC with the 
world model plus the 20 closest cohort models (“WGC_w_20c”). 
The MVE training for both WAC and WGC was initialized with an 
equal weight, wi, and the threshold θ was set to 0. The overall 
expected loss function D in Eq. (20) was set according to the 
HTER with CMiss = 1, CFalseAlarm = 1, and PTarget = 0.5. 

For the performance comparison, we used five systems as our 
baselines: 1) L1(U) with the 10 closest cohort models plus the 10 



farthest cohort models (“L1_10c_10f”); 2) L1(U) with the 20 
closest cohort models (“L1_20c”); 3) L2(U) with the 20 closest 
cohort models (“L2_20c”); 4) L3(U) with the 20 closest cohort 
models (“L3_20c”); and 5) L4(U) (“L4”). 

Fig. 1 shows the DET curves [9] for the speaker verification 
performance achieved by various methods. For each baseline, the 
value of the decision threshold θ was tuned to minimize HTER on 
“Evaluation”, and then applied to “Test”. The decision thresholds 
of the proposed methods were optimized automatically using 
“Evaluation”, and then applied to “Test”. From Fig. 1, we observe 
that both the proposed methods, WAC and WGC, outperform all 
the baseline systems. It can also be seen that the performance of 
WAC is slightly better than that of WGC, while there is no 
significant difference between “WAC_w_10c_10f” and 
“WAC_w_20c”. Table 2 summarizes the experiment results based 
on HTER. Finally, the table shows that each of the proposed 
methods achieved a relative improvement of more than 10% over 
the best baseline system, “L1_10c_10f”. 
 

6. CONCLUSION 
 
We have proposed a framework to improve the characterization of 
the alternative hypothesis for speaker verification. The framework 
is built on either a weighted arithmetic combination (WAC) or a 
weighted geometric combination (WGC) of useful information 
extracted from a set of pre-trained anti-speaker models. The 
parameters associated with the combinations are then optimized 
using Minimum Verification Error training such that both the false 
acceptance probability and the false rejection probability are 
minimized. Our experiment results demonstrate that the proposed 
framework outperforms conventional LLR-based approaches. In 
the future, we will study different optimization methods, such as 
boosting algorithms [12], to solve the weights in WAC and WGC. 
We will also evaluate the proposed framework on different 
applications related to user verification. 
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Fig. 1. DET curves. 

 
 

Table 2. Experiment results in terms of HTER. 

Methods HTER 
L1_10c_10f 0.0515 
L1_20c 0.0535 
L2_20c 0.0635 
L3_20c 0.0583 
L4 0.0519 
WAC_w_10c_10f 0.0457 
WAC_w_20c 0.0443 
WGC_w_20c 0.0470 

 


