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ABSTRACT 

 
This paper presents an effective method for clustering unknown 
speech utterances based on their associated speakers. The proposed 
method jointly optimizes the generated clusters and the number of 
clusters by estimating and minimizing the Rand index of the 
clustering. The Rand index, which reflects clustering errors that 
utterances from the same speaker are placed in different clusters, 
or utterances from different speakers are placed in the same cluster, 
reaches its minimal value only when the number of clusters is 
equal to the true speaker population size. We approximate the 
Rand index by a function of the similarity measures between 
utterances and employ the genetic algorithm to determine the 
cluster where each utterance should be located, such that the 
overall clustering errors are minimized. The experimental results 
show that the proposed speaker-clustering method outperforms the 
conventional method based on hierarchical agglomerative 
clustering in conjunction with the Bayesian information criterion 
to determine the number of clusters. 
 

Index Terms—Clustering methods, Speech processing, 
Speaker recognition  
 

1. INTRODUCTION 
 
With the burgeoning availability of digital audio material, speaker 
clustering is gaining importance as a means of indexing the 
voluminous spoken data accumulated daily for archival use [1-14]. 
Given N speech utterances produced by P speakers, the goal of 
speaker clustering is to partition N utterances into M clusters, such 
that M = P and each cluster consists exclusively of utterances from 
only one speaker. Since no prior information regarding the 
speakers involved and the speaker population size is available in 
most practical applications, solving the speaker-clustering problem 
usually involves characterizing the voice similarities between 
utterances, generating clusters based on those similarities, and 
determining the optimal number of clusters. 

Currently, the most popular method of speaker clustering 
generates a cluster tree by sequentially merging the utterances 
deemed similar to each other, and then cuts the tree via a Bayesian 
information criterion (BIC) [5,8,10-12,15], in order to retain an 
appropriate number of clusters. During the agglomeration 
procedure, the nearest neighborhood selection rule is usually 
employed in an attempt to maximize the similarities between all 
the utterances within each cluster. Since the interaction between 
clusters is not considered, this method can only make each 
individual cluster as homogeneous as possible; however it cannot 

guarantee that the homogeneity for all the clusters can finally be 
summed to reach a maximum. In particular, mis-clustering errors 
arising from grouping different-speaker utterances together can 
propagate down the whole process, and hence limit the clustering 
performance. In addition, the cluster tree is generated separately 
from the determination of the optimal number of clusters. Since the 
latter trusts the former completely, the inevitable errors from the 
former can propagate to the latter, which may lead to a poor 
estimation of the speaker population size. 

To overcome the above-mentioned limitations of the 
conventional method, we propose a new clustering method that 
jointly optimizes the generated clusters and the number of clusters 
by estimating and minimizing a metric called the Rand index 
[16,17]. This metric indicates the clustering errors that place 
utterances from the same speaker in different clusters, or place 
utterances from different speakers in the same cluster. We 
approximate the Rand index by a function of the similarity 
measures between utterances, and employ the genetic algorithm 
[18] to determine the cluster where each utterance should be 
located. The resulting clusters are thus optimized in a global 
fashion, rather than a pair-by-pair manner used in the conventional 
method. In addition, by exploiting a characteristic of the Rand 
index that it only reaches the minimal value when the number of 
clusters equals the true speaker population size, speaker clustering 
based on the minimization of the estimated Rand index also 
enables the resulting number of clusters to approach the optimum. 
 

2. PROBLEM FORMULATION 
 
For convenience of discussion, we begin by defining the following 
symbols. 

X1, X2,…, XN : N speech utterances to be clustered; 
s1, s2,…, sP : P unknown speakers involved in N utterances; 
c1, c2,…, cM : M clusters to be generated; 
on : index of the speaker producing utterance Xn; 
hn : index of the cluster that utterance Xn is assigned to; 
nm∗ : number of utterances in cm; 
n∗p : number of utterances spoken by sp; 
nmp : number of utterances in cm spoken by sp. 

The goal of speaker clustering is to produce a set of indices H = 
{h1, h2, …, hN} that satisfy  hi = hj for any Xi and Xj from the same 
speaker, and hi ≠ hj for any Xi and Xj from different speakers. 

Depending on the application, there are a number of ways to 
evaluate the performance of speaker clustering. This study uses 
two metrics: cluster purity [4] and the Rand index [4,16,17]. 
Cluster purity represents the probability that if we pick any 
utterance from a cluster twice at random, with replacement, both of 



the selected utterances will be from the same speaker. Specifically, 
the average purity for M clusters is computed by 
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Apparently, a perfect clustering should produce an average purity 
of one. However, this does not work both ways. The value of the 
average purity generally increases as the number of clusters 
increases, since the metric does not consider errors that place 
utterances from the same speaker in different clusters. Hence, the 
cluster purity is only suitable for comparing the performance of 
different clustering methods under a specified number of clusters 

In contrast, the Rand index indicates the number of utterance 
pairs from the same speaker that are in different clusters, or from 
different speakers that are in the same cluster. Specifically, the 
Rand index is computed by 
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Obviously, the smaller the value of R(M),  the better the clustering 
performance will be. Unlike the cluster purity, which favors a large 
value of M, the Rand index generally decreases with an increase in 
the value of M initially, and reaches the minimum at M = P. When 
M > P, the Rand index starts to increase as the value of M 
increases. 

To illustrate why the minimal value of R(M) occurs only at M 
= P, let us consider the following cases.  
(i) The clustering is perfect, which satisfies 
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where ni = n*i = ni*, 1≤ i ≤ P. Then, the resulting Rand index is 
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(ii) Let M = P + 1, and modify Eq. (4) by splitting cluster ck into 
two clusters, ck and cP+1, i.e., 
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where nkk + n(P+1)k = nk. Then, the resulting Rand index is 
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(iii) Let M = P − 1, and modify Eq. (4) by merging cluster cP into 
cluster ck, i.e., 
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Then, the resulting Rand index is 
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We observe from these three cases that, in general, R(M) > R(P) if 
M ≠ P. Therefore, the Rand index can be used not only to examine 
if each generated cluster is homogeneous in terms of the speaker, 
but also to serve as a criterion to determine the true speaker 
population size. This property motivates us to develop a clustering 
method that jointly optimizes the generated clusters and the 
number of clusters by estimating and minimizing the Rand index.  

 
3. MINIMUM RAND INDEX CLUSTERING (MRIC) 

 
Our basic strategy is to find a set of indices H(M) = {h1

(M), h2
(M), …, 

hN
(M)} for the N utterances to be clustered, such that the resulting 

Rand index is minimized, where hi
(M), 1 ≤ i ≤ N, is an integer 

between 1 and M, and the value of M is to be determined. Since in 
Eq. (3) 
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and ΣP
p=1n*p

2   = Ω  is a constant that is irrelevant to the clustering, 
the optimal set of cluster indices can be determined by 
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(13) 
where δ(⋅) in Eqs. (10)−(13) is a Kronecker Delta function.  

However, as the computation of δ(oi, oj) requires that the true 
speaker of each utterance be known in advance, it is impossible to 
find H∗ directly from Eqs. (12) and (13). To solve this problem, we 
propose estimating δ(oi, oj) by means of the similarity measure 
between Xi and Xj. Specifically, 
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where S(Xi, Xj) denotes a certain similarity measure between Xi 
and Xj that could be either positive or negative, but cannot be zero, 
and Smax is the maximum among the similarities S(Xi, Xj), ∀ i ≠ j. 
In our implementation, S(Xi, Xj) is computed by the generalized 
likelihood ratio (GLR) [1,4]: 

S(Xi, Xj) = logPr(Xij |λij) − logPr(Xi |λi) − logPr(Xj |λj),      (15) 

where  Xij is the concatenation of Xi and Xj, and λi, λj, and λij are 
parametric models trained using Xi,  Xj, and Xij, respectively. 
Using this estimation, we can solve Eq. (12) by further assigning 
to Ω an arbitrary positive constant that ensures . 0)(ˆ )( ≥MR H

Given that neither a gradient-based optimization method nor an 
exhaustive search is applicable in this scenario, we propose using 
the genetic algorithm (GA) [18] to find H∗ by virtue of its global 
scope and parallel searching power. The basic operation of the GA 
is to explore a given search space in parallel by means of iterative 
modifications of a population of chromosomes. Each chromosome, 
encoded as a string of alphabets or real numbers called genes, 
represents a potential solution to a given problem. In our task, a 
chromosome is exactly a legitimate H(M), and a gene corresponds 
to a cluster index associated with an utterance. However, since the 
index of one cluster can be interchanged with that of another 
cluster, multiple chromosomes may amount to an identical 
clustering result. For example, the chromosomes {1 1 1 2 2 3 3}, 
{1 1 1 3 3 2 2}, {2 2 2 1 1 3 3}, and {1 1 1 5 5 4 4} represent the 
same clustering result derived by grouping seven utterances into 
three clusters. Such a non-unique representation of the solution 
would significantly increase the GA search space, and may lead to 
an inferior clustering result. To avoid this problem, we limit the 
inventory of chromosomes to conform to a baseform 
representation defined as follows.  

Let I (cm) be the lowest index of the utterance in cluster cm. 
Then, a chromosome is a baseform  

iff ∀ cm, cl ≠ {φ}, if m < l, then I (cm) < I (cl),   (16) 

where {φ} indicates that a cluster does not contain any utterance. 
Among the above chromosomes, {1 1 1 2 2 3 3} is a baseform, 
since the lowest index of the utterance in clusters c1, c2, and c3 is 1, 
4, and 6, respectively, which satisfies Eq. (16). In contrast, 
chromosomes {1 1 1 3 3 2 2} and {2 2 2 1 1 3 3} are not 
baseforms, since the lowest index of the utterance in clusters c1, c2, 
and c3 does not satisfy Eq. (16). In addition, chromosome {1 1 1 5 
5 4 4} implies that clusters c2 and c3 do not contains any utterance; 
hence it is not a baseform, either. However, it is conceivable that 
all the non-baseform chromosomes can be converted into a unique 
baseform representation by re-arranging the cluster indices. 

GA optimization starts with a random generation of 
chromosomes according to a certain population size, Z. Then, the 
fitness of all chromosomes is evaluated via the inverse of the 
estimated Rand index, i.e., )(ˆ1)( )()( MM RF HH = . Based on this 
evaluation, a particular group of chromosomes is selected from the 
population to generate offspring by subsequent recombination. To 
prevent premature convergence of the population, the selection is 
performed with the linear ranking scheme described in [19]. Next, 
crossover among the selected chromosomes proceeds by 
exchanging the substrings of two chromosomes between two 
randomly selected crossover points. A crossover probability is 
assigned to control the number of offspring produced in each 
generation. After crossover, a mutation operator is used to 
introduce random variations into the genetic structure of the 
chromosomes. This is done by generating a random number and 
then replacing one gene of an existing chromosome with a 
mutation probability. The resulting chromosomes that do not 
conform to the baseform representations are converted into their 
baseform counterparts.  

The procedure of fitness evaluation, selection, crossover, and 
mutation is repeated continuously, in the hope that the overall 
fitness of the population will increase from generation to 
generation. When the maximum number of generations is reached, 
the best chromosome in the final population is taken as the 
solution, H*. Note that the estimated speaker population size can 
be obtained by selecting the maximal value of the cluster index in 
H*. For example, if H* = {1 2 1 3 4 3 1}, the estimated number of 
speakers in a seven-utterance collection is 4. 
 

4. EXPERIMENTAL RESULTS 
 
The speech data used in this study consisted of six excerpts of 
broadcasts from the evaluation set of the 2002 Rich Transcription 
Broadcast News and Conversational Telephone Speech Corpus 
[20]. Each excerpt was segmented into speaker-homogeneous 
utterances, according to the annotation files in the corpus. Speaker 
clustering was then applied to each excerpt separately. Prior to the 
experiments, every speech utterance was converted from its digital 
waveform representation into a sequence of feature vectors, each 
of which consisted of 12 Mel-scale frequency cepstral coefficients 
(MFCCs) and 12 delta MFCCs. Then, the similarities between the 
utterances were computed using Eq. (15), in which all the 
parametric models are of a uni-Gaussian model with a full 
covariance matrix. 

In GA optimization, the parameter values used for the 
maximum number of generations, the population size, the 
crossover probability, and the mutation probability were 
empirically determined to be 2000, 5000, 0.5, and 0.1, 
respectively. For the performance comparison, we also 
implemented a baseline speaker-clustering system based on 
hierarchical agglomerative clustering (HAC) in conjunction with 
the Bayesian information criterion (BIC) to determine the optimal 
number of clusters [5]. In the agglomeration procedure, the 
similarities between clusters were computed using the complete 
linkage of the GLR-based inter-utterance similarities. In addition, 
in using the BIC, the penalty weight was set to one. 

Table 1 shows the speaker-clustering results. First, we 
evaluated the performance of the proposed minimum Rand index 
clustering (MRIC) by specifying the number of clusters a priori as 
the true number of speakers. This served as an upper bound of the 
performance that could be achieved by the automatic 



determination of the speaker population size. We can see from 
Table 1 that MRIC consistently yielded larger values of purity and 
smaller values of the Rand index compared with the baseline HAC 
method. This shows the superiority of global optimization applied 
in MRIC over pairwise optimization used in HAC.  

Next, we examined the speaker-clustering performance of 
both systems under the practical condition that the true speaker 
population size is unknown and must be estimated. It can be seen 
from Table 1 that the number of speakers estimated by MRIC for 
each excerpt was very close to the true speaker population size. It 
is also clear that, for the estimated speaker population sizes, 
MRIC consistently yielded smaller values of the Rand index 
compared with the baseline system. Some of the values were even 
smaller than the counterparts obtained by specifying the true 
speaker population sizes in the baseline system. The results 
confirm the validity of the proposed method. 

  
5. CONCLUSIONS 

 
We have investigated techniques for clustering speech data, 
whereby utterances from the same speaker can be grouped into a 
single cluster. This requirement is formulated as a problem of 
estimating and minimizing the clustering errors characterized by 
the Rand index. We represent the Rand index as a function of the 
inter-utterance similarities and apply the genetic algorithm to 
determine the index of the cluster where each utterance should be 
located. As a result, we have demonstrated a noticeable 
improvement in the speaker-clustering performance, compared to 
the conventional method based on hierarchical agglomerative 
clustering and the Bayesian information criterion for the estimation 
of the speaker population size.  
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Table 1: Speaker-clustering results. 

# Clusters = True # Speakers  # Clusters = Estimated # Speakers  
Baseline Method 

(HAC) 
Proposed Method 

(MRIC) 
Baseline Method 

(HAC-BIC) 
Proposed Method 

(MRIC) Excerpt # 
Utterances 

True # 
Speakers 

Purity Rand 
Index Purity Rand 

Index 
Estimated 
# Speakers

Rand  
Index 

Estimated 
# Speakers

Rand  
Index 

bn02en_1 44 16 0.89 80 0.93 41 8 100 17 56 
bn02en_2 29 9 0.94 24 0.95 16 13 52 11 20 
bn02en_3 13 6 1.00 0 1.00 0 6 0 6 0 
bn02en_4 43 16 0.90 84 0.91 77 18 98 15 80 
bn02en_5 26 10 0.72 78 0.76 72 11 80 11 75 
bn02en_6 45 14 0.86 66 0.88 58 15 136 15 87 
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