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Abstract 
It is usually difficult to characterize the alternative hypothesis 
precisely in a log-likelihood ratio (LLR)-based speaker 
verification system. In a previous work, we proposed using a 
weighted arithmetic combination (WAC) or a weighted 
geometric combination (WGC) of the likelihoods of the 
background models instead of heuristic combinations, such as 
the arithmetic mean and the geometric mean, to better 
characterize the alternative hypothesis. In this paper, we 
further propose learning the parameters associated with WAC 
or WGC via an evolutionary minimum verification error 
(MVE) training method, such that both the false acceptance 
probability and the false rejection probability can be 
minimized. Our experiment results show that the proposed 
methods outperform conventional LLR-based approaches. 
Index Terms: genetic algorithm, log-likelihood ratio, 
minimum verification error training, speaker verification 

1. Introduction 
The log-likelihood ratio (LLR) measure [1] is used in many 
speaker verification systems. Given an input utterance, U, the 
hypothesis test based on the LLR measure to determine 
whether or not U is spoken by the hypothesized speaker is 
expressed as 
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where H0 (the null hypothesis) represents that U is spoken by 
the hypothesized speaker; H1 (the alternative hypothesis) 
represents that U is not spoken by the hypothesized speaker; θ  
is a decision threshold; λ is the hypothesized speaker model; 
and λ  is the so-called anti-model or alternative hypothesis 
model. The λ  model is usually ill-defined because, ideally, it 
should cover the space of all possible impostors. Many 
approaches have thus been proposed to characterize the λ  
model. One simple approach pools the speech data from a 
large number of background speakers, and trains a single 
speaker-independent model λ0, called the world model or the 
Universal Background Model (UBM) [2]. The LLR measure 
in this case then becomes  

θ−−= )λ|(log)λ|(log)( 01 UpUpUL .             (2) 
Instead of using a single model to simulate potential 
impostors, a set of background models {λ1, λ2,…, λB} can be 
trained using speech from several representative speakers, 
called a cohort [3]. This leads to the following possible LLR 
measures, where the alternative hypothesis can be 
characterized by: 

(i) the likelihood of the most competitive cohort model [4], 
i.e., 
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(ii) the arithmetic mean of the likelihoods of the B cohort 
models [1], i.e., 
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(iii) the geometric mean of the likelihoods of the B cohort 
models [4], i.e., 
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Obviously, the LLR measures L2(U), L3(U), and L4(U) are 
derived by heuristic combination methods that do not include 
an optimization process. Thus, the resulting system is far 
from optimal in terms of verification accuracy.  

A more effective and robust LLR measure can be 
obtained by characterizing the alternative hypothesis as a 
weighted arithmetic combination (WAC) or a weighted 
geometric combination (WGC) of the likelihoods of the 
background models, instead of the above heuristic 
combinations [5]. The new combination scheme treats the 
background models unequally according to how close each 
individual is to the hypothesized speaker model, and 
quantifies the unequal nature of the background models by a 
set of weights optimized in the training phase. The 
optimization is performed by the minimum verification error 
(MVE) training method [5], which minimizes both the false 
acceptance probability and the false rejection probability.  

Traditionally, MVE training has been realized by the 
gradient descent algorithm [5-7]; however, the algorithm only 
guarantees to converge to a local optimum. In this paper, we 
propose a new evolutionary MVE training method for 
learning the weights of the WAC- or WGC-based LLR 
measure. We embed the MVE training in a genetic algorithm 
(GA) [8], which is a widely used optimization algorithm that 
usually converges to a near global optimum. To do this, we 
incorporate a new mutation operator, called the one-step 
gradient descent operator (GDO), into the genetic algorithm.  

The remainder of the paper is organized as follows. 
Section 2 presents the WAC- and WGC-based LLR measures 
and their relations to conventional LLR measures. In Section 
3, we describe how we embed MVE training in the genetic 
algorithm. Section 4 details the experiment results. Finally, in 
Section 5, we present our conclusions. 

2. WAC- and WGC-based LLR measures 
We briefly review the WAC- and WGC-based LLR measures 
in this section. In the WAC-based LLR measure, the 



likelihood of the alternative hypothesis model λ , )λ|(Up , 
is expressed as  
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while in the WGC-based LLR measure, )λ|(Up  is expressed 
as  
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To ensure that the weights wi, i = 0,1,…,B, in Eqs. (6) and (7) 
satisfy ∑ ==

B
i iw0 1  and iwi ∀≥  ,0 , we represent wi as a 

function of the intermediate parameters αi, i = 0,1,…,B, as 
follows [7], 
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and solve αi instead of wi. Both WAC and WGC characterize 
the alternative hypothesis model λ  by incorporating 
information available from the world model, 0λ , and the B 
cohort models, Bii ,...,1 ,λ = . It is clear that WAC and WGC 
are equivalent to the arithmetic mean in L3(U) and the 
geometric mean in L4(U), respectively, when w0 = 0 and wi = 
1/B, i = 1,2,…, B, i.e., it is assumed that all the cohort models 
contribute equally. It is also clear that WAC and WGC will 
reduce to a maximum function in L2(U), if 1* =iw , 

)λ|(maxarg* 1 iBi Upi ≤≤= ; and * ,0 iiwi ≠∀= . Furthermore, 
WAC and WGC will reduce to L1(U), if w0 = 1 and 

0 ,0 ≠∀= iwi . Thus, both WAC- and WGC-based LLR 
measures can be viewed as generalized and trainable versions 
of L1(U), L2(U), L3(U) or L4(U). 

3. The genetic algorithm for MVE training 
We propose a new evolutionary MVE training method that 
uses a genetic algorithm (GA) to train the weights wi and the 
threshold θ in WAC- or WGC-based LLR measures.  

Genetic algorithms (GA’s) belong to a particular class of 
evolutionary algorithms (EA’s) inspired by the process of 
natural evolution [8]. The operators involved in the 
evolutionary process are: encoding, parent selection, 
crossover, mutation, and survivor selection. GA’s maintain a 
population of candidate solutions and perform parallel 
searches in the search space via the evolution of these 
candidate solutions. 

To embed MVE training into a GA, the fitness function of 
the GA is represented as the overall expected loss function D 
of the MVE training method [5] calculated as, 

,1100 ll xxD +=                                    (9) 
where x0 and x1 reflect which type of error is of more concern 
than the other in a practical application; and li is a loss 
function that describes the average false rejection errors (i = 0) 
or false acceptance errors (i = 1): 
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where N0 and N1 are the numbers of utterances from the true 
speakers and the impostors, respectively; s is a sigmoid 
function s(d(U)) = 1/[1+exp(-a·d (U))], where a is a scalar; 
and d(U) is a mis-verification measure defined by 
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where L(U) is the LLR measure defined in Eq. (1). By 
substituting WAC in Eq. (6) or WGC in Eq. (7) into Eq. (1), 

the goal of optimization is to find the weights wi and the 
threshold θ that minimize the fitness function D in Eq. (9). 
This can be achieved by using a genetic algorithm.  

Next, we describe the GA operators involved in our 
evolutionary MVE training method. 
1) Encoding: Each chromosome is a string },,...,,{ 10 θααα B  
of length B+2, which is the concatenation of all intermediate 
parameters αi in Eq. (8) and the threshold θ in Eq. (1). 
Chromosomes are initialized by randomly assigning a real 
value to each gene. 
2) Parent selection: Five chromosomes are randomly 
selected from the population with replacement, and the 
one with the smallest fitness value is selected as a parent. 
The procedure is repeated iteratively until a pre-defined 
number (which is the same as the population size in this study) 
of parents is selected. This is known as tournament selection 
[8]. 
3) Crossover: The (B+1)-point crossover is used in this work. 
Two chromosomes are randomly selected from the parent 
population with replacement. The chromosomes can 
interchange each pair of their genes in the same positions 
according to a crossover probability pc. 
4) Mutation: In most cases, the function of the mutation 
operator is to change the allele of the gene randomly in the 
chromosomes. For example, while mutating a gene of a 
chromosome, we can just draw a number from a uniform 
distribution at random, and add it to the allele of the gene. In 
this study, we use a new mutation operator, called the one-
step gradient descent operator (GDO). The concept of the 
GDO is similar to that of the one-step K-means operator 
(KMO) [9, 10], which improves the fitness function after 
mutation by performing one iteration of the K-means 
algorithm. The GDO performs one iteration of gradient 
descent updating of the MVE training.  

The one-step gradient descent operator (GDO) for the 
parameter αi, i = 0, 1, …, B, is defined as 
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where new
iα  and old

iα  are, respectively, the parameter αi in a 
chromosome after and before mutation; η is the step size; and 

i

D
α∂
∂ is computed by 

[ ]

[ ] , ))((1))((1   

))((1))((1

 

1

0

1
1

0
0

1
1

0
0

1
1

0
0

∑








∂
∂

⋅−⋅⋅+

∑








∂
∂

−⋅−−−⋅⋅=

∂
∂

⋅
∂
∂
⋅

∂
∂
⋅

∂
∂

+
∂
∂

⋅
∂
∂
⋅

∂
∂
⋅

∂
∂

=

∂
∂

+
∂
∂

=
∂
∂

∈

∈

HU i

HU i

ii

iii

LULsULsa
N

x

LULsULsa
N

x

L
L
d

d
s

s
xL

L
d

d
s

s
x

xxD

α

α

αα

ααα
ll

ll

   

(13) 

where 
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If WGC is used, then 
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The one-step gradient descent operator (GDO) for the 
threshold θ is defined as 
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where newθ  and oldθ  are, respectively, the threshold θ in a 
chromosome after and before mutation; η is the step size; and 

θ∂
∂D is computed by 
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5) Survivor selection: We adopt the generational model [8], 
in which the whole population is replaced by its offspring. 

4. Experiments 

4.1. Experiment setup 
We conducted speaker-verification experiments on speech 
data extracted from the XM2VTSDB multi-modal database 
[11]. In accordance with “Configuration II” described in [11], 
the database was divided into three subsets: “Training”, 
“Evaluation”, and “Test”. We used “Training” to build each 
client model and the background models, and “Evaluation” to 
optimize the weights wi in Eq. (6) or Eq. (7), along with the 
threshold θ. Then, the speaker verification performance was 
evaluated on “Test”. As shown in Table 1, a total of 293 
speakers1 in the database were divided into 199 clients, 25 
“evaluation impostors”, and 69 “test impostors”. Each 
speaker participated in 4 recording sessions at about one-
month intervals, and each recording session consisted of 2 
shots. In each shot, the speaker was prompted to utter 3 
sentences “0 1 2 3 4 5 6 7 8 9”, “5 0 6 9 2 8 1 3 7 4”, and “Joe 
took father’s green shoe bench out”. Each utterance, sampled 
at 32 kHz, was converted into a stream of 24-order feature 
vectors, each consisting of 12 Mel-scale frequency cepstral 
coefficients [12] and their first time derivatives, by a 32-ms 
Hamming-windowed frame with 10-ms shifts. 

We used all the clients’ utterances from sessions 1 and 2 
to train a world model (UBM), represented by a Gaussian 
mixture model (GMM) [1] with 512 mixture components. To 
implement L1(U), for each client, we used 12 (2×2×3) 
utterances/client from sessions 1 and 2 to generate the client 
model, represented by a GMM with 512 mixture components, 
through UBM-MAP adaptation [2]. To implement the other 
LLR measures, for each client, we used 12 (2×2×3) 
utterances/client from sessions 1 and 2 to generate the client 
model, represented by a GMM with 64 mixture components, 
by using the expectation-maximization (EM) algorithm [12]. 
For each client, the B closest speakers were chosen from the 

                                                                 
 
1 We omitted 2 speakers (ID numbers 313 and 342) because 
of partial data corruption. 

other 198 clients as the cohort [3] according to the degree of 
closeness measured in terms of the pairwise distance defined 
by [1]: 
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where λi and λj are speaker models trained using the i-th 
speaker’s utterances Ui and the j-th speaker’s utterances Uj, 
respectively. In the experiments, B was set to 20, and each 
cohort model was represented by a GMM with 64 mixture 
components 

Table 1. Configuration of the speech database. 
Session Shot 199 clients 25 impostors 69 impostors

1 1 2 
1 2 2 

Training 

1 3 2 Evaluation

1 4 2 Test 

Evaluation Test 

 
To optimize the weights, wi, and the threshold, θ, we used 

6 utterances/client from session 3, along with 24 (4×2×3) 
utterances/evaluation-impostor over the four sessions, which 
yielded 1,194 (6×199) client samples and 119,400 
(24×25×199) impostor samples. To speed up the MVE 
training process, only 2,250 imposter samples randomly 
selected from 119,400 such samples were used. In the 
performance evaluation, we tested 6 utterances/client in 
session 4 and 24 utterances/test-impostor over the four 
sessions, which involved 1,194 (6×199) client trials and 
329,544 (24×69×199) impostor trials. We use the Detection 
Error Tradeoff (DET) curve [13] for the performance 
evaluation. In addition, we use the Half Total Error Rate 
(HTER), which reflects the performance at a single operating 
point on the DET curve. The HTER is defined as  

HTER = (PMiss + PFalseAlarm) / 2,                  (20) 

where PMiss is the miss (false rejection) probability and 
PFalseAlarm is the false alarm (false acceptance) probability. It 
is clear that the loss functions l0 and l1 in Eq. (10) will 
approximate PMiss and PFalseAlarm, respectively, if the scalar a 
in the sigmoid function is set to a sufficiently large value. In 
our experiments, a was set to 10, and x0 and x1 in the fitness 
function D in Eq. (9) were set to 0.5. Thus, the minimization 
of the fitness function D in Eq. (9) is equivalent to the 
minimization of the HTER. 

4.2. Experiment results 
We employed the proposed evolutionary MVE training 
methods in two LLR measures: 1) WAC with the world 
model plus the 20 closest cohort models 
(“WAC_GA_w_20c”); and 2) WGC with the world model 
plus the 20 closest cohort models (“WGC_GA_w_20c”). The 
population size of the GA was set to 100, and the crossover 
probability pc was set to 0.5. We also implemented MVE 
training using the gradient descent algorithm in two LLR 
measures: 1) WAC with the world model plus the 20 closest 
cohort models (“WAC_GD_w_20c”); and 2) WGC with the 
world model plus the 20 closest cohort models 
(“WGC_GD_w_20c”). 

For the performance comparison, we used five systems as 
our baselines: 1) L1(U), using a 512-mixture client GMM 



through UBM-MAP adaptation (“L1_MAP”); 2) L1(U), using 
a 64-mixture client GMM through EM training (“L1”); 3) 
L2(U) with the 20 closest cohort models (“L2_20c”); 4) L3(U) 
with the 20 closest cohort models (“L3_20c”); and 5) L4(U) 
with the 20 closest cohort models (“L4_20c”).  

Fig. 1 shows the DET curves evaluated on “Test” for the 
speaker verification performance achieved by various 
methods, and Table 2 summarizes the experiment results in 
terms of HTER. For each baseline, the value of the decision 
threshold θ was tuned to minimize HTER on “Evaluation”, 
and then applied to “Test”. The decision thresholds and the 
weights of the WAC- and WGC-based LLR measures were 
optimized automatically using “Evaluation”, and then applied 
to “Test”. From Fig. 1, we observe that both WAC- and 
WGC-based LLR measures significantly outperform all the 
baseline systems. Table 2 shows that “WAC_GA_w_20c” 
and “WGC_GA_w_20c” outperform “WAC_GD_w_20c” 
and “WGC_GD_w_20c”, respectively. It is clear that each of 
the WAC and WGC methods achieved a relative 
improvement of more than 10% over the baseline systems. 
Incidentally, the baseline system “L1” outperformed 
“L1_MAP”, a well-recognized state-of-the-art method for 
text-independent speaker verification, and the other baseline 
systems. This may be because the training and test utterances 
in the XM2VTSDB database have the same content. 

5. Conclusions 
We have proposed using more comprehensive LLR measures 
based on improved characterization of the alternative 
hypothesis model for speaker verification. The alternative 
hypothesis model is built on either a weighted arithmetic 
combination (WAC) or a weighted geometric combination 
(WGC) of useful information extracted from a set of pre-
trained background models. The parameters associated with 
the WAC or WGC are optimized via a new evolutionary 
minimum verification error (MVE) training method, such that 
both the false acceptance probability and the false rejection 
probability are minimized. Our experiment results 
demonstrate that the proposed methods outperform 
conventional LLR-based approaches. 
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Figure 1: DET curves for “Test”. 

Table 2. Experiment results in terms of HTER. 

Methods min HTER for 
“Evaluation” 

HTER for  
“Test” 

L1_MAP 0.0714 0.0626 
L1 0.0651 0.0545 

L2_20c 0.0776 0.0635 
L3_20c 0.0676 0.0535 
L4_20c 0.0734 0.0583 

WAC_GD_w_20c 0.0535 0.0448 
WGC_GD_w_20c 0.0522 0.0453 
WAC_GA_w_20c 0.0516 0.0443 
WGC_GA_w_20c 0.0489 0.0437 

 


