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ABSTRACT

In this paper, we propose a generative model for self-organizing
maps (SOM). Based on this model, we derive three EM-type al-
gorithms for learning SOM, namely, the SOCEM, SOEM, and
SODAEM algorithms. SOCEM is derived by using theclassifi-
cation EM(CEM) algorithm to learn the classification likelihood;
SOEM is derived by using theEM algorithm to learn the mix-
ture likelihood; and SODAEM is adeterministic annealingvariant
of SOCEM and SOEM. From our experiments on the organizing
property of SOM, we observe that SOEM is less sensitive to the
initialization of the parameters when using a small-fixed neighbor-
hood than SOCEM, while SODAEM can overcome the initializa-
tion problem of SOCEM and SOEM through an annealing process.

1. INTRODUCTION

The self-organizing map (SOM) [1] is a neural network model for
data visualization and clustering. The sequential and batch SOM
learning algorithms proposed by Kohonen have proved success-
ful in many practical applications. However, they also suffer from
some shortcomings, such as the lack of an objective (cost) func-
tion, a general proof of convergence, and a probability framework
[2]. Some alternative SOM learning algorithms that addressed
these issues have been proposed as follows.

In [3], the behavior of Kohonen’s sequential learning algo-
rithm was studied in terms of energy functions, based on which,
Cheng [4] proposed an energy function for SOM whose parame-
ters can be learned by the K-means type algorithm. Luttrell [5]
proposed a noisy vector quantization model called the topographic
vector quantizer (TVQ), whose training process coincides with the
learning of SOM. The cost function of TVQ represents the topo-
graphic distortion between the input data and the output code vec-
tors in terms of Euclidean distance. Graepelet al. [6] applied the
idea of deterministic annealing to the optimization of TVQ’s cost
function, and developed an algorithm for noisy vector quantiza-
tion which was called soft topographic vector quantizer (STVQ).
On the basis of topographic distortion, Heskes [7] developed an
algorithm identical to STVQ by applying another implementation
for deterministic annealing. To enable choosing the correct model
complexity for SOM by probabilistic assessment, Lampinen and
Kostiainen [8] developed a generative model for which the SOM
trained by Kohonen’s algorithm or TVQ gives the maximum like-
lihood estimate. Van Hulle developed a kernel-based topographic
formation in [9], where the parameters are adjust to maximize
the joint entropy of the kernel outputs. Later, he developed an
new algorithm with heteroscedastic Gaussian mixtures that allows

for a unified account of vector quantization, log-likelihood, and
Kullback-Leibler divergence [10]. Another probabilistic formula-
tion can be found in [11], where a normalized neighborhood func-
tion of SOM is adopted as the posterior distribution in E-step of
EM algorithm used for learning a mixture model to enforce the
self-organizing of the mixture components.

Sumet al. [12] interpreted Kohonen’s sequential learning al-
gorithm as maximizing the local correlations (coupling energies)
between neurons and their neighborhoods for the given input data.
Thus, they proposed an energy function for SOM that reveals the
correlations, and a gradient ascent learning algorithm for the en-
ergy function. Motivated by the work of Sumet al., we propose a
generative model for SOM that expresses the local coupling ener-
gies over the network with probabilistic likelihoods. Based on the
proposed model, we also develop three EM-type algorithms for
learning SOM, namely, the SOCEM, SOEM, and SODAEM algo-
rithms. SOCEM is derived by using the classification EM (CEM)
algorithm [13] to learn the classification likelihood; SOEM is de-
rived by using the EM algorithm to learn the mixture likelihood;
and SODAEM is a deterministic annealing variant of SOCEM and
SOEM. Because they inherit the properties of the CEM and EM al-
gorithms, all three algorithms include the features of reliable con-
vergence, low cost per iteration, economy of storage, and ease of
programming. From our experiments on the organizing property
of SOM, we observe that SOEM is less sensitive to the initializa-
tion of the parameters when using a small-fixed neighborhood than
SOCEM, while SODAEM can overcome the initialization problem
of SOCEM and SOEM through an annealing process.

The remainder of this paper is organized as follows. We first
describe the formulation of the generative model in Section 2.
Then, the derivations of the SOCEM, SOEM, and SODAEM al-
gorithms are given in Section 3. The experimental results are pre-
sented in Section 4. We then present our conclusions in Section
5.

2. FORMULATION OF THE GENERATIVE MODEL FOR
SOM

The SOM model [1] consists ofG neurons in a networkR = {r1,
r2, · · · , rG} with a neighborhood functionhkl that defines the
strength of lateral interaction between two neurons,rk andrl, for
k, l ∈ {1, 2, · · · , G}. Each neuron,rk, associates with a reference
model�k in the input data space.

Sumet al. [12] interpreted Kohonen’s sequential SOM learn-
ing algorithm as maximizing the local correlations (coupling ener-
gies) between the neurons and their neighborhoods with the given



input data. Given a data samplexi ∈ X = {x1,x2, · · · ,xN}, the
coupling energy betweenrk and its neighborhood is defined as

Exi|k =

GX
l=1

hklrk(xi;�k)rl(xi;�l)

= rk(xi;�k)

GX
l=1

hklrl(xi;�l), (1)

whererk(xi;�k) denotes the response of neuronrk to xi, which
is modeled by an isotropic Gaussian density. Then, the coupling
energy over the network forxi is defined as

Exi =

GX
k=1

Exi|k, (2)

and the energy function to be maximized is

C =

NX
i=1

log Exi . (3)

In Eq. (1), the term
PG

l=1 hklrl(xi;�l) can be considered as the
neighborhood response ofrk, where the conjunction between the
neuron responses is implemented using thesummingoperation.

In this study, we express the neuron responserl(xi;�l) as a
multivariate Gaussian distribution as follows:

rl(xi;�l) =
1

(2π)(d/2)|Σl|d/2

· exp(−1

2
(xi − �l)Σ

−1
l (xi − �l)

T ) (4)

for l = 1, 2, · · · , G; and formulate the neighborhood response of
rk as Y

l6=k

rl(xi;�l)
hkl , (5)

where the conjunction between the neuron responses in the neigh-
borhood ofrk is implemented using themultiplicativeoperation.
Then, for a givenxi, we define the coupling energy betweenrk

and its neighborhood in terms of probabilistic likelihood as fol-
lows:

ps(xi|k;Θ, h) = rk(xi;�k)hkk
Y
l6=k

rl(xi;�l)
hkl

=

GY
l=1

rl(xi;�l)
hkl

= exp(

GX
l=1

hkl log rl(xi;�l)), (6)

whereΘ is the set of reference models,h denotes the given neigh-
borhood function1. Then, we define the coupling likelihood ofxi

over the network as the following mixture likelihood:

ps(xi;Θ, h) =

GX
k=1

ws(k)ps(xi|k;Θ, h), (7)

wherews(k), for k = 1, 2, · · · , G, is fixed at1/G. When the
neighborhood size is reduced to zero (i.e.,hkl=δkl), ps(xi;Θ, h)
becomes a Gaussian mixture model with equal mixture weights.

1From another perspective, the coupling betweenrk and its neighbor-
ing neurons is jointly considered in our formulation, rather than being con-
sidered in a pairwise manner as in Eq. (1).

3. THE EM-TYPE ALGORITHMS FOR SOM

3.1. The CEM algorithm for SOM (SOCEM)

The self-organizing process of SOM can be described as a data
clustering procedure that preserves the spatial relationships be-
tween the clusters in a network. Based on the classification likeli-
hood criterion for data clustering [13], the computation of the cou-
pling likelihood of a data sample is restricted to its winning neuron.
The goal is to estimate the partition ofX , P̂ = {P̂1, P̂2, · · · , P̂G},
and the set of reference models,Θ̂, so as to maximize the follow-
ing objective function:

Cs(P,Θ;X , h)

=

GX
k=1

X
xi∈Pk

log(ws(k)ps(xi|k;Θ, h))

=

GX
k=1

X
xi∈Pk

GX
l=1

hkl log rl(xi;�l) + Constant. (8)

Similar to the derivations of the classification EM (CEM) al-
gorithm for clustering [13], the CEM algorithm for learning SOM
(SOCEM) is derived as follows.

E-step: Given the current reference model set,Θ(t), compute
the posterior probability of each mixture component ofps(xi;Θ

(t), h)
for eachxi as follows:

γ
(t)

k|i = ps(k|xi;Θ
(t), h)

=
ps(xi, k;Θ(t), h)

ps(xi;Θ(t), h)

=
exp(

PG
l=1 hkl log rl(xi;�(t)

l ))PG
j=1 exp(

PG
l=1 hjl log rl(xi;�(t)

l ))
, (9)

for k = 1, 2, · · · , G, andi = 1, 2, · · · , N .
C-step: Assign eachxi to the cluster whose corresponding

mixture component has the largest posterior probability forxi, i.e.,
xi ∈ P̂(t)

j if j = arg maxk γ
(t)

k|i.

M-step: After the C-step, the partition ofX (i.e., P̂(t)) is
formed, and the objective functionCs defined in Eq. (8) becomes

Cs(Θ; P̂(t),X , h) =

GX
l=1

GX
k=1

X
xi∈P̂(t)

k

hkl log rl(xi;�l)

+ Constant. (10)

By substituting Eq. (4) into Eq. (10) and taking the derivative of
Cs with respect to individual parameters and setting it to zero, we
obtain the following re-estimation formulae for the mean vectors
and covariance matrices;

�(t+1)
l =

PG
k=1

P
xi∈P̂(t)

k

hklxiPG
k=1 |P̂(t)

k |hkl

,

Σ
(t+1)
l = (11)PG
k=1

P
xi∈P̂(t)

k

hkl(xi − �(t+1)
l )(xi − �(t+1)

l )TPG
k=1 |P̂(t)

k |hkl

for l = 1, 2, · · · , G. When the neighborhood size is reduced to
zero (i.e.,hkl=δkl), SOCEM reduces to the CEM algorithm for a
Gaussian mixture model with equal mixture weights.



WhenΣl = λI for l = 1, 2, · · · , G, the clusters are spherical
and of equal volume. In this case, the SOCEM algorithm is equiv-
alent to the TVQ algorithm in [5] and the batch SOM learning
algorithm in [4]; however, they are developed from different per-
spectives. The major difference between the SOCEM algorithm
and Kohonen’s batch learning algorithm is that the former con-
siders the neighborhood information when selecting the winning
neuron, but the latter does not.

3.2. The EM algorithm for SOM (SOEM)

As is obvious from Eq. (10), in the formulation of the objective
function of the SOCEM algorithm, only the coupling likelihoods
associated with the winning neurons are considered. In this part,
the coupling likelihood over the entire network (i.e., Eq. (7)) is
considered. Consider Eq. (7) as a mixture model, wherek indi-
cates the mixture component from which the coupling likelihood
is generated, then SOM can be learned in the sense of conventional
maximum likelihood estimation. This can be performed by the EM
algorithm [14]. The EM algorithm for learning SOM (SOEM) is
as follows.

E-step: Given the mixture likelihood in Eq. (7), we form the
auxiliary function as follows:

Qs(Θ;Θ(t))

=

NX
i=1

GX
k=1

γ
(t)

k|i log ps(xi, k;Θ, h), (12)

whereγ
(t)

k|i is the same as Eq. (9). Since

ps(xi, k;Θ, h) = ws(k)ps(xi|k;Θ, h), (13)

Eq. (12) can be rewritten as

Qs(Θ;Θ(t)) (14)

=

NX
i=1

GX
k=1

γ
(t)

k|i log(ws(k)ps(xi|k;Θ, h)).

As ws(k), for k = 1, 2, · · · , G, is fixed at1/G, by substituting
Eq. (6) into Eq. (14), we obtain

Qs(Θ;Θ(t)) (15)

=

NX
i=1

GX
k=1

γ
(t)

k|i

GX
l=1

hkl log rl(xi;�l) + Constant,

=

GX
l=1

NX
i=1

GX
k=1

γ
(t)

k|ihkl log rl(xi;�l) + Constant.

M-step: By replacing the responserl(xi;�l) in Eq. (15) with
the multivariate Gaussian density in Eq. (4) and setting the deriva-
tive of Qs with respect to individual mean vectors and covariance
matrices to zero, we obtain the re-estimation formulae as follows:

�(t+1)
l =

PN
i=1(

PG
k=1 γ

(t)

k|ihkl)xiPN
i=1(

PG
k=1 γ

(t)

k|ihkl)
,

Σ
(t+1)
l = (16)PN
i=1(

PG
k=1 γ

(t)

k|ihkl)(xi − �(t+1)
l )(xi − �(t+1)

l )TPN
i=1(

PG
k=1 γ

(t)

k|ihkl)
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Fig. 1. For each data samplexi, the adaptation of the reference
models in SOCEM is restricted to the winning reference model
and its neighborhood. However, in SOEM, the winner is relaxed
to the weighted winners by the posterior probabilitiesγ

(t)

k|i, for
k = 1, 2, · · · , G. Each data samplexi contributes proportionally
to the adaptation of each reference model and its neighborhood
according to the posterior probabilities.

for l = 1, 2, · · · , G. When the neighborhood size is reduced to
zero (i.e.,hkl=δkl), SOEM reduces to the EM algorithm for a
Gaussian mixture model with equal mixture weights.

SOEM adapts the reference modes in a more global way than
SOCEM. To explain this perspective, we can consider the learning
of SOCEM and SOEM in the sense of sequential learning. As il-
lustrated in Fig. 1, in the SOCEM algorithm (cf. Eq. (11)), each
data samplexi only contributes to the adaptation of the winning
reference model and its neighborhood (i.e.,xi only contributes to
the learning of the topological order between the winning refer-
ence model and its neighborhood). However, in the SOEM algo-
rithm (cf. Eq. (16)), each data samplexi contributes proportion-
ally to the adaptation of each reference model and its neighborhood
according to the posterior probabilitiesγ

(t)

k|i for k = 1, 2, · · · , G.

3.3. The DAEM algorithm for SOM (SODAEM)

Similar to the deterministic annealing EM (DAEM) algorithm for
learning GMM [15], we can also develop a DAEM algorithm for



the proposed generative model to learn SOM. With the mixture
likelihood defined in Eq. (7), the first step of DAEM derives the
posterior density in theE-stepusing the principle of maximum en-
tropy. Following the derivation for posterior probability in [15]
with the current model’s parameter setΘ(t), we obtain the poste-
rior probability of thekth mixture component forxi as follows:

τ
(t)

k|i =
ps(xi|k;Θ(t), h)βPG

j=1 ps(xi|j;Θ(t), h)β

=
exp(β

PG
l=1 hkl log rl(xi;�(t)

l ))PG
j=1 exp(β

PG
l=1 hjl log rl(xi;�(t)

l ))
. (17)

Then, the auxiliary function to be minimized isUsβ(Θ;Θ(t))

= −PN
i=1

PG
k=1 τ

(t)

k|i log ps(xi, k;Θ, h), and the respective re-
estimation formulae for the mean vectors and covariance matrices
are as follows:

�(t+1)
l =

PN
i=1(

PG
k=1 τ

(t)

k|ihkl)xiPN
i=1(

PG
k=1 τ

(t)

k|ihkl)
,

Σ
(t+1)
l = (18)PN
i=1(

PG
k=1 τ

(t)

k|ihkl)(xi − �(t+1)
l )(xi − �(t+1)

l )TPN
i=1(

PG
k=1 τ

(t)

k|ihkl)

for l = 1, 2, · · · , G.
Note that the re-estimation formulae for SODAEM are same

as those for SOEM, except thatγ
(t)

k|i is replaced byτ (t)

k|i . 1/β cor-
responds to the temperature that controls the annealing process,
during which a high temperature is applied initially. Then the sys-
tem is cooled down by gradually reducing the temperature. When
1/β → 1, the SODAEM algorithm becomes the SOEM algorithm;
however, when1/β → 0, it is equivalent to the SOCEM algo-
rithm. In other words, SODAEM can be viewed as a deterministic
annealing variant of SOEM and SOCEM.

In the case ofΣl = λI for l = 1, 2, · · · , G, SODAEM is
equivalent to the STVQ algorithm [6], which learns the parameters
by maximizing their density function predicted by the maximum
entropy principle. This is equivalent to the EM algorithm for SOM
in [7], which is derived by another implementation for DA. How-
ever, the case ofβ = 1 was not well addressed in [6] and [7]. This
may be because their original idea was to develop a DA learning
for TVQ. Whenβ is fixed at 1, however, SODAEM becomes the
SOEM algorithm.

4. EXPERIMENTS

4.1. Data set and experimental setup

We conducted experiments on a real-world data set: training set
of class ‘0’ in the “Pen-Based Recognition of Handwritten Dig-
its” database (PenRecDigitsC0) from the UCI Machine Learn-
ing Database Repository [16]. The data set consists of 802 16-
dimensional vectors. To demonstrate the map-learning process,
we used the first two dimensions of the feature vectors as data for
simulations of SOM. As a pre-processing step, we scaled down
each element of the vectors in PenRecDigitsC0 to 1/100 of its
original value to avoid numerical traps. In the experiments, an 8
× 8 equally spaced square lattice in a unit square was used as the

structure of the SOM network. For the neighborhood function, we

used the Gaussian kernelhkl = exp(− ‖rk−rl‖2
2σ2 ).

We evaluated Kohonen’s algorithm, SOCEM, SOEM, and SO-
DAEM with 20 independent random initialization trials and two
setups forσ in hkl. For each trial, data samples were randomly
selected from the data set as the initial mean vectors,µ

′
1, µ

′
2, · · · ,

µ
′
G, of the reference models, which were multivariate Gaussians

with full covariance matrices. The initial covariance matrixΣ
′
l was

set asρlI, whereρl=mink 6=l{‖µ′l − µ
′
k‖}, for l = 1, 2, · · · , G.

To avoid the singularity problem, we applied the variance limiting
step to the covariance matrices during the learning process. If the
value of any element of the covariance matrix is less than 0.001, it
was set at 0.001.

4.2. Results

We first demonstrate the map-learning processes of SOCEM, SOEM,
and SODAEM using one of the 20 random initializations, and then
summarize the overall results of all the initializations.

Simulations by SOCEM: Fig. 2 shows two simulations using
the SOCEM algorithm. In the first simulation, SOCEM is run with
the random initialization in Fig. 2 (a) and a fixedσ of 0.15 inhkl.
As shown in Fig. 2 (b), the algorithm’s learning converges to an
unordered map. In the second simulation, SOCEM starts with the
same random initialization as that in Fig. 2 (a) but with a largerσ
of 0.6. When it converges at the currentσ value,σ is reduced by
0.15. Then, the algorithm is applied again with the newσ value
and the reference models obtained in the previous phase. This
process continues until SOCEM converges atσ = 0.15. Figs. 2
(c), (d), (e), and (f) depict the maps obtained whenσ =0.6, 0.45,
0.3, and 0.15, respectively.

Simulations by SOEM: We conducted two similar simula-
tions using the SOEM algorithm. In the first, SOEM is run with
the random initialization in Fig. 3 (a) (the same as that in Fig. 2
(a)) and a fixedσ of 0.15. As shown in Fig. 3 (b), the learning
of SOEM converges to an unordered map. In the second simula-
tion, SOEM starts with the random initialization in Fig. 3 (a) and
a largerσ of 0.6. Then, the value ofσ is gradually reduced to 0.15
in 0.15 decrements. Figs. 3 (c), (d), (e), and (f) depict the maps
obtained when SOEM converges atσ =0.6, 0.45, 0.3, and 0.15,
respectively.

Simulations by SODAEM: Fig. 4 depicts the simulations us-
ing the SODAEM algorithm with the same random initialization
as that in Fig. 2 (a) and Fig. 3 (a). The value ofσ is also fixed
at 0.15, and the initial value ofβ is set to 0.16. When SODAEM
converges at aβ value, it is applied again withβnew=β × 1.6 and
the reference models obtained in the previous phase. The learn-
ing process finally converges atβ = 17.592. Whenβ = 1.04
andβ = 17.592, SODAEM is almost equivalent to SOEM and
SOCEM, respectively. In these two cases, SODAEM converges to
the ordered maps in Fig. 4 (e) and Fig. 4 (f), respectively. How-
ever, as shown in Figs. 2 (a)-(b) and Figs. 3 (a)-(b), SOCEM and
SOEM do not converge to an ordered map whenσ = 0.15, which
demonstrates that the annealing process of SODAEM overcomes
the initialization problem of SOCEM and SOEM whenσ = 0.15.
It is worth mentioning that, if the value ofσ is too small to form
an ordered map at a smallβ value, SODAEM may not be able to
obtain any ordered map during the annealing process.

Discussion: All the experiment results obtained by the three
algorithms for the 20 random initializations are summarized in Ta-
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Fig. 2. Simulations of SOM using the SOCEM algorithm on Pen-
RecDigitsC0. Simulation 1 ((a)-(b)): When SOCEM is run with
the random initialization in (a) andσ = 0.15, it converges to the
unordered map in (b). Simulation 2 ((a) and (c)-(f)): SOCEM
starts withσ = 0.6 and the random initialization in (a). Then, the
value ofσ is reduced to 0.15 in 0.15 decrements.

ble 1. Several conclusions can be drawn from the table. First,
SOEM often converged to an ordered map at a small, fixedσ value
(σ = 0.15 in the experiments); but SOCEM seldom did so. This
is because SOEM learns the map in a more global way, as stated
in Sec. 3.2, so that it is less sensitive to the initialization of the pa-
rameters whenσ is small. The results for Kohonen’s algorithm and
SOCEM are similar. This is because they only differ in the winner
selection strategy. Second, the initialization issue of Kohonen’s al-
gorithm, SOCEM and SOEM can be overcome by using a larger
σ value (σ = 0.6 in the experiments) initially, and then gradu-
ally reducing the value to the targetσ value (0.15 in the experi-
ments). Third, the experiment results show that SODAEM over-
comes the initialization issue of SOCEM and SOEM at a smallσ
value (0.15 in the experiments) using the annealing process, which
is controlled by the temperature parameter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15 with rand.
ini. (converge)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Fig. 3. Simulations of SOM using the SOEM algorithm on Pen-
RecDigitsC0. Simulation 1 ((a)-(b)): When SOEM is run with
the random initialization in (a) andσ = 0.15, it converges to the
unordered map in (b). Simulation 2 ((a) and (c)-(f)): SOEM starts
with σ = 0.6 and the random initialization in (a). Then, the value
of σ is reduced to 0.15 in 0.15 decrements.

5. CONCLUSIONS

We have proposed a generative model for SOM and developed
three EM-type learning algorithms, namely, the SOCEM, SOEM,
and SODAEM algorithms. The proposed algorithms improve Ko-
honen’s learning algorithms by including a cost function, a general
proof of convergence, and a probabilistic framework.

In addition, the proposed learning algorithms provide some
insights into the choice of neighborhood size that would ensure
topographic ordering. From the experiment results, we observe
that the learning performance of SOCEM is very sensitive to the
initial setting of the reference models when the neighborhood is
small. However, it is not sensitive to the initial condition when
the neighborhood is sufficiently large. To deal with the initial-
ization problem, we first run SOCEM with a large neighborhood,
and then gradually reduce the neighborhood size until the learning
converges to the desired map. When using a small neighborhood,
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(a) random ini.
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(b) σ = 0.15, β = 0.16
(converge)
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(c) σ = 0.15, β =
0.256 (converge)
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(d) σ = 0.15, β =
0.409 (converge)
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(e) σ = 0.15, β = 1.04
(converge)
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(f) σ = 0.15, β =
17.592 (converge)

Fig. 4. Simulations of SOM using the SODAEM algorithm on
PenRecDigitsC0. The value ofσ is fixed at 0.15. The value ofβ
is initialized at 0.16 and increased in multiples of 1.6 up to 17.592.

SOEM is less sensitive to the initialization than SOCEM. However,
to learn an ordered map, SOEM still needs to start with a large
neighborhood. Alternatively, we can apply SODAEM, which is a
deterministic annealing variant of SOCEM and SOEM, to learn a
map. In our experiments, SODAEM overcomes the initialization
issue of SOCEM and SOEM via the annealing process controlled
by the temperature parameter.
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