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Abstract

As part of the research into content-based music information retrieval (MIR), this paper presents a

preliminary attempt to automatically identify the language sung in popular music recordings. It is

assumed that each language has its own set of constraints that specify the sequence of basic

linguistic events when lyrics are sung. Thus, the acoustic structure of individual languages may be

characterized by statistically modeling those constraints. To achieve this, the proposed method

employs vector clustering to convert a singing signal from its spectrum-based feature

representation into a sequence of smaller basic phonological units. The dynamic characteristics of

the sequence are then analyzed using bigram language models. As vector clustering is performed

in an unsupervised manner, the resulting system does not need sophisticated linguistic knowledge;

therefore, it is easily portable to new language sets. In addition, to eliminate interference from

background music, we leverage the statistical estimation of the background musical

accompaniment of a song so that the vector clustering truly reflects the solo singing voices in the

accompanied signals.
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1. Introduction

With the ever-increasing capabilities of data storage and transmission applications, and thanks to

recent advances in various digital signal processing technologies, the production and distribution

of music material has enjoyed unprecedented growth in recent years. Various types of audio

formats, coupled with media players and software have revolutionized the way people listen to

music. However, the rapid proliferation of musical material has made it increasingly difficult to

find a piece of music from the innumerable options available. In recent years, this dilemma has

motivated some researchers to develop techniques that extract information from music

automatically. Specific topics, such as melody spotting (Akeroyd et al., 2001), instrument

recognition (Eronen, 2003), music score transcription (Medina et al., 2003), and genre

classification (Tzanetakis and Cook, 2002), have been studied extensively within the overall

context of content-based music information retrieval (MIR). Meanwhile, other researchers have

focused on the problem of extracting singing information from music, for example, lyric

recognition (Wang et al., 2003) –to decode what is sung; and singer identification (Kim and

Whitman, 2002) –to determine who is singing. In tandem with the above research, this study

presents a preliminary attempt to identify the sung language of a song. Specifically, we try to

determine which language among a set of candidate languages is sung in a given popular music

recording.

Sung language identification (sung LID) is useful for organizing multilingual music

collections that are either unlabeled or insufficiently labeled. For instance, songs with English

titles, but sung in different languages, are commonplace in popular music; hence, it is usually

difficult to infer the language of a song simply from its title. In such cases, sung LID can be used

to categorize music recordings by language, without needing to refer to the lyrics or to additional

textual information about the lyrics. This function could support preference-based searches for

music and may also be useful in other techniques for classifying music, such as genre
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classification. Sung LID can also be used to distinguish between songs that have the same tune,

but whose lyrics are in different languages. This is often the case with cover versions of songs,

where a singer performs a song written or made famous by a different artist. Since popular songs

are often translated into different languages and the titles are changed accordingly, sung LID

could help a melody-based MIR system handle multilingual music documents.

To date, only a few researchers have studied sung LID (e.g., Tsai and Wang, 2004;

Schwenninger et al., 2006). The closest related research is spoken language identification (spoken

LID) (Muthusamy, Barnard, and Cole, 1994; Navratil and Zuhlke, 1998), which tries to identify

the language being spoken from a sample of speech by an unknown speaker. Spurred by market

trends and the need to provide services to a wider public, spoken LID has gained in importance

because it is a key step in developing automatic multilingual systems, such as multilingual speech

recognition, information retrieval, and spoken language translation. Various methods (e.g., House

and Neuburg, 1977; Hazen and Zue, 1997; Zissman, 1995) have attempted to mimic the ability of

humans to distinguish between languages. From a linguistic standpoint, spoken languages can be

distinguished from one another by the following traits.

 Phonology. Phonetic inventories differ from one language to another. Even when languages

have nearly identical phones, the frequency of the occurrence of phones and the combinations

of them differ significantly across languages.

 Prosody. Significant differences exist in the duration of phones, the speech rate, and the

intonation across different languages.

 Vocabulary. Each language has its own lexicons; hence, the process of word formation also

differs from one language to another.

 Grammar. The syntactic rules that govern the concatenation of words into spoken utterances

can vary greatly from language to language.

Although humans identify the language of a speech utterance by using one or several of the
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above traits, to date, spoken-LID research has not fully exploited all of these traits. Instead, it has

developed methods that are reliable, computationally efficient, and easily portable to new

language sets. For example, phonological information and prosodic information are the most

prevalent cues exploited for spoken LID, since they can be easily extracted from an acoustic signal

without requiring too much language-specific knowledge. More specifically, a feasible way to

perform spoken LID is stochastic modeling of the so-called phonotactics, i.e., the dependencies

between the phonetic elements of utterances (e.g., House and Neuburg, 1977; Nakagawa et al.,

1992). A spoken-LID system based on phonotactics usually consists of a phonetic element

recognizer and a set of n-gram-based language models. A number of approaches have adopted this

paradigm (e.g., Harbeck and Ohler, 1999; Nakagawa et al., 1992; Zissman, 1995). Other

combinations that use different language-discriminating information (Cummins et al., 1999;

DuPreez et al., 1999; Hazen and Zue, 1997), but not complex linguistic knowledge, have also been

studied in order to improve spoken-LID performance.

Intuitively, it seems reasonable that spoken LID methods could also be used for sung LID.

However, porting a well-developed spoken LID technique to sung LID is not straightforward.

First, singing differs from speech in many ways; for example, the various phonetic modifications

employed by singers, prosodic shaping to fit the overall melody, and the peculiar syntactic

structures used in lyrics. Even state-of-the-art spoken-LID systems may not be able to deal with

the huge variations found in singing voices. Second, most popular songs contain background

accompaniment, which inevitably causes interference when attempts are made to automatically

determine the language underlying a singing signal. In particular, when using phonotactic

information for sung LID, it is rather difficult to build a phone recognizer capable of handling

accompanied singing signals with satisfactory accuracy and reliability. Third, spoken-LID

methods based on prosodic information might fail in the sung-LID task, since the original

prosodic structures of the spoken language are largely submerged by the melody in a song.
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Recognizing these problems, the goal of this study is to develop a sung-LID method that is

data-driven and robust against interference from background music, and does not involve the

cumbersome task of phone recognition.

The remainder of this paper is organized as follows. Section 2 gives an overview of the

proposed method. The components of sung-LID, namely, vocal/non-vocal segmentation, language

characteristic modeling, and stochastic matching, are discussed in Sections 3, 4, and 5,

respectively. Section 6 details the experiment results. Then, in Section 7, we present our

conclusions.

2. Method Overview

A sung-LID system takes a test music recording as input and produces the identity of the language

sung in that recording as output. Since most music is a mixture of assorted sound sources, the key

to designing a successful sung-LID system is to extract, model, and compare the characteristic

features of language acoustics by eliminating interference from non-language features. The

proposed sung-LID process involves two phases: training and testing, as shown in Figure 1.

Training
Data

Vocal/Non-vocal
Segmentation

(Manual)

Language
Characteristic

Modeling

Language-specific
Models

(Training Phase)

(Testing Phase)

Test
Data

Automatic
Vocal/Non-vocal
Segmentation

Stochastic
Matching

& Decision

Hypothesized
Language

Vocal/Non-vocal
Characteristic

Modeling
Vocal Model &

Non-vocal Model

Fig. 1. Illustration of the proposed sung-LID process
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In the training phase, we use a database containing a wide variety of music genres to

establish the characteristic representation of each sung language of interest. Since information

about the sung language is not present in the accompaniment, the training procedure begins by

segmenting a music recording into vocal and non-vocal regions. Vocal regions consist of

concurrent singing and accompaniment, whereas non-vocal regions consist of accompaniment

only. To ensure that the training is reliable, the segmentation should be performed manually. Next,

the acoustic characteristics of the vocal and non-vocal regions are stochastically modeled for use

in automating the segmentation procedure in the testing phase. Then, a stochastic modeling

technique is applied to extract the underlying characteristics of the sung language in the vocal

segments by suppressing the background accompaniment. As a result, each language is

represented by a language-specific parametric model.

During testing, the vocal and non-vocal segments of an unknown music recording are

automatically located and marked accordingly. The vocal segments are then examined using each

of the language-specific parametric models. Finally, the language of the model deemed the best

match with the observed vocal segments is taken as the language of that test recording.

3. Vocal/Non-vocal Characteristic Modeling and Segmentation

The basic strategy applied in this study follows our previous work (Tsai and Wang, 2006), in

which a stochastic classifier is constructed to distinguish between vocal and non-vocal regions.

The classifier consists of 1) a front-end signal processor, which converts digital waveforms into

spectrum-based feature vectors, e.g., cepstral coefficients; and 2) a backend statistical processor,

which performs modeling and matching.

A set of Gaussian mixture models (GMMs) is used to model the acoustic characteristics of the

vocal and non-vocal classes. For each language of interest, we construct a GMM using the feature
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vectors of the manually-segmented vocal parts of the music data sung in that language. Thus, L

vocal GMMs 1, 2 ,…, L are formed for L languages. We also construct a non-vocal GMM, N ,

using the feature vectors of all the manually-segmented non-vocal parts of the music data. The

parameters of the GMMs are initialized via k-means clustering and iteratively adjusted by the

expectation-maximization (EM) algorithm (Dempster et al., 1977). When an unknown music

recording is tested, the classifier takes as input the T-length feature vectors X = {x1, x2,..., xT}

extracted from that recording, and produces as output the frame likelihoods p(xt|N) and p(xt|l), 1

l L, 1 t T. Since singing tends to be continuous, classification can be performed in a

segment-by-segment manner. Specifically, a W-length segment is hypothesized as either vocal or

non-vocal using
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where k is the segment index.

4. Language Characteristic Modeling

This section presents a stochastic method for representing the characteristics of sung languages. It

does not involve complicated linguistic rules and pre-prepared phonetic transcriptions.

4.1.Vector Tokenization Followed by Grammatical Modeling

Our basic strategy involves exploring the phonotactics-related information of individual

languages by examining the statistical dependencies between sound events present in a singing

signal. In contrast to the conventional phonotactic modeling approach, which relies on phone

recognition as a front-end operation, we use an unsupervised classification method to derive the

basic phonological units inherent in any singing process. This allows us to circumvent the

cumbersome task of segmenting singing into linguistically meaningful elements.



8

Given a set of training data consisting of spectrum-based feature vectors computed from the

vocal parts of a music recording, language characteristic modeling is performed in two stages, as

shown in Figure 2. In the first stage, vector clustering is applied to all feature vectors pertaining to

a particular language. This produces a language-specific codebook consisting of several

codewords used to characterize the individual clusters. Each feature vector is then assigned the

codeword index of its associated cluster. We assume that each cluster represents a specific vocal

tract configuration corresponding to a fragment of a broad phonetic class, such as vowels,

fricatives, or nasals. The concatenation of different codeword indices in a singing signal may

follow some language-specific rules resembling phonotactics. If this is the case, the characteristics

of the sung language can be extracted by analyzing the generated codeword index sequences.

Training data (Feature Vectors)

Vector Clustering

Grammatical Modeling

Codebook

Bigram Language Model

Smoothing & Merging

Basic Phonological Unit Sequences

Codeword Index
Sequences

Vector
Tokenization

Fig. 2. Language characteristic modeling

To reflect the fact that a vocal tract’s configuration does not change suddenly, the generated

codeword index sequences are smoothed in the time domain. For smoothing, an index sequence is

first divided into a series of consecutive, non-overlapping, fixed-length segments. Each segment

is then assigned the majority index of its constituent vectors. After that, adjacent segments are



9

merged as a homogeneous segment if they have the same codeword index. Since each

homogeneous segment is regarded as a basic phonological unit, the vocal parts of a piece of music

can be tokenized into a sequence of basic phonological units.

In the second stage, a grammatical model is used to characterize the dynamics of the

generated basic phonological unit sequences. There are many ways to do this. In our

implementation, bigram language models (Jelinek, 1990) are used. The parameters of a bigram

language model, which consist of interpolated bigram probabilities, are estimated using the

following relative frequency method:
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where wt and wt-1 denote two successive basic phonological units, is an interpolating factor

subject to 0 1, K is the codebook size, nj is the number of basic phonological units assigned

as codeword j, and nij denotes the number of two successive basic phonological units assigned as

codewords i and j, respectively. Note that the transition between two separate vocal regions in a

music recording is not considered in the computation of bigram probabilities. In summary, a

language-specific model consists of a codebook and a bigram language model.

4.2.Solo Voice Codebook Generation

The effectiveness of the above language characteristic modeling technique depends on whether

the vector tokenization truly reflects the phonology. Since the majority of popular songs contain

background musical accompaniment during most or all vocal passages, applying conventional

vector clustering methods, such as a k-means algorithm, directly to the accompanied singing

signals may generate clusters related to both the vocal tract’sconfiguration and the instrumental

accompaniment. To address this problem, we develop a codebook generation method for vector

clustering, which estimates the stochastic characteristics of the underlying solo voices from

accompanied singing signals.
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Let X = {x1, x2,..., xT} denote all the feature vectors computed from the vocal regions of a

music recording. Because of the accompaniment, X can be considered as a mixture of a solo voice

S = {s1, s2, ..., sT} and background music B = {b1, b2, ..., bT}. More specifically, S and B are added

in the time domain or linear spectrum domain, but neither of them is independently observable.

Our goal is to create a codebook to represent the generic characteristics of the solo voice signal S,

such that vector tokenization can be performed on the basis of this codebook. Under the vector

clustering framework, we assume that the solo voice signal and background music are

characterized, respectively, by two independent codebooks Cs = {cs,1, cs,2,…, cs,Ks} and Cb = {cb,1,

cb,2,…, cb,Kb}, where cs,i, 1 i Ks and cb,j, 1 j Kb are the codewords. To better represent the

acoustic feature space, each cluster is modeled by a Gaussian density function. Therefore, a

codeword consists of a mean vector and a covariance matrix, i.e., cs,i = {s,i, s,i} and cb,j = {b,j,

b,j}, where s,i and b,j are mean vectors, and s,i and b,j are covariance matrices. Vector

clustering can be formulated as a problem of how to best represent X by choosing and combining

the codewords from Cs and Cb. To measure the accuracy of vector clustering, we compute the

following conditional probability:
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where p(xt |cs,i, cb,j) denotes one possible combination of the solo voice and background music that

could form an instant accompanied singing signal xt. If the accompanied signal is formed from a

generative function xt = f (st, bt), 1 t T, the probability p(xt | cs,i, cb,j) can be computed by
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where G() denotes a multi-variate Gaussian density function. When using such a measurement,

vector clustering is considered effective if the probability p(X|Cs,Cb) is as high as possible.

In most popular songs, substantial similarities exist between the music in the non-vocal
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regions and the accompaniment of the vocal regions. Therefore, although the background music B

is unobservable, its stochastic characteristics can be approximated from the non-vocal regions.

This assumption enables us to construct the background music codebook Cb by applying the

k-means clustering algorithm to the feature vectors of the non-vocal regions directly. Accordingly,

based on the codebook Cb and the observable accompanied voice X, it is sufficient to derive the

solo voice codebook Cs via a maximum likelihood estimation as follows:
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Equation (5) can be solved by the EM algorithm, which starts with an initial codebook Cs and

iteratively estimates a new codebook sĈ such that p(X| bs CC ,̂ ) p(X|Cs,Cb). It can be shown

that the need to increase the probability p(X| bs CC ,̂ ) can be satisfied by maximizing the auxiliary

function
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where () denotes a Kronecker delta function, and
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Letting Q )ˆ( ss CC  = 0 with respect to each parameter to be re-estimated, we have
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where the prime operator () denotes the vector transpose, and E{} denotes the expectation.

Detailed derivations of Equations (8) and (9) can be found in Nadas et al. (1989), Rose et al.
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(1994), and Tsai and Wang (2006). Figure 3 summarizes the procedure for generating a solo voice

codebook.

Codebook
Generation

Music Recordings

Vocal/Non-vocal
Segmentation

Non-vocal
Signal B

Vocal Signal X Background
Music

Codebook Cb

Solo Voice Codebook Cs

( )

Codebook
Generation

( )

)|(max bp
b

CB
C

),|(max bsp
s

CCX
C

Fig. 3. Procedure for generating a solo voice codebook

5. Stochastic Matching and Decision

In the testing phase, the system determines the language sung in a music recording based on the

language-specific codebooks and bigram language models. As shown in Figure 4, a test music

recording is first segmented into vocal and non-vocal regions. Then, the feature vectors from the

non-vocal regions are used to form a codebook Cb, which simulates the characteristics of the

background accompaniment in the vocal regions. For each candidate language L, the associated

solo voice codebook Cs,l, 1 l L and the background music codebook Cb are used to tokenize

the feature vectors of the vocal regions {x1, x2,..., xT} into a codeword index sequence V (l) = {v1
(l),

v2
(l),…, vT

(l)}, where T is the total length of the vocal regions, and vt
(l), 1 t T is determined by
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Each of the codeword index sequences V (l), 1 l L is then converted into a basic phonological

unit sequence W(l) = {w1
(l), w2

(l),…, )(
)(

l
N lw } by smoothing and merging the adjacent identical

indices.

Codebook
Generation

A Test Music Recording

Vocal/Non-vocal
Segmentation

Non-vocal
Regions

Vocal Regions

Background
Music

Codebook

Language 1
Solo Voice
Codebook

Vector
Tokenization

Language 2
Solo Voice
Codebook

Vector
Tokenization

Language L
Solo Voice
Codebook

Vector
Tokenization

Bigram
Likelihood

Computation

Language 1
Bigram
Model

Bigram
Likelihood

Computation

Language 2
Bigram
Model

Bigram
Likelihood

Computation

Language L
Bigram
Model

Maximum Likelihood Decision

Hypothesized Language

Basic Phonological Unit Sequences

Log-likelihoods

Fig. 4. Procedure for hypothesizing the language of an unknown test music recording
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For each language l, the dynamics of the basic phonological unit sequence W(l) are examined

using the bigram language model (l), in which the log-likelihood log p(W(l)|(l)) that W(l) tests

against (l) is computed by
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Note that transitions between vocal regions are not considered when computing Equation (11).

According to the maximum likelihood decision rule, the identifier should decide in favor of a

language that satisfies

).|(logmaxarg )()(* ll

l
Wpl  (12)

6. Experiments

6.1 Music Database

The music database used in the experiments consisted of 346 tracks from Mandarin, English, and

Japanese pop music CDs, which reflected the major languages of popular music in Taiwan. The

database roughly covered five genres: soundtracks, country, folk, jazz, and rock. The length of

each track was around three minutes. As shown in Table 1, the database was composed of three

subsets. Subset DB-1 was used to train the sung-LID system, while subsets DB-2 and DB-3 were

used to evaluate the system’sperformance. In DB-1, there were 60 Mandarin songs, 60 English

songs, and 60 Japanese songs, denoted as DB-1-M, DB-1-E, DB-1-J, respectively. In DB-2, there

were 20 Mandarin songs, 20 English songs, and 20 Japanese songs, denoted as DB-2-M, DB-2-E,

DB-2-J, respectively. There was no overlap between the singers in DB-1 and DB-2.

Subset DB-3 contained 53 pairs of cover versions of songs. Each pair consisted of two songs

with similar tunes and accompaniments, but they were sung in different languages. There were 32

pairs of English-Mandarin cover versions and 21 pairs of Japanese-Mandarin cover versions,
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denoted as DB-3-EM and DB-3-JM, respectively. Of the 53 pairs, 18 pairs were performed by

bilingual singers, i.e., each singer performed two songs with almost identical tunes, but in different

languages. None of the singers in DB-3 appeared in DB-1 or DB-2. The purpose of using a dataset

like DB-3 is to avoid the bias that arises from tunes, singers, or music styles, which may affect the

objectivity of assessing a sung-LID system. For example, some English songs may be easily

distinguishable from Mandarin songs due to the significant differences in the musical style of most

English and Mandarin pop songs, rather than the underlying languages. Thus, to avoid

overestimating the performance of sung-LID, we used DB-3-EM to check if a song with a typical

English music style sung in Mandarin could be correctly identified as Mandarin.

Table 1. Music database

Subset
Vocal/Non-vocal

Labeling Purpose
DB-1-E 60 Mandarin Songs Yes
DB-1-M 60 English Songs YesDB-1
DB-1-J 60 Japanese Songs No

Training

DB-2-E 20 Mandarin Songs Yes
DB-2-M 20 English Songs YesDB-2
DB-2-J 20 Japanese Songs No

Evaluation

DB-3-EM 32 Pairs of English-Mandarin Cover Songs YesDB-3 DB-3-JM 21 Pairs of Japanese-Mandarin Cover Songs No Evaluation

However, during this initial development stage, we only labeled part of the database with

vocal/non-vocal boundaries, as shown in Table 1. In addition, to exclude high frequency

components beyond the range of normal singing voices, all music data was down-sampled from a

CD sampling rate of 44.1 kHz to 22.05 kHz. Feature vectors, each consisting of 20 Mel-scale

frequency cepstral coefficients, were computed using a 32-ms Hamming-windowed frame with

10-ms frame shifts.
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6.2 Experiment Results

Since the language used in a song is independent of the accompaniment, it is desirable that all

non-vocal segments should be identified and removed. To determine the degree that the

performance of the proposed sung-LID system is affected by imperfect vocal/non-vocal

segmentation, we began the experiments by using only music data with vocal/non-vocal labeling.

First, we used DB-1-E and DB-1-M to train the vocal/non-vocal models and evaluated the

performance of the vocal/non-vocal segmentation using DB-2-E, DB-2-M, and DB-3-EM. The

performance was characterized by a frame-based accuracy rate computed as the percentage of

correctly-hypothesized frames over the total number of test frames. In view of the limited ability

of the human ear to detect vocal/non-vocal changes (Delacourt and Wellekens, 2000), all frames

that occurred within 0.5 seconds of a perceived switch-point were ignored when computing the

accuracy. Using 64 mixture components per GMM along with 60-frame analysis segments

(empirically the most accurate configurations), we achieved a segmentation accuracy rate of

79.2%.

Then, sung-LID experiments were conducted using DB-2-E, DB-2-M, and DB-3-EM. During

each test, the language sung in a music recording was identified as either English or Mandarin. We

evaluated the performance with respect to test recordings of different length. Each track in DB-2-E,

DB-2-M, and DB-3-EM was divided into several overlapping clips of T feature vectors. A 10-sec

clip corresponded to 1000 feature vectors, and the overlap of two consecutive clips was 500

feature vectors. Each clip was treated as an individual music recording. Sung LID was performed

in a clip-by-clip manner, and the technique’s performance was evaluated on the basis of its

accuracy, which is the percentage of correctly-identified clips over the total number of test clips.

In the training phase, the number of codewords used in each language-specific solo voice

codebook and the background music codebook were empirically determined to be 32 and 16,

respectively. In the testing phase, if the number of non-vocal frames exceeded 200, an
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online-created background music codebook was empirically set to have 4 codewords; otherwise,

background music codebook was not used. The segment length for smoothing the generated

codeword index sequences was empirically set to 5, and the interpolating factor in Equation (2)

was set to 0.9. For performance comparison, we also implemented sung LID without using any

background music codebook.

Figure 5 shows the sung-LID results with respect to T = 3000 (30 sec), 6000 (60 sec), 9000 (90

sec), and entire track, in which clips labeled as totally non-vocal were not used for testing. The

figure shows that, as expected, the sung-LID accuracy rate improves as the length of the test

recordings increases. We also observe that sung LID with solo voice codebooks outperforms the

method that does not consider background music. The performance gap increases as the length of

the test music recordings increases. This is because longer recordings contain more information

about the background music, which can be exploited to obtain a song’sunderlying phonological

units more reliably. However, since automatic vocal/non-vocal segmentation is far from perfect,

the sung-LID accuracy rate declines by approximately 10% when the vocal/non-vocal

segmentation is performed automatically instead of manually. In addition, we observe that the

sung-LID accuracy rates in Figure 5 (b) are significantly lower than those in Figure 5 (a). This

reflects the fact that LID for songs translated from another language is more difficult than LID for

the songs performed in their original language. Overall, the sung-LID accuracy rate is much lower

than the spoken-LID accuracy rate in the literature (e.g., Parris and Carey, 1995; Zissman, 1995).

This is mainly attributed to the interference from background accompaniment.

Table 2 shows the confusion probability matrix for the results of sung LID based on the

automatic vocal/non-vocal segmentation of each track. The rows of the matrix correspond to the

ground-truth of the tracks, while the columns indicate the hypotheses. The majority of errors are

caused by mis-identification of English songs. We speculate that such errors might be due to the

louder background music that usually exists in English pop songs, compared to Mandarin songs.
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The latter often have louder vocals to ensure that Mandarin syllables can be heard and understood

because of the lack of tone information. Thus, the lower vocal-to-background ratio may make it

difficult to train the English model reliably. In addition, the reason for the bias towards identifying

the tracks in DB-3-EM as Mandarin is probably because a large proportion of the singers in

DB-3-EM are Chinese. The accents of those singers probably differ significantly from those of the

singers in DB-1-E, who are mainly Western; hence, the resulting discrepancy in phonological

realizations may also cause the English model to match the test music recordings inaccurately.

Next, we extended the experiments to identify the three languages of interest, namely,

Mandarin, English, and Japanese. Since no vocal/non-vocal labeling was available in DB-1-J,

DB-2-J, and DB-3-JM, we performed automatic segmentation to mark the vocal/non-vocal

boundaries. Specifically, vocal and non-vocal models, trained using DB-1-E and DB-1-M, were

used to recognize the vocal/non-vocal boundaries in DB-1-J. Then, the Japanese solo voice

codebook and bigram model were generated using DB-1-J with the automatically segmented vocal

and non-vocal regions. During each test, the language sung in a music recording was identified as

one of the three languages of interest.

Table 3 shows the results of testing each track in DB-2 and DB-3. The sung-LID accuracy rates

for DB-2 and DB-3 were 65.0% and 59.6%, respectively. We can see from Table 3 that identifying

Mandarin songs is easier than identifying English and Japanese songs. Significantly, a large

proportion of Japanese songs were identified as Mandarin. This may be attributed to the inferior

training process for Japanese due to the lack of vocal/non-vocal labeling. In addition, it was found

(Muthusamy, Jain, and Cole, 1994; Parris and Carey, 1995) that from the spoken-LID point of

view, Japanese is confused more often with Mandarin than English. Moreover, as Mandarin and

Japanese pop songs are often regarded as East Asian pop music (Chua, 2004), in which songs of

one language are often adapted, copied, mixed, and reproduced into songs of another language, the

high degree of closeness and influence between Mandarin and Japanese pop songs may also
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contribute to the bias towards mis-identifying Japanese songs as Mandarin rather than English.

Averagely, although only sixty percent of songs can be identified correctly, the result is much

higher than the chance probability (one third).

The above experiment results indicate plenty of room left for performance improvement. We

believe that the proposed sung-LID system can benefit significantly from improvements in the

vocal/non-vocal segmentation as well as the increase in the amount of training data. Although the

current system is far from ready to use in practice, it would be possible to build a feasible

sung-LID system based on extensions of the framework developed in this study.

7. Conclusions and Future Works

We have examined the feasibility of automatically identifying the language sung in a popular

music recording. Moreover, we have shown that the acoustic characteristics of a language can be

extracted from singing signals via grammatical modeling of the basic phonological unit sequences

output from the vector tokenization of spectrum-based features. To eliminate interference from

background music, we have proposed a more reliable codebook generation method for vector

clustering based on an estimation of the solo voice’scharacteristics.

Although this study has shown that the languages sung in different music recordings can be

distinguished from one another, the proposed method and the experiments only represent a

preliminary investigation into the sung-LID problem. First, due to the limited availability of music

data, we only examined the sung-LID system using Mandarin, English, and Japanese pop songs

available in Taiwan. To be of more practical use, our future work will consider the case of

identifying distinct languages with very similar phonological inventories and phonotactic patterns,

such as Spanish vs. Italian and English vs. Dutch or German. Though such a case has been

evaluated in spoken-LID research (e.g., Parris and Carey, 1995), the methodology is essentially

linguistics-oriented and vulnerable to interference from background accompaniment. With regard
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to usability and portability, it would be desired to develop a robust data-driven system for

sung-LID. Second, the sung-LID investigated in this study belongs to a closed-set recognition

problem, which assumes only languages of interest will be encountered, i.e., a forced choice

among a set of languages known to the system. However, in practical use, it is inevitable to handle

songs not performed in the languages known to the system, i.e., it is required to distinguish the

languages known to the system from a large set of languages unknown to the system. Our future

work will also study such an open-set recognition problem. Third, this work does not deal with the

songs containing more than one language, i.e., mixed languages. As multilingual lyrics are

commonplace in popular music, the problem of sung-LID in mixed-language songs is also worth a

deep investigation. However, to explore the above-mentioned issues, the music database must be

scaled up to cover more languages, singers with a wider variety of accents, and richer music styles

or genres.
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Fig. 5. Sung-LID results
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Table 2. Confusion probability matrix of the discrimination of Mandarin and English songs

(a) Experiments on DB-2-E and DB-2-M

Hypothesized
Actual Mandarin English

Mandarin 0.85 0.15
English 0.25 0.75

(b) Experiments on DB-3-EM

Hypothesized
Actual Mandarin English

Mandarin 0.78 0.22
English 0.37 0.63

Table 3. Confusion probability matrix of the discrimination of Mandarin, English, and

Japanese songs

(a) Experiments on DB-2

Hypothesized
Actual Mandarin English Japanese

Mandarin 0.75 0.10 0.15
English 0.20 0.65 0.15
Japanese 0.30 0.15 0.55

(b) Experiments on DB-3

Hypothesized
Actual Mandarin English Japanese

Mandarin 0.65 0.14 0.21
English 0.29 0.57 0.14
Japanese 0.29 0.21 0.50
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