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ABSTRACT 
We propose an effective method for clustering unknown speech utterances based on their 
associated speakers. The method jointly optimizes the generated clusters and the required 
number of clusters by estimating and minimizing the Rand index. The metric reflects the 
clustering errors that arise when utterances from the same speaker are placed in different 
clusters; or when utterances from different speakers are placed in the same cluster. One useful 
characteristic of the Rand index is that its value only reaches the minimum when the number of 
clusters is equal to the size of the true speaker population. We approximate the Rand index by 
a function of the similarity measures between utterances and then use a genetic algorithm to 
determine the cluster in which each utterance should be located, such that the function is 
minimized. Our experiment results show that this novel speaker-clustering method outperforms 
conventional methods that use the Bayesian information criterion to determine the required 
number of clusters. 

Keywords: Genetic algorithm, Rand index, Speaker clustering  

 
1. Introduction 

Motivated by the need for effective methods to index and archive the burgeoning amount of 
spoken data being generated universally, recent research on automatic classification of speech 
samples based on speakers’ voice characteristics has been extended from the traditional 
supervised problem of speaker identification/verification (Campbell, 1997) to an unsupervised 
paradigm (Makhoul et al., 2000). Basically, the paradigm involves two tasks: segmenting an 
audio recording into speech utterances that contain only one speaker’s voice (Siegler et al., 
1997; Johnson, 1999; Zhou and Hansen, 2000), and grouping utterances from the same speaker 
into one cluster (Gish et al., 1991; Jin et al., 1997; Solomonoff et al., 1998; Chen and 
Gopalakrishnan, 1998; Reynolds et al., 1998). The tasks can be addressed jointly by a process 
called speaker diarization (Tranter and Reynolds, 2006; Ben et al., 2004; Tranter, 2005; Zhu et 
al., 2005; Sinha et al., 2005). It is hoped that, by locating utterances from the same speaker, the 
human effort required to index speech data can be greatly reduced, i.e., from having to listen to 
every audio recording to only checking a few utterances in each cluster. In this paper, we 
concentrate on the latter problem, referred to as speaker clustering. Assume that we have a 
collection of N speech utterances, each of which is from one of P unknown speakers, where N 
≥ P, and P is also unknown. The aim of speaker clustering is to partition the N utterances into 
M clusters such that M = P and each cluster only contains utterances from one speaker. 

Since no prior information regarding the speakers involved and the speaker population size 
is available in most practical applications, a common strategy used to solve the speaker-
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clustering problem involves three steps: characterizing the voice similarities between 
utterances, generating clusters based on those similarities, and determining the optimal number 
of clusters. The most popular speaker-clustering method employs hierarchical agglomerative 
clustering (HAC) (Gish et al., 1991; Jin et al., 1997; Solomonoff et al., 1998; Chen and 
Gopalakrishnan, 1998; Reynolds et al., 1998; Johnson and Woodland, 1998; Faltlhauser and 
Ruske, 2001; Ajmera et al., 2002; Moh et al., 2003; Liu, 2005). This approach generates a 
cluster tree by sequentially merging the utterances deemed similar to each other. Then, the tree 
is cut using the Bayesian information criterion (BIC) (Schwarz, 1978; Chen and 
Gopalakrishnan, 1998; Zhou and Hansen, 2000) to retain the appropriate number of clusters. 
Although various modifications to the method have been proposed (Ben et al., 2004; Tranter, 
2005; Zhu et al., 2005; Sinha et al., 2005), most of them focus on improving the combination 
of speaker clustering and speaker segmentation in a speaker diarization system. There is a 
dearth of research on improving the performance of speaker clustering per se. 

As noted in our previous works (Tsai and Wang, 2005, 2006), one major drawback of most 
speaker-clustering systems is the problem of error propagation in HAC.  Specifically, although 
HAC merges the most similar utterances sequentially, it is possible that, in some merging 
operations, utterances by different speakers may be mis-grouped into the same cluster. In such 
cases, the utterances cannot be separated in subsequent merging operations; hence, the mis-
grouping errors will proliferate as more clusters are merged. To resolve this problem, we 
proposed clustering methods that maximize the within-cluster homogeneity of speakers’ voice 
characteristics by jointly considering all the clusters to be generated, instead of by the cluster-
by-cluster technique used in HAC. However, like most speaker-clustering systems, our 
approach followed the principle of BIC-based methods by determining the optimal number of 
clusters after completion of the cluster generation process. Since the back-end determination of 
the optimal number of clusters trusts the front-end cluster generation process completely, the 
inevitable errors generated by the front-end can propagate to the back-end, which may lead to 
inaccurate estimation of the speaker population size. 

To overcome the above-mentioned limitations, in this paper, we propose a new clustering 
method that simultaneously optimizes the generated clusters and the required number of 
clusters by estimating and then minimizing the Rand index (Rand, 1971; Hubert and Arabie, 
1985; Solomonoff, 1998). The metric indicates clustering errors that place utterances from the 
same speaker in different clusters, or place utterances from different speakers in the same 
cluster. A useful characteristic of the Rand index is that its value only reaches the minimum 
when the number of clusters is equal to the true size of the speaker population. We 
approximate the Rand index by a function of the similarity measures between utterances, and 
use a genetic algorithm (Goldberg, 1989) to determine the cluster in which each utterance 
should be located, such that the function is minimized. The resulting clusters are thus 
optimized in a global fashion, rather than in the pair-by-pair manner used in HAC-based 
methods. Furthermore, the number of clusters derived by minimizing the approximated Rand 
index naturally reflects the speaker population size. 

The remainder of the paper is organized as follows. In Section 2, we explain our 
motivation for studying the problem of speaker clustering and describe the performance 
assessment method used in this study. Section 3 introduces the proposed method for estimating 
and minimizing the Rand index, whereby the resulting partition of utterances approaches an 
optimal state in terms of within-cluster homogeneity and the number of clusters. Section 4 
details our experiment results. Then, in Section 5, we present our conclusions and indicate the 
direction of our future work.  

 
2. Problem Formulation 

We begin by defining the notations used in this paper. 
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X1, X2,…, XN : N speech utterances to be clustered, each of which is represented by a frame-
based spectral feature stream; 

s1, s2,…, sP : P unknown speakers involved in the N utterances, where P  is also unknown; 
c1, c2,…, cM : M clusters to be generated; 
on : the index of the speaker producing utterance Xn; 
hn : the index of the cluster to which utterance Xn is assigned; 
nm∗ : the number of utterances in cm; 
n∗p : the number of utterances spoken by sp; 
nmp : the number of utterances in cm spoken by sp. 

Speaker clustering can be viewed as a problem of determining a set of indices H = {h1, h2, …, 
hN} that satisfy  hi = hj for any Xi and Xj from the same speaker, and hi ≠ hj for any Xi and Xj 
from different speakers. 

Depending on the application, there are a number of ways to evaluate the performance of 
speaker clustering. In this study, we use two metrics: cluster purity (Solomonoff, 1998) and the 
Rand index (Rand, 1971; Hubert and Arabie, 1985; Solomonoff, 1998). Cluster purity indicates 
the degree of correct clustering. It is represented by the probability that if we pick any 
utterance from a cluster twice at random, with replacement, both of the selected utterances will 
be from the same speaker. Specifically, the average purity of M clusters is computed by 
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Obviously, a perfect clustering should produce an average purity of one. However, this does 
not work both ways. The value of the average purity generally increases as the number of 
clusters increases, since the metric does not consider errors that place utterances from the same 
speaker in different clusters. Hence, the cluster purity is only suitable for comparing the 
performance of different clustering methods if the number of clusters is specified.  

In contrast, the Rand index indicates the extent of incorrect clustering. It is defined as the 
number of utterance pairs from the same speaker that are in different clusters, or utterance pairs 
from different speakers that are in the same cluster, i.e., 
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Alternatively, the Rand index can be represented as a mis-clustering rate: 
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Obviously, the smaller the value of R(M),  the better the clustering performance will be. Unlike 
the cluster purity metric, which favors a large M value, the Rand index usually decreases with 
an increase in the value of M initially, and reaches the minimum at M = P. When M > P, the 
Rand index starts to increase as the value of M increases. 

To illustrate why the minimal value of R(M) only occurs when M = P, let us consider the 
following cases.  
(i) The clustering is perfect, which satisfies 
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where nk = n*k = nk*, 1≤ k ≤ P. Then, the resulting Rand index is 
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(ii) Let M = P + 1, and modify Eq. (5) by splitting cluster ck into two clusters, ck and cP+1, i.e., 
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where nkk + n(P+1)k = nk. Then, the resulting Rand index is 
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(iii) Let M = P − 1, and modify Eq. (5) by merging cluster cP into cluster ck, i.e., 
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Then, the resulting Rand index is 
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From these cases, we observe that, in general, R(M) > R(P) if M ≠ P. Therefore, the Rand 
index can be used to ascertain if each generated cluster is homogeneous in terms of the speaker, 
and also as a criterion to determine the size of the true speaker population. This property 
motivates us to develop a clustering method that jointly optimizes the generated clusters and 
the required number of clusters by estimating and then minimizing the Rand index.  
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3. Minimum Rand Index Clustering (MRIC) 
Our basic strategy is to determine a set of indices H(M) = {h1(M), h2(M), …, hN(M)} for the N 
utterances to be clustered, such that the resulting Rand index is minimized, where hi(M), 1 ≤ i 
≤ N, is an integer between 1 and M, and the value of M is to be determined. This can be 
achieved by first representing the Rand index as a function of the indices, and then minimizing 
it with respect to the indices. Since in Eq. (3) 
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where δ(⋅) in Eqs. (11)−(14) is a Kronecker Delta function.  
However, as the computation of δ(oi, oj) in Eq. (14) requires that the true speaker of each 

utterance be known in advance, it is impossible to find H∗ directly from Eqs. (13) and (14). To 
solve this problem, we estimate δ(oi, oj) based on the similarity between Xi and Xj. Specifically, 
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where S(Xi, Xj) denotes a certain similarity measure between Xi and Xj that could be either 
positive or negative, but it cannot be zero; and Smax is the largest of the similarity measures 
S(Xi, Xj), ∀ i ≠ j. Hence, the approximation of δ(oi, oj) in Eq. (15) is a positive value less than 1. 



6 

In our implementation, S(Xi, Xj) is computed by the following generalized likelihood ratio 
(GLR) (Gish et al., 1991; Solomonoff, 1998): 

S(Xi, Xj) = logPr(Xij |λij) − logPr(Xi |λi) − logPr(Xj |λj),        (16) 
where Xij is the concatenation of Xi and Xj; and λi, λj, and λij are parametric models trained 
using Xi,  Xj, and Xij, respectively. Using this approximation, we can solve Eq. (13) by 
assigning an arbitrary positive constant to Ω in order to ensure that 0))((ˆ ≥MR H . 

Given that neither a gradient-based optimization method nor an exhaustive search is 
applicable in this scenario, to find H∗, we use the genetic algorithm (GA) (Goldberg, 1989) 
because of its global scope and parallel searching power. Basically, the GA explores a given 
search space in parallel by iteratively modifying a population of chromosomes. Each 
chromosome, encoded as a string of alphabets or real numbers called genes, represents a 
potential solution to a given problem. In our task, a chromosome is exactly a legitimate H(M), 
and a gene corresponds to a cluster index associated with an utterance. However, since the 
index of one cluster can be interchanged with that of another cluster, multiple chromosomes 
may yield an identical clustering result. For example, the chromosomes {1 1 1 2 2 3 3}, {1 1 1 
3 3 2 2}, {2 2 2 1 1 3 3}, and {1 1 1 5 5 4 4} represent the same clustering result derived by 
grouping seven utterances into three clusters. Such a non-unique representation of the solution 
would significantly increase the GA search space, and may lead to an inferior clustering result. 
To avoid this problem, we limit the inventory of chromosomes to conform to a baseform 
representation defined as follows.  

Let I(cm) be the lowest index of the utterance in cluster cm. Then, a chromosome is a 
baseform  

iff ∀ cm, cl ≠ {φ}, if m < l, then I(cm) < I(cl),     (17) 
where {φ} indicates that a cluster does not contain any utterance. Among the above 
chromosomes, {1 1 1 2 2 3 3} is a baseform, since the lowest index of the utterance in clusters 
c1, c2, and c3 is 1, 4, and 6, respectively, which satisfies Eq. (17). In contrast, chromosomes {1 
1 1 3 3 2 2} and {2 2 2 1 1 3 3} are not baseforms, since the lowest index of the utterance in 
clusters c1, c2, and c3 does not satisfy Eq. (17). Meanwhile, chromosome {1 1 1 5 5 4 4} 
implies that clusters c2 and c3 do not contain any utterances; hence it is not a baseform either. 
However, it is conceivable that all the non-baseform chromosomes can be converted into a 
unique baseform representation by re-arranging the cluster indices. 

Fig. 1 shows the flow diagram of GA optimization, which starts by randomly generating 
chromosomes )( )1()1( MH , )( )2()2( MH ,…, )( )()( ZZ MH according to a pre-defined population 
size, Z, and the number of generated clusters, M(z),1 ≤ z ≤ Z. For example, to cluster seven 
utterances, we can generate chromosomes like {1 1 1 2 2 3 3}, {1 2 2 3 3 4 2}, {1 2 2 2 2 2 1}, 
in which the number of generated clusters is 3, 4, and 2, respectively. Then, the fitness of all 
chromosomes is evaluated via the inverse of the estimated Rand index, i.e., 
( ) ( ))(ˆ1)( )()()()( zzzz MRMF HH = , 1 ≤ z ≤ Z. Based on this evaluation, a particular group of 

chromosomes is selected from the population to generate offspring by subsequent 
recombination. To prevent premature convergence of the population, the selection operation is 
performed with the linear ranking scheme (Baker, 1985), which sorts chromosomes in 
decreasing order of fitness, and then assigns the expected number of offspring according to 
their relative ranking. Chromosomes with large fitness values produce several copies, while 
those with very small fitness values may be eliminated; hence, the total chromosome 
population size does not change.  

Next, crossover between the selected chromosomes is performed by exchanging the 
substrings of two chromosomes at two randomly selected crossover points. For example, the 
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crossover for chromosomes {1 1 1 2 2 3 3} and {1 2 3 1 2 3 2} generates {1 1 3 1 2 3 3} and 
{1 2 1 2 2 3 2} respectively, if the selected crossover points are 2 and 6 (indicated by the 
underlined parts). However, as shown in this example, the resulting chromosomes, such as {1 
1 3 1 2 3 3}, may not conform to Eq. (17). Therefore, the procedure for interchanging the 
clusters’ indices has to be repeated to ensure that all the offspring are baseforms. In this 
example, the chromosome {1 1 3 1 2 3 3} is converted to {1 1 2 1 3 2 2} by swapping index 
“2” with index “3”. In addition, a crossover probability is assigned to control the ratio of the 
number of offspring produced in each generation to the size of the chromosome population.  

After the crossover operation, a mutation operator is used to introduce random variations 
into the genetic structure of the chromosomes. To do this, we generate a random number and 
then replace one gene of an existing chromosome with a mutation probability. The resulting 
chromosomes that do not conform to the baseform representations are converted into their 
baseform counterparts. Then, the fitness evaluation, selection, crossover, and mutation steps 
are repeated continuously, in the hope that the overall fitness of the population will increase 
from generation to generation. When a pre-set maximum number of generations, say Q, is 
reached, the best chromosome in the final population is taken as the solution, H*. 

 
4. Experiments 

 
4.1 Speech data 
The speech data used for performance evaluation consisted of six excerpts of broadcasts from 
the evaluation set of the 2002 Rich Transcription (RT-02) Broadcast News and Conversational 
Telephone Speech Corpus (Linguistic Data Consortium, http://www.ldc.upenn.edu/), in which 
the speech was digitized with a 16 kHz sampling rate and 16-bit quantization resolution. Using 
the annotation files attached to the corpus, we segmented each excerpt into a collection of 
isolated speech utterances, each containing only one speaker’s voice. Table 1 summarizes the 
utterance duration and speaker population size for each excerpt. In the speaker-clustering 
experiments we used each excerpt separately.  

To tune the system parameters that cannot be optimized automatically, we used another 
dataset extracted from the 2001 NIST Speaker Recognition Evaluation Corpus (Linguistic 
Data Consortium, http://www.ldc.upenn.edu/). The dataset contained 197 speaker-
homogeneous utterances spoken by 15 randomly-selected male speakers. The utterances were 
recorded via cellular phones and digitized with an 8 kHz sampling rate and 16-bit quantization 
resolution. We denoted this dataset as SRE-01. 

Prior to the experiments, every utterance was converted from its digital waveform 
representation into a sequence of feature vectors, each consisting of 12 Mel-scale frequency 
cepstral coefficients (MFCCs) and 12 delta MFCCs, computed using a 20-ms Hamming 
window (frame) with a 10-ms frame shift. Then, the similarities between the utterances were 
computed using Eq. (16), in which each parametric model is a uni-Gaussian model with a full 
covariance matrix.    
 
4.2 Baseline systems 
For the performance comparison, we implemented two baseline systems, denoted as Baseline-I 
and Baseline-II. The first system used the HAC framework in conjunction with a BIC-based 
method to determine the optimal number of clusters (Chen and Gopalakrishnan, 1998). In the 
agglomeration procedure, the similarities between clusters were computed using the complete 
linkage of the GLR-based inter-utterance similarities. The penalty weight of the BIC method 
was set to one, based on the optimization using SRE-01. The second system, Baseline-II, 
stems from (Tsai and Wang, 2005). It first specifies a certain number of clusters, 
corresponding to the size of one of the possible speaker populations, and then maximizes the 
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within-cluster homogeneity represented by the cluster purity*. The system then examines 
various legitimate numbers of clusters and uses BIC to determine the size of the most likely 
speaker population. The parameter values of Baseline-II were tuned using SRE-01 as well. 
 
4.3 Experiment results 
In GA optimization of MRIC, the parameter values used for the maximum number of 
generations, the chromosome population size, the crossover probability, and the mutation 
probability were empirically† determined to be 2000, 5000, 0.5, and 0.1, respectively. Tables 2, 
3, and 4 show the speaker-clustering results obtained by Baseline-I, Baseline-II, and the 
proposed MRIC methods, respectively. The results in the “#Clusters = True #Speakers” 
column of each table were derived by taking the number of generated clusters as the true 
number of speakers in each excerpt. This serves as the upper bound of the speaker-clustering 
performance that can be achieved by determining the size of the speaker population 
automatically. From Tables 2 and 4, we observe that the MRIC method consistently yields 
larger purity values and smaller Rand index values than Baseline-I. This clearly demonstrates 
the superiority of the global optimization technique applied in MRIC over the pairwise 
optimization technique used in HAC. However, the results in Tables 2 and 3 show that it is 
hard to tell whether Baseline-II or MRIC performs better if the true speaker population is 
known a priori.   

The “#Clusters = Estimated #Speakers” column in each table shows the speaker-clustering 
performance when the true speaker population size is unknown and must be estimated. The 
field “|ES − TS|” indicates the difference between the size of the estimated population and that 
of the true speaker population. Table 4 shows that the number of speakers estimated by MRIC 
for each excerpt is very close to the true speaker population size. In addition, for the estimated 
speaker population size, MRIC consistently yields smaller Rand index values than Baseline-I 
and Baseline-II. Overall, the values of |ES − TS| derived by MRIC are smaller than those 
derived by Baseline-I and Baseline-II, which indicates that MRIC improves the estimation of 
the speaker population size.  

Comparing Tables 2 and 3, we observe that, although Baseline-II performs better than 
Baseline-I when the number of clusters is taken as the true speaker population size, several 
Rand index values derived by Baseline-II are larger than those obtained by Baseline-I when 
the optimal number of clusters is determined automatically. This is attributed to the inferior 
estimation of the speaker population size by Baseline-II. In contrast, MRIC jointly optimizes 
the generated clusters and the required number of clusters and thereby resolves the 
shortcomings of Baseline-I and Baseline-II. 
 
4.4 Discussion on computational complexity 
In addition to evaluating the effectiveness of MRIC and the two baseline systems, it is worth 
comparing their computational complexities. Since all the three systems begin with the 
measurement of inter-utterance similarities, we can ignore this common part in the analysis of 
computational complexity. In Baseline-I, the major operations include: the measurement of 
between-cluster similarities, search of the most similar clusters, and computation of BIC value 
before each merging process is performed. Since the first two operations involve logical 
comparisons only, their computational complexities are negligibly lower than that of the 
computation of BIC value, which involves the computation of covariance matrix and its 
determinant for every cluster. It is observed that, regardless of the number of clusters 
                                                 
* Cluster purity is also approximated by a function of the GLR-based similarities between utterances.  

† This follows our previous work (Tsai and Wang, 2005), which performs optimization using SRE-01. 



9 

generated, the complexity of computing all the covariance matrices is on the order of the total 
number of feature vectors, T, multiplied by the dimensionality of the feature vectors, D. In 
addition, the complexity of computing a determinant of D-dimensional covariance matrix is on 
the order of Dlog2D. If D << T, the complexity of computing the determinants is significantly 
lower than that of computing covariance matrices. Thus, the computational complexity of 
Baseline-I scanning from 1 cluster to N clusters can be characterized by O(NTD). In MRIC, 
the major operations include: fitness evaluation, selection, crossover, and mutation in GA. 
Since the last three operations involve only logical comparisons and bit modifications, their 
computational complexities are significantly lower than that of the fitness evaluation, which 
involves a series of multiplications and additions. If the number of chromosomes is Z, and the 
maximum number of generations is Q, the computational complexity of MRIC can be roughly 
characterized by O(NZQ), where N arises from the dimensionality of chromosome (i.e., the 
number of utterances to be clustered). Although it is hard to quantify O(NTD) in Baseline-I 
and O(NZQ) in MRIC as comparable values, we can see that MRIC has an advantage for 
clustering long utterances, since its computational complexity is independent of the utterance 
duration. Our experiments conducted on RT-02 show that the running time of MRIC is 
roughly double that of Baseline-I. As to Baseline-II, its operations are similar to MRIC, except 
that the determination of the optimal number of clusters needs to scan from 1 cluster to N 
clusters. Thus, the computational complexity of Baseline-II can be roughly characterized by 
O(N2ZQ), which is notably higher than that of MIRC. 

 
5. Conclusions 

We have investigated techniques for clustering speech data, whereby utterances from the same 
speaker can be grouped into a single cluster. This requirement is formulated as a problem of 
estimating and minimizing the clustering errors characterized by the Rand index. We represent 
the Rand index as a function of the inter-utterance similarities and apply a genetic algorithm to 
determine the index of the cluster in which each utterance should be located. The experiment 
results demonstrate that, in terms of speaker-clustering performance, the proposed approach 
significantly outperforms conventional methods that use the Bayesian information criterion to 
estimate the speaker population size.  

It is worth noting that, in many applications, assigning a long utterance to the wrong 
cluster can be more detrimental than assigning a short utterance to the wrong cluster. To reflect 
this point and improve the clustering performance, we can also compute the Rand index at the 
frame level, instead of the utterance level used in this study. Specifically, the frame-based 
Rand index can be defined by how many times two randomly-selected frames from the same 
speaker are placed in different clusters, or two randomly-selected frames from different 
speakers are placed in the same cluster. Minimization of the frame-based Rand index is 
particularly useful in the speaker diarization task, since the diarization error is computed on a 
frame basis. In addition, it is worth emphasizing that the proposed MRIC can be applied to 
various clustering problems by simply substituting the appropriate similarity measurement into 
Eq. (15). 

Finally, to speed up the proposed approach, we could take advantage of GA’s intrinsic 
parallelism to perform distributed computing. There are a number of parallelization methods to 
enhance the computational speed of GA (Baluja, 1993; Zomaya et al., 1999), each reflects the 
fact that the nature of GA’s population structure and recombination mechanisms are highly 
advantageous to distributed computing. Nevertheless, for some low-latency applications that 
require running on a single computing unit, there is still a need to develop on-line speaker 
clustering techniques as studied in Liu et al. (2003). 
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Table 1. RT-02 Speech data profile 

Excerpt 
No. of 

Utterances 
Maximum/Minimum/Average 

Utterance Duration (in sec)  
No. of 

Speakers 
bn02en_1 44 67.8 / 0.5 / 13.0 16 
bn02en_2 29 60.0 / 0.6 / 20.2 9 
bn02en_3 13 84.8 / 5.0 / 37.8 6 
bn02en_4 43 70.3 / 0.2 / 13.3 16 
bn02en_5 26 65.0 / 5.0 / 23.1 10 
bn02en_6 45 51.0 / 1.8 / 12.7 14 

 

Table 2. Speaker-clustering results obtained by Baseline-I 
 

# Clusters = True # Speakers # Clusters = Estimated # Speakers 

Excerpt 

True # 
Speakers 

(TS) Purity 
Rand Index 

(in %) 
Estimated # 

Speakers (ES) |ES − TS| 
Rand Index

(in %) 
bn02en_1 16 0.89 17.6 8 8 40.1 
bn02en_2 9 0.94 6.7 13 4 21.1 
bn02en_3 6 1.00 0.0 6 0 0.0 
bn02en_4 16 0.90 21.3 18 2 29.7 
bn02en_5 10 0.72 27.9 11 1 31.9 
bn02en_6 14 0.86 12.8 15 1 16.6 
 

Table 3. Speaker-clustering results obtained by Baseline-II 
 

# Clusters = True # Speakers # Clusters = Estimated # Speakers 

Excerpt 

True # 
Speakers 

(TS) Purity 
Rand Index 

(in %) 
Estimated # 

Speakers (ES) |ES − TS| 
Rand Index

(in %) 
bn02en_1 16 0.95 9.4 22 6 23.6 
bn02en_2 9 0.94 6.6 14 5 24.2 
bn02en_3 6 1.00 0.0 8 2 11.7 
bn02en_4 16 0.89 22.6 14 2 28.6 
bn02en_5 10 0.80 18.9 13 3 33.9 
bn02en_6 14 0.84 17.8 14 0 17.8 
 

Table 4. Speaker-clustering results obtained by MRIC 
 

# Clusters = True # Speakers # Clusters = Estimated # Speakers 

Excerpt 

True # 
Speakers 

(TS) Purity 
Rand Index 

(in %) 
Estimated # 

Speakers (ES) |ES − TS| 
Rand Index

(in %) 
bn02en_1 16 0.93 9.6 17 1 12.5 
bn02en_2 9 0.95 6.1 11 2 11.6 
bn02en_3 6 1.00 0.0 6 0 0.0 
bn02en_4 16 0.91 17.1 15 1 19.5 
bn02en_5 10 0.76 22.4 11 1 26.1 
bn02en_6 14 0.88 10.4 15 1 14.3 
 


