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Abstract—Speaker verification can be viewed as a task of 

modeling and testing two hypotheses: the null hypothesis and the 
alternative hypothesis. Since the alternative hypothesis involves 
unknown impostors, it is usually hard to characterize a priori. In 
this paper, we propose improving the characterization of the 
alternative hypothesis by designing two decision functions based, 
respectively, on a weighted arithmetic combination and a 
weighted geometric combination of discriminative information 
derived from a set of pre-trained background models. The 
parameters associated with the combinations are then optimized 
using two kernel discriminant analysis techniques, namely, the 
Kernel Fisher Discriminant (KFD) and Support Vector Machine 
(SVM). The proposed approaches have two advantages over 
existing methods. The first is that they embed a trainable 
mechanism in the decision functions. The second is that they 
convert variable-length utterances into fixed-dimension 
characteristic vectors, which are easily processed by kernel 
discriminant analysis. The results of speaker-verification 
experiments conducted on two speech corpora show that the 
proposed methods outperform conventional likelihood 
ratio-based approaches. 
 

Index Terms—Kernel Fisher discriminant, likelihood ratio, 
speaker verification, support vector machine. 

I. INTRODUCTION 
PEAKER verification is usually formulated as a hypothesis 
testing problem and solved using a likelihood ratio (LR) 

based decision function [1]. Given an input utterance U, the 
goal is to determine whether or not U was spoken by the target 

(hypothesized) speaker. Let us consider the following 
hypotheses:  
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The LR-based decision function can be expressed as 
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where ,1 ,0  ),|( =iHUp i  is the likelihood that hypothesis Hi 
gives the utterance U, and θ  is a decision threshold. H0 and H1 
are called the null hypothesis and the alternative hypothesis, 
respectively. Although H0 can be modeled straightforwardly 
using speech utterances from the target speaker, H1 does not 
involve any specific speaker, and thus lacks explicit data for 
modeling. As a result, various approaches have placed special 
emphasis on better characterization of H1. One simple approach 
involves pooling all the speech data from a large number of 
background speakers, and training a single 
speaker-independent model Ω, called the world model or the 
universal background model (UBM) [1]. During a test, the 
logarithmic LR measure that an unknown utterance U was 
spoken by the claimed speaker can be evaluated by 

),|(log)λ|(log)(UBM Ω−= UpUpUL  (3) 
where λ is a target speaker model trained using speech from the 
claimed speaker. The larger the score of LUBM(U), the more 
likely it is that U was spoken by the claimed speaker. 

Instead of using a single model, an alternative approach is to 
train a set of models {λ1, λ2,…, λB} using speech from several 
representative speakers, called a cohort [2], which simulates 
potential impostors. This leads to the following logarithmic 
LRs, where the alternative hypothesis can be characterized by 
a) the likelihood of the most competitive cohort model [3], i.e.,  
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b) the arithmetic mean of the likelihoods of the B cohort models 
[4], i.e., 
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c) the geometric mean of the likelihoods of the B cohort models 
[3], i.e., 
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In a well-known score normalization method called T-norm [6], 
LGeo(U) is divided by the standard deviation of the 
log-likelihoods of the B cohort models.  

The LR measures in Eqs. (3) – (6) can be collectively 
expressed in the following general form [1]: 
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where Ψ(⋅) represents a certain function that combines the 
likelihoods of a set of so-called background models 
{λ1,λ2,…,λN}. For example, if the background model set is 
generated from a cohort, letting Ψ(⋅) be the maximum function 
gives LMax(U), while the arithmetic mean gives LAri(U), and the 
geometric mean gives LGeo(U). When Ψ(⋅) is an identity 
function, N = 1, and λ1 = Ω, Eq. (7) becomes LUBM(U). 

In essence, there is no theoretical evidence to indicate what 
sort of Ψ(⋅) is optimal, so the selection of Ψ(⋅) is usually 
application and training data dependent. Simple functions, such 
as the arithmetic mean, the maximum, and the geometric mean, 
are heuristics that do not involve an optimization process. Thus, 
the resulting system is far from optimal in terms of verification 
accuracy. To handle the speaker-verification problem more 
effectively, it is necessary to devise a decision function with a 
trainable mechanism, such that one hypothesis can be optimally 
separated from another. To this end, we formulate the 
characterization of the alternative hypothesis as a problem of 
optimally combining the discriminative information derived 
from a set of pre-trained background models, and design the 
decision function based on two perspectives: a weighted 
geometric combination (WGC) and a weighted arithmetic 
combination (WAC) of the likelihoods of the background 
models. In contrast to the geometric mean in LGeo(U) and the 
arithmetic mean in LAri(U), both of which are independent of 
the system training, our combination scheme treats the 
background models unequally according to how close each 
model is to the target model. The unequal nature of the 
background models is quantified by a set of weights optimized 
in the training phase. Since the optimization is related to the 
verification accuracy, the resulting decision function is 
expected to be more effective and robust than those of 
conventional methods. Thus, the task is to determine the 
associated weights. To obtain a reliable set of weights, we 
regard the WGC- and WAC-based decision functions as 
nonlinear discriminant classifiers. Then, we apply kernel-based 
techniques, namely the Kernel Fisher Discriminant (KFD) [7], 
[8] and Support Vector Machine (SVM) [9], to solve the 
weights, by virtue of their good discrimination ability. 

In recent years, a number of SVM-based speaker verification 
techniques have been developed [10]-[14]. One of the main 
issues with using SVMs for speaker verification is that the 
number of training samples represented by frames is usually 
too large to handle efficiently. For this reason, the concept of a 
sequence kernel [10]-[14] was proposed to compare speech 
utterances at the sequence level instead of the frame level. 

However, constructing a proper sequence kernel for 
utterance-based SVMs is an issue that requires further 
investigation. In this work, as the proposed WGC and WAC 
methods convert variable-length utterances into 
fixed-dimension characteristic vectors, the derived kernel 
processes play the same role as the sequence kernel method, but 
they have the advantage of not having to specifically design the 
kernel functions. 

In addition, most existing SVM-based speaker verification 
approaches only use a single background model, i.e., the world 
model, instead of multiple background models, to characterize 
the alternative hypothesis. For example, Bengio et al. [13] 
proposed the following decision function: 

,)|(log)λ|(log)( 21Bengio bUpaUpaUL +Ω−=  (8) 

where a1, a2, and b are adjustable parameters estimated using 
SVM. The input to SVM comprises the two-dimensional vector 

. An extended version of Eq. (8) 
using the Fisher kernel and the LR score-space kernel for SVM 
was investigated in [14]. In contrast, our framework integrates 
more available information from multiple background models 
into a characteristic vector as the input to SVM, which makes it 
easier to distinguish one hypothesis from another. The results 
of speaker verification experiments conducted on both the 
XM2VTS database and the ISCSLP2006-SRE database show 
that the proposed methods outperform all of the 
above-mentioned approaches. 

TUpUp )]|(log-  )λ|([log Ω

The remainder of this paper is organized as follows. Section 
II introduces the design of the decision function used in our 
methods. Section III presents the kernel discriminant analysis 
techniques that we use to find the weight vector. Sections IV 
and V describe the concepts related to the characteristic vector 
and the background model selection methods, respectively. 
Section VI details the experiment results. Then, in section VII, 
we present our conclusions. 

II. THE PROPOSED DECISION FUNCTIONS 
To characterize the alternative hypothesis, we generate a set 

of background models using data that does not belong to the 
null hypothesis. Instead of the arithmetic mean or the geometric 
mean mentioned earlier, our goal is to design a function Ψ(⋅) 
that can optimally exploit the information available from 
background models. In this section, we present our design 
approach, which characterizes the alternative hypothesis in two 
ways: by a weighted geometric combination (WGC) and by a 
weighted arithmetic combination (WAC). Each combination 
can be viewed as a generalized and trainable version of 
conventional approaches. 

A. The Weighted Geometric Combination (WGC) 
We begin by defining the function Ψ(⋅) in Eq. (7) in terms of 

a weighted geometric combination as   
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where  is the weight of the likelihood p(U | λiw i), i = 1, 2,…, 
N. This function assigns different weights to N background 
models according to their individual contribution to the 
alternative hypothesis. It is clear that Eq. (9) is equivalent to the 
simple geometric mean when wi = 1, i = 1,2,…, N; i.e., it is 
assumed that all the background models contribute equally. 
One additional advantage of WGC is that it avoids the problem 
of . This problem can arise with 
the simple geometric mean because some values of the 
likelihood may be rather small when the background models λ

0))λ|( ),...,λ|(( 1 →Ψ NUpUp

i 
are irrelevant to an input utterance U, i.e., . 
However, if a weight is attached to each background model, 
Ψ(⋅) defined in Eq. (9) may be less sensitive to very small 
likelihood values, and hence should be more robust than the 
simple geometric mean. It is also clear that Eq. (9) will reduce 
to a maximum function if ,  
and , . 

0)λ|( →iUp
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By substituting Eq. (9) into Eq. (7), and taking the 

logarithmic form, we obtain 
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where  is an N × 1 weight vector, the new 
threshold 

T
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in the space RN expressed as 
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The implicit idea in Eq. (11) is that the input utterance U can be 
represented by a characteristic vector x. 

B. The Weighted Arithmetic Combination (WAC) 
We can also define the function Ψ(⋅) in Eq. (7) in terms of a 

weighted arithmetic combination as  
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where wi is the weight of p(U | λi), i = 1, 2,…, N. Similar to the 
weighted geometric combination, Eq. (12) considers the 
individual contribution of background models to the alternative 
hypothesis by assigning a weight to each likelihood value. It is 
clear that Eq. (12) is equivalent to the arithmetic mean when wi 
= 1, i = 1, 2,…, N. It is also clear that Eq. (12) will reduce to a 
maximum function if , 1* =iw )λ|(maxarg* 1 iNi Upi ≤≤=  and 

, . Suppose that all the N background models are 
Gaussian Mixture Models (GMMs) [4]. Then, Eq. (12) 
constitutes a two-layer GMM, in which one layer represents 

each background model and the other layer represents the 
combination of background models.  

0=iw *ii ≠∀

By substituting Eq. (12) into Eq. (7) and reversing Eq. (7), 
we obtain  
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where  is an N × 1 weight vector, the new 
threshold 
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III. KERNEL DISCRIMINANT ANALYSIS 
The process of representing an utterance U as a characteristic 

vector x in Eq. (11) or Eq. (14) can be regarded as x = Φ(U), 
where Φ(⋅)1 is a nonlinear mapping function. If we replace the 
threshold 'θ  in Eq. (10) or ''θ  in Eq. (13) with a bias b, the 
decision functions in Eqs. (10) and (13) can be rewritten as 

bUUL T +=  )(Φ )( w , (15) 
where L(U) forms a nonlinear discriminant classifier for U. The 
classifier translates the goal of solving an LR test problem into 
one of optimizing w and b, such that the utterances of target 
speakers and non-target speakers can be separated. To realize 
this classifier, we need three distinct data sets: one for 
generating each target speaker’s model, one for generating the 
background models, and one for optimizing w and b. Since the 
bias b plays the same role as the decision threshold θ  of the LR 
test defined in Eq. (2), which can be determined through a 
tradeoff between the false acceptance and the false rejection 
rates, our main goal here is to find w.  

To solve the weight vector w, we propose using two 
kernel-based discriminant techniques, namely the Kernel 
Fisher Discriminant (KFD) [7], [8] and Support Vector 
Machine (SVM) [9], because of their ability to separate 
samples of target speakers from those of non-target speakers 
efficiently.  

A. Kernel Fisher Discriminant (KFD) 

Suppose that we have ni training utterances  for 

hypothesis H
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i, i = 0 or 1. The goal of KFD is to locate the 
weight vector w that maximizes the between-class scatter, 
while minimizing the within-class scatter. According to [7], the 
solution of w must lie in the span of all mapped training 
utterances; therefore, we can represent w as 
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1More precisely, Φ(U) should be denoted by Φ(U; λ; λ1, λ2, ..., λN). 
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n1, and αj is the combination coefficient. Substituting Eq. (16) 
into Eq. (15), we obtain 
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where the inner product of two vectors Φ(Uj) and Φ(U) is 
expressed by a kernel function k(Uj, U). Such a kernel function 
is also called the sequence kernel [10], because it takes two 
utterance sequences, Uj and U, as inputs. The goal therefore 
changes from finding w to finding α = [α1 α2 … αJ]T, which 
maximizes 
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respectively, where ηi is an J × 1 vector with element 
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 is an ni×ni identity matrix; and 1ni
 is an ni

×ni matrix in which all elements are equal to 1/ni. Following [8], 
the solution to α, which maximizes Γ(α) defined in Eq. (18), is 
taken as the leading eigenvector of N-1M. 

B. Support Vector Machine (SVM) 
The weight vector w can also be solved with SVM. In this 

case, the goal is to find a separating hyperplane that maximizes 
the margin between the classes. Following [9], w can be 
expressed as 
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where each training utterance Uj, j = 1, 2,…, J, is labeled by 
either yj = 1 (a null hypothesis) or yj = -1 (an alternative 
hypothesis). The optimal coefficients β = [β1 β2 … βJ]T can be 
determined by maximizing the objective function 
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subject to the constraints  and 01 =∑ =
J
j jjy β ,  ,0 jCj ∀≤≤ ββ  

where Cβ is a penalty parameter [9]. This process can be 
performed with quadratic programming techniques [15]. Note 
that most elements of β are equal to zero, and training samples 
associated with non-zero βj are called support vectors. A few 
support vectors play a key role in deciding the optimal margin 
between classes in SVM. 

C. Mercer Kernels 
The effectiveness of the above KFD or SVM approaches 

depends essentially on how the kernel function k(⋅) is designed. 
A kernel function must be symmetric, positive definite, and 
conform to Mercer’s condition [16]. There are a number of 
kernel functions [16]. However, since we have converted 
speech utterances into characteristic vectors, the kernel 
function takes the form 

),()(Φ)(Φ),( 211212121 xxxx kUUUUk TT === . (24) 
Eq. (24) indicates that the sequence kernel function with two 
input utterances, U1 and U2, forms a dot product kernel with 
two input characteristic vectors, x1 and x2. Alternatively, if we 
use the closure property of Mercer kernels [16] to form a kernel 
function  
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where σ is a tunable parameter, then k′(U1,U2) is equivalent to 
the following Radial Basis Function (RBF) kernel with two 
inputs x1 and x2: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
= 2

2
21

212 σ2
||||exp),( xxxxk . (26) 

IV. CONCEPTS RELATED TO THE CHARACTERISTIC VECTOR 
In this section, we compare the proposed classifiers with 

several approaches related to the characteristic vector. It is 
worth noting that the major advantage of our classifiers lies in a 
trainable mechanism, which tries to optimally exploit useful 
information from background models, rather than make an ad 
hoc modification or use a combination of existing approaches. 

A. Direct Fusion of Multiple LRs 
The most intuitive way to improve the conventional 

LR-based speaker verification method would be to fuse 
multiple LR measures directly. Similar to the fusion approaches 
in [17], [18], we define a fusion-based LR as 
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As with WGC and WAC, the weight vector w can be trained 
using the methods described in Section III. A preliminary result 
reported in [19] shows that, compared to approaches that use a 
single LR, such a fusion scheme improves speaker verification 
performance noticeably. However, we found that direct fusion 
is often dominated by one particular LR, or it is limited by some 
inferior LRs. 

 4



 

B. Relation to the Anchor Modeling Approach  TABLE I 
CONFIGURATION OF THE XM2VTS SPEECH DATABASE 

Session Shot 199 clients 25 impostors 69 impostors
1 1 2 
1 2 2 

Training 

1 3 2 Evaluation 

1 4 2 Test 

Evaluation Test 

 

The concept of our methods is similar to that of the anchor 
modeling approach [20], [21] used in speaker indexing and 
speaker identification applications. The objective of the anchor 
modeling approach is to construct a speaker space based on a 
set of pre-trained representative models {A1,A2,…,AN}, called 
anchor models. Then, any speech utterance U can be projected 
into the space, and represented as a characteristic vector x [20], 

x = [p(U |A1) p(U |A2) … p(U |AN)]T . (29) 
The speaker of an unknown utterance U can be identified by 
computing the distance between the characteristic vector x and 
the typical vectors of the target speakers. The characteristic 
vector defined in Eq. (29) is similar to the characteristic vector 
used in this study. However, to find the location of a target 
speaker in the speaker space, the anchor modeling approach 
only considers the projection of the speech utterance from the 
target speaker, which is different from the proposed 
discriminative framework. More specifically, the decision 
functions based on WGC and WAC characterize a target 
speaker by locating the boundary that optimally separates the 
characteristic vectors of a target speaker from those of 
non-target speakers; hence, the proposed methods are expected 
to be more effective than the anchor modeling approach. 

V. BACKGROUND MODEL SELECTION 
In general, the more speakers that are used as background 

models, the better the characterization of the alternative 
hypothesis will be. However, it has been found [2]-[5] that 
using a set of pre-selected representative models is usually 
more effective and efficient than using the entire collection of 
available speakers. For this reason, we propose selecting B+1 
background models, including B cohort models used in LMax(U), 
LAri(U), and LGeo(U), and one world model used in LUBM(U), to 
form the characteristic vector. As a result, the proposed 
decision functions based on WGC and WAC can be viewed as 
generalized and trainable versions of LUBM(U), LMax(U), LAri(U) 
or LGeo(U). 

We consider two widely-used methods for selecting cohort 
models [4]. One selects the B closest speaker models {λcst 1, λcst 

2, …, λcst B} for each target speaker; and the other selects the B/2 
closest speaker models {λcst 1, λcst 2, …, λcst B/2}, plus the B/2 
farthest speaker models {λfst 1, λfst 2, …, λfst B/2}, for each target 
speaker. Here, the degree of closeness is measured in terms of 
the pairwise distance defined in [4]: 

,
)λ|(
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where λi and λj are speaker models trained using the i-th 
speaker’s utterances Ui and the j-th speaker’s utterances Uj, 
respectively. As a result, each target speaker has a sequence of 
background models, {Ω, λcst 1, λcst 2, …, λcst B} or {Ω, λB cst 1, …, 
λcst B/2, λfst 1, …, λfst B/2}, for Eqs. (11) and (14). 

VI. EXPERIMENTS 
We conducted the speaker-verification experiments on two 

databases: the XM2VTS database [22] and the ISCSLP2006 
speaker recognition evaluation (ISCSLP2006-SRE) database 
[24].  

For the performance evaluation, we used the Detection Error 
Tradeoff (DET) curve [26], which shows the tradeoff between 
the false-alarm probability and the miss probability based on 
their corresponding Gaussian deviates. We also measured the 
NIST Detection Cost Function (DCF) [27], which reflects the 
performance at a single operating point on the DET curve. The 
DCF is defined as 

)1( TargetFaFaTargetMissMissDET PPCPPCC −××+××= , (31) 

where PMiss and PFa are the miss probability and the false-alarm 
probability, respectively; CMiss and CFa are the respective 
relative costs of the detection errors; and PTarget is the a priori 
probability of the target speaker. 

A. Evaluation on the XM2VTS Database 
The first set of speaker verification experiments was 

conducted on speech data extracted from the XM2VTS 
multi-modal database [22]. In accordance with “Configuration 
II” described in [23], the database was divided into three 
subsets: “Training”, “Evaluation 2 ”, and “Test”. For our 
experiments, we used the “Training” subset to build each target 
speaker’s model and the background models, and the 
“Evaluation” subset to estimate the decision threshold θ in Eq. 
(2), and the parameters w and b in Eq. (15). The accuracy of 
speaker verification was then evaluated on the “Test” subset. 
As shown in Table I, a total of 293 speakers3 in the database 
were divided into 199 clients (target speakers), 25 “evaluation 
impostors”, and 69 “test impostors”. Each speaker participated 
in four recording sessions at approximately one-month 
intervals, and each recording session consisted of two shots. In 
each shot, the speaker was prompted to utter three sentences: 

a) “0 1 2 3 4 5 6 7 8 9”. 
b) “5 0 6 9 2 8 1 3 7 4”. 
c) “Joe took father’s green shoe bench out”. 

Using a 32-ms Hamming-windowed frame with 10-ms shifts, 
each utterance was converted into a stream of 24-order feature 
 

2 This is usually called the “Development” set in the speech recognition 
community. We use “Evaluation” in accordance with the configuration of the 
XM2VTS database. 

3 We omitted 2 speakers (ID numbers 313 and 342) because of partial data 
corruption. 
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vectors, each consisting of 12 Mel-scale frequency cepstral 
coefficients [28] and their first time derivatives. 

We used 12 (2×2×3) utterances per target speaker from 
sessions 1 and 2 to train the target speaker model, represented 
by a Gaussian Mixture Model (GMM) with 64 mixture 
components. For each target speaker, we used the utterances of 
the other 198 clients in sessions 1 and 2 to generate the world 
model (UBM), represented by a GMM with 256 mixture 
components. We then chose B speakers from those 198 clients 
as the cohort. In the experiments, B was set to 20, and each 
cohort model was also represented by a GMM with 64 mixture 
components. Table II summarizes all the parametric models 
used in each system. To estimate θ, w, and b, we used 6 
utterances per target speaker from session 3, along with 24 
(4×2×3) utterances per evaluation-impostor over the four 
sessions, which yielded 1,194 (6×199) target speaker samples 
and 119,400 (24×25×199) impostor samples. However, 
because a kernel-based technique can be intractable when a 
large number of training samples are involved, we reduced the 
number of impostor samples from 119,400 to 2,250 using a 
uniform random selection method. In the performance 
evaluation, we tested 6 utterances per target speaker from 
session 4 and 24 utterances per test-impostor over the four 
sessions, which produced 1,194 (6×199) target speaker trials 
and 329,544 (24×69×199) impostor trials. 

1) Weighted Geometric Combination versus Geometric 
Mean: The first experiment evaluated the proposed weighted 
geometric combination of background models, i.e., LWGC(U) 
defined in Eq. (10). The set of background models was 
comprised of (i) the world model and the 20 closest cohort 
models (“w_20c”), or (ii) the world model and the 10 closest 
cohort models, plus the 10 farthest cohort models 
(“w_10c_10f”). The weight vector was optimized by 
kernel-based discrimination solutions (KFD or SVM). We 
derived the following eight WGC-based systems:  
a) KFD with k1(⋅) defined in Eq. (24) and “w_20c” 

(“WGC_dot_KFD_w_20c”),  
b) KFD with k1(⋅) defined in Eq. (24) and “w_10c_10f” 

(“WGC_dot_KFD_w_10c_10f”),  
c) SVM with k1(⋅) defined in Eq. (24) and “w_20c” 

(“WGC_dot_SVM_w_20c”),  
d) SVM with k1(⋅) defined in Eq. (24) and “w_10c_10f” 

(“WGC_dot_SVM_w_10c_10f”),  

e) KFD with k2(⋅) defined in Eq. (26) and “w_20c” 
(“WGC_RBF_KFD_w_20c”), 

f) KFD with k2(⋅) defined in Eq. (26) and “w_10c_10f” 
(“WGC_RBF_KFD_w_10c_10f”),  

g) SVM with k2(⋅) defined in Eq. (26) and “w_20c” 
(“WGC_RBF_SVM_w_20c”), and  

h) SVM with k2(⋅) defined in Eq. (26) and “w_10c_10f” 
(“WGC_RBF_SVM_w_10c_10f”).  

Both SVM and KFD used an RBF kernel function k2(⋅) with σ = 
5. We used the SSVM tool [29] to implement the SVM 
experiments, where the parameter Cβ of SVM was set to 1. For 
the performance comparison, we used three systems as our 
baselines: 
a) LUBM(U) (“GMM-UBM”),  
b) LGeo(U) with the 20 closest cohort models (“Geo_20c”), and 
c) LGeo(U) with the 10 closest cohort models plus the 10 farthest 

cohort models (“Geo_10c_10f”). 
Fig. 1 shows the speaker verification results of the above 
systems evaluated on the XM2VTS “Test” subset in terms of 
DET curves. Figures 1(a) and 1(b) compare the DET curves 

TABLE II 
SUMMARY OF THE PARAMETRIC MODELS USED IN EACH SYSTEM 

H0 H1

System a 64-mixture target 
speaker GMM 

a 256-mixture 
UBM 

B 64-mixture cohort 
GMMs 

LUBM √ √  
LMax √  √ 
LAri √  √ 
LGeo √  √ 

LBengio √ √  
LWGC √ √ √ 
LWAC √ √ √ 

 

 
(a) 

 
(b) 

Fig. 1.  Geometric Mean versus WGC: DET curves for the “Test” subset in the 
XM2VTS database. 
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derived by KFD-based systems and SVM-based systems, 
respectively. 

From Fig. 1, we observe that all the WGC-based systems 
with kernel functions k1(⋅) or k2(⋅) outperform the baseline 
systems “GMM-UBM”, “Geo_20c”, and “Geo_10c_10f”. We 
also observe that “Geo_10c_10f” in Fig. 1(a) yields the poorest 
performance. This is because the simple geometric mean may 
produce some singular scores if any cohort model λi is poorly 
matched to the input utterance U, i.e., p(U| λi) → 0. In contrast, 
the results show that the WGC-based system sidesteps this 
problem with the aid of the weighted strategy. In addition, both 
Fig. 1(a) and Fig. 1(b) show that the WGC-based systems with 
k2(⋅) outperform the WGC-based systems with k1(⋅). Thus, in 
the subsequent experiments, we focused on investigating the 
performance achieved by the kernel-based discrimination 
solutions using the kernel function k2(⋅). 

2) Weighted Arithmetic Combination versus Arithmetic 
Mean: The second experiment evaluated the proposed 
weighted arithmetic combination of background models, i.e., 
LWAC(U) defined in Eq. (13). We implemented the WAC-based 
systems using the kernel-based discrimination solution in four 
ways: 
a) KFD with “w_20c” (“WAC_RBF_KFD_w_20c”), 
b) KFD with “w_10c_10f” (“WAC_RBF_KFD_w_10c_10f”), 
c) SVM with “w_20c” (“WAC_RBF_SVM_w_20c”), and 
d) SVM with “w_10c_10f” 

(“WAC_RBF_SVM_w_10c_10f”). 
In the above cases, SVM and KFD used an RBF kernel function 
k2(⋅) with σ = 60. For the performance comparison, we used 
three systems as our baselines: 
a) LUBM(U) (“GMM-UBM”), 
b) LAri(U) with the 20 closest cohort models (“Ari_20c”), and 
c) LAri(U) with the 10 closest cohort models plus the 10 farthest 

cohort models (“Ari_10c_10f”). 
Fig. 2 shows the results of the above systems evaluated on the 
XM2VTS “Test” subset in terms of DET curves. Clearly, all the 
WAC-based systems based on either KFD or SVM outperform 

the baseline systems “GMM-UBM”, “Ari_20c”, and 
“Ari_10c_10f”. We also observe that the performances of SVM 
and KFD are similar. 

3) Discussion: An analysis of the experiment results based 
on the DCF with CMiss = 1, CFa = 1, and PTarget = 0.5 is given in 
Table III. In addition to the above systems, we evaluated four 
related systems: 
a) LMax(U) with the 20 closest cohort models (“Max_20c”);  
b) LBengio(U) using an RBF kernel function with σ = 10 

(“GMM-UBM/SVM”); 
c) LFusion(U) with a fusion of five baseline LR measures, namely, 

“GMM-UBM”, “Max_20c”, “Ari_20c”, “Ari_10c_10f”, 
and “Geo_20c”, by KFD (“Fusion_KFD”); and  

d) LFusion(U) with a fusion of five baseline LR measures, 
namely, “GMM-UBM”, “Max_20c”, “Ari_20c”, 
“Ari_10c_10f”, and “Geo_20c”, by SVM (“Fusion_SVM”). 

In the fusion systems, KFD and SVM used an RBF kernel 
function with σ = 5. We did not include “Geo_10c_10f” in the 
implementation of the fusion systems because of its poor 
performance. For each approach, the decision threshold was 
carefully tuned to minimize the DCF using the “Evaluation” 
subset, and then applied to the “Test” subset. 

Several conclusions can be drawn from Table III. First, the 
two direct fusion systems, “Fusion_KFD” and “Fusion_SVM”, 
as well as “GMM-UBM/SVM”, outperform the baseline LR 
systems. Second, the proposed WGC- and WAC-based systems 
not only outperform all the baseline LR systems, 

TABLE III 
DCFS FOR THE “EVALUATION” AND “TEST” SUBSETS IN THE XM2VTS 

DATABASE 

System min DCF for 
“Evaluation” 

actual DCF 
for “Test” 

GMM-UBM 0.0633 0.0519 
Max_20c 0.0776 0.0635 
Ari_20c 0.0676 0.0535 

Ari_10c_10f 0.0589 0.0515 
Geo_20c 0.0734 0.0583 

GMM-UBM/SVM 0.0590 0.0508 
Fusion_KFD 0.0496 0.0475 
Fusion_SVM 0.0505 0.0469 

WGC_RBF_KFD_w_20c 0.0247 0.0357 
WGC_RBF_KFD_w_10c_10f 0.0232 0.0389 

WGC_RBF_SVM_w_20c 0.0320 0.0414 
WGC_RBF_SVM_w_10c_10f 0.0310 0.0417 

WAC_RBF_KFD_w_20c 0.0462 0.0443 
WAC_RBF_KFD_w_10c_10f 0.0469 0.0445 

WAC_RBF_SVM_w_20c 0.0460 0.0454 
WAC_RBF_SVM_w_10c_10f 0.0479 0.0450 

 
TABLE IV 

COMPARISON OF ERRORS MADE BY “WGC_RBF_KFD_W_20C” AND 
“ARI_10C_10F,” WHERE P AND N DENOTE THE NUMBER OF POSITIVE 

(TARGET SPEAKER) TRIALS AND THE NUMBER OF NEGATIVE (IMPOSTOR) 
TRIALS, RESPECTIVELY. THERE ARE 1,194P AND 329,544N IN TOTAL 

Ari_10c_10f Trial counts Correct Incorrect

Correct 1,107P + 
315,200N

32P + 
6,019N WGC_RBF_KFD_w_20c

Incorrect 5P + 
3,056N 

50P + 
5,269N 

 

 
Fig. 2.  Arithmetic Mean versus WAC: DET curves for the “Test” subset in the 
XM2VTS database. 
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“GMM-UBM”, “Max_20c”, “Ari_20c”, “Ari_10c_10f”, and 
“Geo_20c”, they are also better than the fusion systems and the 
“GMM-UBM/SVM” system. The WGC- and WAC-based 
SVM systems are better than the “GMM-UBM/SVM” system 
because they consider multiple background models (including 
the world model), whereas the “GMM-UBM/SVM” system 
only considers the world model. Third, the WGC-based 
systems slightly outperform the WAC-based systems. Fourth, 
both KFD and SVM perform well in terms of finding nonlinear 
discrimination solutions. From the actual DCF for the “Test” 
subset, we observe that “WGC_RBF_KFD_w_20c” achieved a 
30.68% relative improvement compared to “Ari_10c_10f” – 
the best baseline LR system. Table IV compares the correlation 
of correct and incorrect decisions between 
“WGC_RBF_KFD_w_20c” and “Ari_10c_10f” for the actual 
DCF [27]. Based on McNemar’s test [30] with a significance 
level = 0.001, we can conclude that 
“WGC_RBF_KFD_w_20c” performs significantly better than 
“Ari_10c_10f”, since the resulting P-value < 0.001. 

B. Evaluation on the ISCSLP2006-SRE Database 
We also evaluated the proposed methods on a 

text-independent single-channel speaker verification task 
conforming to the ISCSLP2006 Speaker Recognition 
Evaluation (ISCSLP2006-SRE) Plan [25]. Unlike the 
XM2VTS task, the ISCSLP2006-SRE database was divided 
into two subsets: a “Development Data Set” and an “Evaluation 
Data Set”. The “Development Data Set” contained 300 
speakers. Each speaker made two utterances, each of which 
was cut into one long segment, which was longer than 30 
seconds, and several short segments. In the experiments, we 
collected each speaker’s two long segments to build a UBM 
with 1,024 mixture Gaussian components, and used the two 
long segments per speaker to train each speaker’s 1024-mixture 
GMM through UBM-MAP adaptation [1]. For each speaker, B 
speakers’ GMMs were chosen from the other 299 speakers as 
the cohort models. The remaining short segments of all the 
speakers were used to estimate θ, w, and b. In the 
implementation, each short segment served as a positive sample 
for its associated speaker, but acted as a negative sample for 
each of the 20 randomly-selected speakers from the remaining 
299 speakers. This yielded 1,551 positive samples and 31,020 
(1,551×20) negative samples for estimating θ or b. Moreover, 
we used 1,551 positive samples and 1,551 randomly-selected 
negative samples to estimate w in the proposed systems. 

The “Evaluation Data Set” contained 800 target speakers 
that did not overlap with the speakers in the “Development 
Data Set”. Each target speaker made one long training 
utterance, ranging in duration from 21 to 85 seconds, with an 
average length of 37.06 seconds. This was used to generate the 
speaker’s 1024-mixture GMM through UBM-MAP adaptation. 
For each target speaker, B speakers’ GMMs were chosen from 
the 300 speakers in the “Development Data Set” as the cohort 
models. In addition, there were 5,933 test utterances (trials) in 
the “Evaluation Data Set”, each of which ranged in duration 
from 5 seconds to 54 seconds, with an average length of 15.66 

seconds. Each test utterance was associated with the claimed 
speaker’s ID, and the task involved judging whether it was true 
or false. The answer sheet was released after the evaluation 
finished.  

TABLE V 
MINIMUM DCFS AND ACTUAL DCFS FOR THE ISCSLP2006-SRE 

“EVALUATION DATA SET” 
 Minimum DCFs Actual DCFs 

GMM-UBM 0.0184 0.0228 
Tnorm_50c 0.0151 0.0184 

GMM-UBM/SVM 0.0143 0.0146 
WGC_RBF_KFD_w_20c 0.0081 0.0087 
WAC_RBF_KFD_w_20c 0.0087 0.0112 
WGC_RBF_SVM_w_20c 0.0091 0.0105 
WAC_RBF_SVM_w_20c 0.0093 0.0105 

 
 

 
Fig. 3.  Baseline systems versus WAC and WGC: DET curves for the 
ISCSLP2006-SRE “Evaluation Data Set”. The stars and circles indicate the 
actual and minimum DCFs, respectively. 
 

The acoustic feature extraction process was same as that 
applied in the XM2VTS task. 

1) Experiment Results: The GMM-UBM [1] and T-norm [6] 
systems are the current state-of-the-art approaches for the 
text-independent speaker verification task. Thus, in this part, 
we focus on the performance improvement of our methods over 
these two baseline systems. As with the GMM-UBM system, 
we used the fast scoring method [1] for likelihood ratio 
computation in the proposed methods. Both the target speaker 
model λ and the B cohort models were adapted from the UBM 
Ω. Because the mixture indices were retained after UBM-MAP 
adaptation, each element of the characteristic vector x was 
computed approximately by only considering the C mixture 
components corresponding to the top C scoring mixtures in the 
UBM [1]. In our experiments, C was set to 5, and B was set to 
20. 

The experiment results of the XM2VTS task showed that 
there was no significant performance difference between the 
two cohort selection methods used to construct the 
characteristic vector x. Thus, in the following experiments, we 
only used one type of characteristic vector, i.e., the vector 
associated with the UBM and the 20 closest cohort models 
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(“w_20c”), to compute WGC- and WAC-based decision 
functions. This yielded the following four systems: 
a) LWGC(U) using SVM with k2(⋅) and “w_20c” 

(“WGC_RBF_SVM_w_20c”),  
b) LWGC(U) using KFD with k2(⋅) and “w_20c” 

(“WGC_RBF_KFD_w_20c”),  
c) LWAC(U) using SVM with k2(⋅) and “w_20c” 

(“WAC_RBF_SVM_w_20c”), and  
d) LWAC(U) using KFD with k2(⋅) and “w_20c” 

(“WAC_RBF_KFD_w_20c”). 
We compared the proposed systems with the GMM-UBM 
system, the T-norm system with the 50 closest cohort models 
(“Tnorm_50c”), and Bengio et al.’s system 
(“GMM-UBM/SVM”). The kernel parameters for SVM and 
KFD were same as those used in the XM2VTS task. Following 
the ISCSLP2006-SRE Plan, the performance was measured by 
the DCF with CMiss = 10, CFa = 1, and PTarget = 0.05. In each 
system, the decision threshold was tuned to minimize the DCF 
using the (1,551 + 31,020) samples in the “Development Data 
Set”, and then applied to the “Evaluation Data Set”. Table V 
summarizes the minimum DCFs and the actual DCFs derived 
from 5,933 trials in the “Evaluation Data Set”, and Fig. 3 shows 
the experiment results for all systems in terms of DET curves. It 
is clear that all the proposed systems outperform 
“GMM-UBM”, “Tnorm_50c”, and “GMM-UBM/SVM.” The 
actual DCFs in Table V show that “WGC_RBF_KFD_w_20c” 
achieved a 52.72% relative improvement over “Tnorm_50c”. 
Table VI compares the correlation of correct and incorrect 
decisions between “WGC_RBF_KFD_w_20c” and 
“Tnorm_50c” for the actual DCF. Based on McNemar’s test 
with a significance level = 0.001, we can conclude that 
“WGC_RBF_KFD_w_20c” performs significantly better than 
“Tnorm_50c”, since the resulting P-value < 0.001. 

VII. CONCLUSION 
We have presented two novel WGC- and WAC-based 

decision functions for solving the speaker-verification problem. 
The functions improve the characterization of the alternative 
hypothesis by combining the likelihoods of all the background 
models based on two perspectives: a weighted geometric 
combination and a weighted arithmetic combination. These 
combinations are more effective and robust than the simple 
geometric mean and arithmetic mean used in conventional 
approaches. The new decision functions are treated as 
nonlinear discriminant classifiers that can be solved by using 
kernel-based techniques, such as the Kernel Fisher 
Discriminant and Support Vector Machine, to optimally 

separate samples of the null hypothesis from those of the 
alternative hypothesis. The results of experiments on two 
speaker verification tasks show notable improvements in 
performance over classical approaches. Finally, it is worth 
noting that the proposed methods can be applied to other types 
of data and hypothesis testing problems. 
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TABLE VI 
COMPARISON OF ERRORS MADE BY “WGC_RBF_KFD_W_20C” AND 

“ TNORM_50C”, WHERE P AND N DENOTE THE NUMBER OF POSITIVE (TARGET 
SPEAKER) TRIALS AND THE NUMBER OF NEGATIVE (IMPOSTOR) TRIALS, 

RESPECTIVELY. THERE ARE 347P AND 5,586N IN TOTAL 
Tnorm_50c Trial counts 

Correct Incorrect 
Correct 342P + 5,508N 2P + 52N WGC_RBF_KFD_w_20c 

Incorrect 0P + 12N 3P + 14N 
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