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Abstract 

Phoneme level transcription of speech corpora 
is crucial to fundamental speech research and 
the increasingly interested detection-based 
automatic speech recognition. Currently, there 
is no existing phoneme-labeled Mandarin 
Chinese speech corpus. This paper presents 
our recent work towards development of such 
a corpus. Our goal is to label five hours of 
speech data selected from a Mandarin Chinese 
broadcast news corpus. To reduce the human 
effort and accelerate the labeling process, we 
divide the speech data into subsets and employ 
our recently proposed HMM/SVM-based two-
stage automatic phoneme segmentation 
framework to obtain the initial phoneme 
segmentation for subsequent manual 
correction subset by subset. The results of 
experiments on the first four subsets that have 
been manually verified show that the cost of 
labeling one subset can be progressively 
reduced. 

1 Introduction 

Phoneme level transcription of speech corpora is 
crucially important to fundamental speech research 
and the increasingly interested detection-based 
automatic speech recognition (Lee et al., 2007). 
However, manual phoneme segmentation of 
speech signals is extremely time consuming and 
costly. To reduce the human effort and accelerate 
the labeling process, we have recently proposed an 
HMM/SVM-based two-stage framework (Lo and 
Wang, 2007) for automatic phoneme segmentation. 
The first stage aligns a phoneme sequence of a 
speech utterance with its acoustic signal 
counterpart according to the minimum boundary 
error (MBE) criterion, based on MBE-trained 
hidden Markov models (HMMs) (Kuo and Wang, 
2006). The second stage uses a support vector 
machine (SVM) to refine the hypothesized 
phoneme boundaries derived by HMM-based 
forced alignment. 

Since there is no existing phoneme-labeled 
Mandarin Chinese speech corpus, we select 
approximately five hours of speech data from the 
MATBN Mandarin Chinese broadcast news speech 

corpus (Wang et al., 2005) for further phoneme 
annotation. To reduce costs, we employ our 
HMM/SVM framework to obtain the initial 
phoneme segmentation for subsequent manual 
segmentation and verification. To do this, we 
divide the 5-hour speech data into 60 5-minute 
subsets. First, we perform conventional 
unsupervised maximum likelihood (ML) training 
of HMMs and HMM-based forced alignment on 
the complete set to generate the initial 
segmentation. When the first subset has been 
manually verified, it is used for supervised training 
of the HMMs and SVMs. To prevent over-fitting 
in HMM training, the remaining unverified data is 
used to smooth the HMM parameters. Then, based 
on the new HMMs and SVMs, we apply improved 
HMM/SVM segmentation to the remaining subsets 
to generate more accurate phoneme boundaries. 
The above training and segmentation process is 
repeated subset by subset until all the subsets have 
been manually verified. It is expected that, in this 
way, the accuracy of automatic segmentation can 
be improved stage by stage, and the overall cost of 
manual segmentation can be reduced.  

Now the first 3 subsets have been processed 
completely, and the fourth subset has been 
processed partially. So, we evaluate the efficacy of 
our automatic phoneme segmentation process on 
them. The experiment results clearly show that the 
segmentation accuracy can be improved if more 
subsets are manually verified, i.e., the cost of 
labeling one subset can be progressively reduced. 

The remainder of this paper is organized as 
follows. Section 2 presents our HMM/SVM-based 
two-stage automatic phoneme segmentation 
framework. Section 3 describes how we apply the 
framework for labeling the speech data selected 
from the MATBN Mandarin Chinese speech 
corpus. Section 4 details the experiment results. 
Finally, in Section 5, we present our conclusions.  

2 HMM/SVM-based Two-stage Phoneme 
Segmentation 

The HMM/SVM-based two-stage framework for 
automatic phoneme segmentation tries to imitate 
the human phoneme segmentation process. The 
first stage performs HMM-based forced alignment 
according to the minimum boundary error (MBE) 
criterion. The objective is to align a phoneme 



sequence of a speech utterance with its acoustic 
signal counterpart based on MBE-trained HMMs. 
The second stage uses SVM to refine the 
hypothesized phoneme boundaries derived by 
HMM-based forced alignment, based on some 
discriminative features and mel-frequency 
cepstrum coefficients (MFCCs). 

2.1 HMM-based phoneme segmentation 

2.1.1 Minimum boundary error (MBE) training 
Let },..,{ 1 ROO=O  be a set of training 

observation sequences. The objective function for 
MBE training can then be defined as  
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where rΦ  is a set of possible phoneme alignments 
for the training observation sequence rO ; r

iS  is 
one of the hypothesized alignments in rΦ ; r

cS is 
the manually labeled phoneme alignment; 

)| rr
i OSP(  is the posterior probability of alignment 

r
iS  given rO ; and ),( r

c
r
i SSER  denotes the 

"boundary error" of r
iS  compared with the 

manually labeled phoneme alignment r
cS . For each 

training observation sequence rO , MBEF  gives the 
weighted average boundary error of all 
hypothesized alignments. However, Eq. (1) cannot 
be used directly because, in practice, )| rr

i OSP(  is 
unknown. For simplicity, we assume that the prior 
probability of alignment r

iS  is uniformly 
distributed, and the likelihood )|( r

i
r SOp  of 

alignment r
iS  is governed by the acoustic model 

parameter set Λ . Therefore, Eq. (1) can be 
rewritten as  
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where ξ  is a scaling factor that prevents the 
denominator ∑ (∈ Λrr

kS
r
k

r SOpΦ )|  from being 
dominated by only a few alignments.  

Since rΦ contains a huge number of 
hypothesized phoneme alignments, for efficiency, 
we restrict the hypothesized space rΦ to the set of 
alignments constructed from a phoneme lattice like 
the example shown in Fig. 1. The boundary error 
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calculated as the sum of the boundary errors of the 
individual phonemes in r

iS , i.e., 
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n-th phonemes in r
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ne are, respectively, the start time and end 
time of phoneme i

nq ; and  c
ns and c

ne correspond to 
the human-labeled start time and end time, 
respectively. 

The optimal parameter set *Λ  can be estimated 
by minimizing the objective function defined in Eq. 
(2) using the extended Baum-Welch (EB) 
algorithm (Povey, 2003). The detailed derivations 
of the re-estimation formulae for the model 
parameters can be found in (Kuo and Wang, 2006). 

2.1.2 MBE segmentation 
The MBE alignment approach is a promising 

realization of the Minimum Bayes-Risk (MBR) 
classifier for the automatic phoneme segmentation 
task. The latter can be considered as an action, 

( )OSα , taken to identify a certain alignment, S , 
from all the phoneme alignments of a given 
utterance O. Let the function ),( cSSL  be the loss 
incurred when the action ( )OSα  is taken, given that 
the true alignment is cS . During the classification 
stage, we do not know the true alignment in 
advance, i.e., any arbitrary alignment jS  could be 
true. The MBR classifier is designed to select the 
action whose conditional risk, 

∑= ∈ΦjS jjS OSPSSLOR )|(),()|(α , is minimal, i.e., 

the best alignment based on the MBR criterion can 
be found by 
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When the symmetrical zero-one function, 
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is selected as the loss function, and it is assumed 
that the prior probability of alignment jS  is 
uniformly distributed, the MBR classifier is 

Figure 1: An illustration of the phonetic lattice 
for the speech utterance "where were they?". 



equivalent to the conventional forced-alignment 
method, which picks the alignment with the 
maximal likelihood. When the loss function is 
replaced by the boundary error function, the MBR 
classifier becomes the MBE forced alignment 
approach, defined as: 
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where N is the number of phonemes in O; and 
nq and j

nq are the n-th phonemes in the alignments 
S  and jS , respectively. To simplify the 
implementation, we restrict the hypothesized space 
Φ to the set of alignments constructed from the 
phoneme lattice shown in Fig. 1, which can be 
generated by a conventional beam search. 

Let the cut nC  be the set of phoneme arcs of the 
n-th phoneme in the utterance. For example, in Fig. 
1, there are four phoneme arcs for the second 
phoneme, "w", in 2C  and six phoneme arcs for the 
third phoneme, "eh", in 3C . From the figure, it is 
obvious that each alignment in Φ  will pass a 
single phoneme arc in each cut nC , n=1,2,...,N. 
Based on this observation, Eq. (5) can be rewritten 
as: 
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where mnq ,  is the m-th phoneme arc in nC ; and 
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∑= ∈∈Φρ is equivalent to the 

posterior probability of mnq ,  given the utterance O, 
which can be calculated by applying a forward-
backward algorithm to the phoneme lattice. In this 
way, MBE forced alignment can be performed 
efficiently on the phoneme lattice via a Viterbi 
search. 

2.2 Boundary refinement using SVM 

For each initial boundary detected by HMM-
based segmentation, several hypothesized 
boundaries around it are identified, and each one is 
examined by a phoneme-transition-dependent 
SVM classifier; then, the initial boundary is 
replaced by the most likely boundary. 

2.2.1 Phoneme transition clustering 
Ideally, we should be able to train an SVM 

classifier for each type of phoneme transition. 
However, this is not feasible because the training 
data is always limited. Maintaining a balance 
between the available training data and the model's 
complexity is critical to the training process. 

Furthermore, since many phoneme transitions have 
similar acoustic characteristics, we can partition 
them into clusters so that the training data can be 
shared and the phoneme transitions with little 
training data can be covered by the SVM 
classifiers of the categories they belong to. 

For each type of phoneme transition, we gather 
all the feature vectors associated with the human-
labeled phoneme boundaries and compute the 
mean vector. We then apply the K-means 
algorithm to cluster the phoneme transitions 
according to their mean vectors. Note that only 
phoneme transitions with enough instances are 
considered in this step. Finally, we assign the 
phoneme transitions ignored during clustering to 
the nearest clusters according to the Euclidean 
distances between their mean vectors and the 
cluster centers. 

2.2.2 Support Vector Machine 
Consider the problem of classifying data points 

into two classes, A+ and A-. We are given a 
training data set m

iii yx 1)},{( = , where n
i Rx ⊂ is an 

input vector variable and }1,1{ −∈iy is a class label 
that indicates which of the two classes, A+ and A-, 
it belongs to. We represent these data points by an 
m×n matrix A, in which the i-th row, Ai, 
corresponds to the i-th data point. The SVM 
classifier f(x) is of the following form:  
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where ),( xAK i is a kernel function, and iα and b 
are parameters to be trained.  

For each phoneme transition cluster, an SVM 
classifier is trained by using the feature vectors 
associated with the true boundaries as positive 
training samples and the randomly selected feature 
vectors at least 20 ms away from the true 
boundaries as negative training samples. In the test 
phase, the feature vectors associated with the 
speech frames around the hypothesized boundary 
are examined by the associated SVM classifier. 
Then, the frame index associated with the feature 
vector with the maximum classifier output is 
recognized as the refined boundary. 

3 The Use of HMM/SVM Segmentation in 
Labeling the MATBN Corpus 

We have applied the HMM/SVM-based two-
stage automatic phoneme segmentation framework 
for labeling the speech data selected from the 
MATBN Mandarin Chinese broadcast news corpus 
(Wang et al., 2005).  

3.1 The MATBN corpus 



The MATBN Mandarin Chinese corpus contains 
198 hours of broadcast news from the Public 
Television Service Foundation (Taiwan). The data 
includes orthographic transcripts and SGML 
tagging for annotating acoustic conditions, 
background conditions, story boundaries, speaker 
turn boundaries, and acoustic events, such as 
hesitations and repetitions. We select 
approximately five hours of speech data from the 
corpus for further phoneme annotation. 

3.2 Strategy 

We divide the 5-hour speech data into 60 5-
minute subsets. First, we perform conventional 
unsupervised maximum likelihood (ML) training 
of HMMs and HMM-based forced alignment on 
the complete set to generate the initial 
segmentation. When the first subset has been 
manually verified, it is used for supervised training 
of the HMMs and SVMs. To prevent over-fitting 
in HMM training, the remaining unverified data is 
used to smooth the HMM parameters. Then, based 
on the new HMMs and SVMs, we apply improved 
HMM/SVM segmentation to the remaining subsets 
to generate more accurate phoneme boundaries. 
The above training and segmentation process is 
repeated subset by subset until all the subsets have 
been manually verified. 

4 Experiments 

Now the first 3 subsets have been processed 
completely, and the fourth subset has been 
processed partially. So, we can evaluate the 
efficacy of our automatic phoneme segmentation 
process on them.  

4.1 Experiment setup 

The acoustic models for HMM-based 
segmentation consist of 34 context-independent 
phoneme models, each represented by a 3-state 
continuous density HMM with a left-to-right 
topology. Each frame of the speech data is 
represented by a 39-dimensional feature vector 
comprised of 12 MFCCs and log energy, along 
with their first and second time derivatives. The 
frame width is 20 ms and the frame shift is 5 ms. 
Utterance-based cepstral variance normalization 

(CVN) is applied to all the training and test speech 
utterances. 

In the SVM refinement stage, each frame of the 
speech data is represented by a 45-dimensional 
feature vector comprised of the above 39 MFCC-
based coefficients, plus the zero crossing rate, 
bisector frequency (Lin et al., 2005), burst degree 
(Lin et al., 2005), spectral entropy, weighted 
entropy (Shen et al., 1998), and subband energy. 
For each hypothesized boundary, the feature 
vectors of its adjacent left and right frames, 
together with the symmetrical Kullback-Leibler 
distance (SKLD) (Klabbers and Veldhuis, 2001) 
and the spectral feature transition rate (SFTR) 
(Nandasena and Akagi, 1998) between the two 
feature vectors, are concatenated to form a 92-
dimensional augmented vector. The augmented 
vectors are used as features for phoneme transition 
clustering and as the input vectors for SVM. Given 
the boundary of each phoneme transition obtained 
by HMM-based segmentation, 11 hypothesized 
boundaries (extracted every 1 ms) around the 
initial boundary within 5±  ms are examined by the 
SVM classifier associated with that specific 
phoneme transition. In total, 16 phoneme-
transition-dependent SVMs are used. The SVM 
classifiers with Gaussian kernels are implemented 
by LIBSVM (Chang and Lin, 2001). 

4.2 Experiment results 

Table 1 shows the experiment results. "Complete 
set unsupervised ML/ML" denotes the 
conventional unsupervised HMM-based 
segmentation. "SS1 supervised MBE/MBE+SVM" 
means that the HMM/SVM framework uses 
HMMs (MBE-trained) and SVMs trained with the 
first subset (SS1), while "SS1 supervised ML/ML" 
denotes its conventional HMM-based segmentation 
counterpart using supervised ML-trained HMMs. 
Since the models are trained with the first subset, 
they can be tested on the following subsets, i.e., 
SS2 to SS4. Comparing the results in rows 2 
(Complete set unsupervised ML/ML), 3 (SS1 
supervised ML/ML), and 4 (SS1 supervised 
MBE/MBE+SVM) of Table 1, we observe that the 
supervised trained HMMs outperform the 
unsupervised trained HMMs and our HMM/SVM-

Training/Segmentation SS1 SS2 SS3 SS4 
Complete set unsupervised ML/ML 19.33/31.81 17.96/40.40 18.12/36.65 16.35/41.21 
SS1 supervised ML/ML NA 15.00/55.40 13.06/62.56 11.68/63.22 
SS1 supervised MBE/MBE+SVM NA 13.58/59.26 11.93/65.25 10.42/68.95 
SS1+SS2 supervised MBE/MBE+SVM NA NA 10.61/67.34  9.71/70.59 
SS1+SS2+SS3 supervised MBE/MBE+SVM NA NA NA  9.35/71.79 
Table 1: The results of automatic phoneme segmentation in mean boundary distance in 
millisecond/percentage of phoneme boundaries correctly placed within a 10 millisecond tolerance with 
respect to the human labeled phoneme boundaries 



based segmentation outperforms the conventional 
HMM-based segmentation, which uses supervised 
trained HMMs. Comparing the results in rows 4, 5, 
and 6, we observe that the segmentation accuracy 
can be improved if more subsets are manually 
verified. In other words, the cost of labeling one 
subset can be progressively reduced.  

Table 2 shows the detailed results of evaluation 
on the fourth subset (SS4) in percentage of 
phoneme boundaries correctly placed within 
different tolerances with respect to the human 
labeled phoneme boundaries. From the fifth row of 
the table, we observe that, based on the HMMs and 
SVMs trained with the first two subsets (10 
mininutes of labeled training speech), the 
HMM/SVM framework can achieve a mean 
boundary distance of less than 10ms and an 
accuracy of near 90% within a tolerance of 20ms. 
The results show that a small amount of labeled 
data can be very useful for improving the 
segmentation accuracy. 

5 Conclusion 

In this paper, we have explored the use of our 
recently proposed HMM/SVM-based two-stage 
automatic phoneme segmentation framework in 
phoneme labeling of the speech data selected from 
a Mandarin Chinese speech corpus that has 
orthographic transcripts. We divided the speech 
data into subsets and employed automatic phoneme 
segmentation to obtain the initial phoneme 
segmentation for subsequent manual correction 
subset by subset. The preliminary results of 
evaluation on the first four subsets that have been 
manually verified are rather promising. They 
demonstrate that the segmentation accuracy can be 
improved if more subsets are manually verified, 
i.e., the cost of labeling one subset can be 
progressively reduced. The annotation work is 
ongoing and the results will be made available at a 
future time. 
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