
Articulatory Feature Asynchrony Analysis and Compensation in
Detection-Based ASR

I-Fan Chen1 and Hsin-Min Wang1,2

1Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
2Institute of Information Science, Academia Sinica, Taipei, Taiwan

{ifanchen, whm}@iis.sinica.edu.tw

Abstract
This paper investigates the effects of two types of
imperfection, namely detection errors and articulatory feature
asynchrony, of the front-end articulatory feature detector on
the performance of a detection-based ASR system. Based on a
set of variable-controlled experiments, we find that
articulatory feature asynchrony is the major issue that should
be addressed in detection-based ASR. To this end, we propose
several methods to reduce the asynchrony or the effects of
asynchrony. The results are quite promising; for example,
currently, we can achieve 67.67% phone accuracy in the
TIMIT free phone recognition task with only 11 binary-valued
articulatory features.
Index Terms: articulatory feature asynchrony, detection-
based ASR, speech recognition

1. Introduction
In recent years, detection-based automatic speech recognition
(ASR) has become a popular research topic in fields related to
ASR. By simulating human speech recognition (HSR),
detection-based ASR systems attempt to reduce the gap
between HSR and ASR. Basically, the framework of
detection-based ASR can be divided into two key components:
a front-end knowledge attribute detector and a backend
knowledge integrator [1]. The front-end process collects a
wide variety of speech-related knowledge attributes to form
knowledge sources; and the backend process integrates the
attributes into higher-level speech units, such as phones,
syllables, words, and sentences. If the front-end detector
targets articulatory features (AFs), two factors may affect the
system's overall recognition accuracy: the errors produced by
the detector and the asynchrony of AFs.

The asynchrony of AFs is a phenomenon caused by
variations in natural speech production; i.e., the onset times of
different AFs shift differently in different contextual
conditions in speech. Because of this phenomenon, it is
generally believed that one of the reasons why AFs are more
suitable than phones for ASR is their ability to describe the
contextual information in speech. A number of studies have
focused on this phenomenon. For example, in [2], AF
asynchrony was introduced to the articulatory feature
recognizer by applying an embedded training technique; while
in [3], the authors used the pattern of AF asynchrony in the
AF space to probe for acoustic differences in the onset of
Dutch singulars and plurals. However, it is still unclear what
role this phenomenon plays in a phone or word recognition
task, which maps multiple asynchronous AF streams into a
single phone or word stream.

In our previous research [4], we found that the
imperfection of the front-end articulatory feature detector
(AFDT) can cause a substantial decline in recognition
accuracy in detection-based ASR. Here, we investigate the
effects of two types of the above imperfection, namely AFDT

errors and AF asynchrony, on the backend integrator's
performance. To compare the relative importance of the two
factors, we design a set of variable-controlled experiments.
The results show that AF asynchrony plays a more important
role in detection-based ASR than AFDT errors. Based on this
finding, we propose a number of ways to improve the system
performance. We believe that our experiment results provide
further insight into how to design a high-performance
detection-based ASR system.

2. Front-end articulatory feature detection
and AF asynchrony analysis

2.1. Front-end articulatory feature detection
The AFDT's detection target is the Government Phonology
(GP) feature set [5], a phonological feature system in which
speech sounds are destructed into a set of primes and can be
represented by fusing these primes structurally. We select the
GP feature set because the results of our previous study show
that it is the most effective for building a high-performance
detection-based ASR system [4]. In this work, the GP feature
set contains 11 AFs, including 8 AFs (namely "A", "I", "U",
"E", "S", "h", "H", and "N") defined in the original GP feature
system [5] and 3 AFs ("a", "i", and "u") added by King and
Taylor [6].

In addition to the 11 AFs, our front-end AFDT
simultaneously detects TIMIT 61 phones for AF asynchrony
analysis. The objective of phone detection is to remove the
bias introduced by the inconsistency between human
alignment and machine alignment. AF asynchrony is defined
as the shift between a phone's boundary and the boundaries of
its associated AFs. Thus, the different criteria used for AF
alignment and phone alignment might lead to inaccurate
articulatory feature asynchrony measurements. Even though
the TIMIT corpus provides human aligned phone labels, to
generate unbiased AF asynchrony data, we need to re-align
the phone sequence in speech using our front-end AFDT.

Following the work in [6], we use a single time delay
recurrent neural network [7] to implement the front-end AFDT.
The inputs of the neural network are 12 Mel-frequency
cepstral coefficients (MFCCs) plus energy, which are
extracted by a 25-ms Hamming-windowed frame with 10-ms
shifts. The neural network outputs a 72-dimensional vector
representing 11 GP AFs and 61 TIMIT phones. The value of
each element in the vector ranges from 0 to 1, which can be
treated as a posterior probability. The values of the AFs are
then discretized1 with a threshold to form binary-valued AF

1 Theoretically, CRFs can handle real-valued input; however, we
discretize the AFDT's results because the CRF++ toolkit used in our
experiments only supports binary-valued input. Moreover, it is easier
to define the boundaries of AFs, which are important for asynchrony
measurement, by using the discrete AF detection results.

detection results, which are input to the backend CRF
integrator. Our AFDT is a recurrent neural network and
linkage pruning is not applied. Therefore, the output AF and
phone posterior probabilities of the current frame are fed back
to the neural network as additional inputs for the subsequent
frame. As a result, the AFDT learns the relations and
dependencies between AFs and phones.

2.2. AF and phone alignments using AFDT
To analyze the AF asynchrony around each phone boundary,
we use the front-end AFDT to obtain the individual frame
alignments of AFs and phones. The AFDT generates the
posterior probabilities of the TIMIT 61 phones for each frame.
Thus, based on the phone label sequence supplied by the
TIMIT corpus, we can use the generated posterior
probabilities for phone-level forced alignment with the Viterbi
algorithm.

AF sequence alignment is more complicated than phone
alignment. For each AF, forced alignment is performed
individually. The alignment shows whether or not the specific
AF is active in each frame, which means there are only two
kinds of labels ("active" and "inactive") to be aligned. The
label sequence is derived from the phone label sequence
provided by the TIMIT corpus. However, since an AF might
be active for some phones and inactive for others, a long
phone label sequence might correspond to a short
active/inactive sequence for a specific AF. For example, a
long utterance of dozens of phones might correspond to a
short sequence /n_u u n_u/ for AF u, where n_ denotes the
inactivity of the feature. As a result, the forced alignment
constraint becomes very relaxed, and any error in the posterior
probabilities generated by the AFDT may cause the data to be
wrongly aligned. In such cases, it is not possible to analyze the
AF asynchrony accurately. To solve this problem, we use the
realigned-phone-derived AF labels as prior knowledge to
softly constrain the aligned boundaries of AFs to the realigned
phone boundaries. Thus, for an articulatory feature AFK, the
smoothed active posterior probability of frame i is computed
by

() () () (),1 ___ iPiPiP activeKactiveKactiveK AF
dhoneDeriverealignedP

AF
AFDT

AF
Smoothed ⋅−+⋅= αα (1)

where is the posterior probability generated by the
front-end AFDT;

()iP activeKAF
AFDT

_

()iP activeKAF
dhoneDeriverealignedP

_ is the AFK's value, either 1

(active) or 0 (inactive), derived from the realigned phone label
of frame i; and α is a weighting factor for smoothing, which
is empirically set to 0.2 in this paper. The smoothed inactive
posterior probability of frame i is calculated
by . Forced alignment is then
performed based on the smoothed posterior probabilities for
AF

() ()iPiP activeKinactiveK AF
Smoothed

AF
Smoothed

__ 1−=

K and the active-inactive sequence using the Viterbi
algorithm.

3. Backend phone recognition using
conditional random fields

In the phone recognition task addressed in this paper, we use
conditional random fields (CRFs)[8] as the backend integrator.
The observation sequence x of our CRF model is comprised of
the frame-based GP11 AFs detected by the front-end AFDT,
and the target label sequence y is a frame-based phone
sequence. We build a CRF model to map a frame-based AF
sequence to its associated frame-based phone sequence. Then,
the latter is merged into a phone sequence as the final phone
recognition output. The state feature function in the CRF
model is set to , in which the preceding,
current, and subsequent phonological feature observations are

considered simultaneously. The transition feature function is
set to label bi-grams, i.e., . We use the CRF++
toolkit to implement CRFs

),(1 ii yyt −

[11].

3.1. Training methods
In our previous research, we found that the system
performance is highly dependent on how the CRF model is
trained [4]. Thus, in this paper, we consider three methods for
CRF training. The major difference between the methods is
the information contained in the training data.

3.1.1. Oracle data training
The first method uses the phone-derived, frame-based AF
value sequence to train the CRF model. Since, the values of
the 11 AFs and the phone label for each frame are perfectly
matched according to the definition of the phonological
feature system, this method is called oracle data training (OT).
A CRF model trained in this way does not learn the AFDT
errors and the AF asynchrony effect. In our previous research,
we found that it can extract more phonological information
while performing phone recognition on the detected AF data
generated by the front-end detector. However, due to the
mismatch between the training and testing conditions, the
recognition results suffered from serious insertion errors.

3.1.2. Detected data training
The second method treats the function of the front-end AFDT
more like acoustic feature extraction than AF detection. The
CRF model is trained on the feature vectors generated by the
front-end AFDT directly, even if the data contains errors and
might be inconsistent with the phonological feature system.
This method, called detected data training (DT), is commonly
used by researchers [9][10]. In contrast to the oracle data, the
detected data provides the CRF model with information about
the AFDT errors and the AF asynchrony, which may help the
model to handle erroneously detected AFs better in the
recognition phase. However, the presence of this information
reduces the weight of phonological knowledge in the data. The
DT-trained CRF model is thus less sensitive to the
composition of AFs, which is important information for a
phonological feature system to differentiate between two
phones. Our previous study [4] showed that, compared to the
OT-trained CRF model, the DT-trained CRF model yields
lower insertion errors; however, its recognition results provide
less information to the fusion system, which combines the
recognition results of different ASR systems.

3.1.3. AFDT aligned data training
In this paper, we propose a new method for training the CRF-
based backend integrator. The individual frame alignments of
the phone sequence and the 11 AF sequences of the training
data (obtained by the alignment methods described in Section
2.2) are used to train the CRF model. Therefore, we call the
method AFDT aligned data training (AT). The aligned
training data contains the AF asynchrony information but no
AFDT errors. From another perspective, AFDT aligned data
training can be seen as a compromise between oracle and
detected data training. The AF compositions in the aligned
data are similar to those in the detected data around phone
boundaries, and are close to those in the oracle data in non-
boundary regions. Therefore, the CRF model can learn both
phonological knowledge and AF asynchrony information from
the training data.

By comparing the performance of systems using the three
methods described in this section, we can determine the
individual effects of AFDT errors and AF asynchrony on the),,,(11 +− iiii xxxys

recognition performance in detection-based ASR. The derived
knowledge will help us to further refine our detection-based
ASR system.

4. Experiments

4.1. Experiment setup
We conduct experiments on the TIMIT acoustic-phonetic
continuous speech corpus, but the dialect utterances (SA1 and
SA2) are not used. The database is divided into three parts: a
training set (3296 utterances), a development set (400
utterances), and a test set (1344 utterances). The training and
development sets are subsets of the standard TIMIT training
set, while the test set is the standard TIMIT test set. In the
experiments, all the models are trained by the training set, and
the configurations and parameters associated with the models
are assigned empirically based on the development set. The 61
phones defined in TIMIT are used as recognition units;
however, for the performance evaluation, the recognized
TIMIT 61-phone results are mapped to the CMU/MIT 39-
phone set. No language models are used in recognition.

4.2. The baseline detection-based ASR systems
First, we evaluate the baseline detection-based ASR systems,
in which the CRF models are trained by oracle data training
(OT) and detected data training (DT). We consider two test
conditions: the ideal case and the real case. In the ideal case,
the test data is set to match the CRF model's training
conditions. In the OT-trained CRF system, the AFs converted
from the human phone labels of the testing data are input to
the CRF model. In this way, we can measure the performance
upper bound of the CRF-based system. In the real case, the
inputs to the CRF models are the AFs detected automatically
by the AFDT. The phone recognition results of these baseline
systems are shown in Table 1, where Corr (correct rate) and
Acc (accuracy) are obtained by HTK's HResults tool; and Acc
= Corr – insertion rate. The second row shows that if there are
no AFDT errors and AF asynchrony, the OT-trained CRF
system can achieve a very high phone recognition
performance. Clearly, the GP11 AF set demonstrates high
potential for detection-based ASR; therefore, we may consider
this performance upper bound our ultimate goal in this
research. In the real case, since the detected AFs inevitably
contain errors and asynchrony, though with a high correct rate,
the OT-trained CRF system suffers from serious phone
insertion errors, as shown in the third row of Table 1.
Although the performance of the DT-trained CRF system is
quite stable in terms of the correct rate and accuracy, the
values are not satisfactory.

Table 1. The phone recognition results of the oracle data
trained (OT) CRF model and the detected data trained (DT)

CRF model.

Test Data Type System Corr Acc
Ideal (upper bound) OT CRF 98.31 98.28

OT CRF 70.55 34.38 Detected (real case) DT CRF 57.30 56.14

4.3. The AFDT aligned data trained system
To identify the degrees of AFDT errors and AF asynchrony
that cause the substantial difference in the performance of the
OT-trained CRF model between the ideal case and the real
case, we applied AFDT aligned data training (AT) in the
experiments. Table 2 shows the ideal and real performances of
the AT-trained CRF system, where the ideal performance
(upper bound) is obtained by feeding the individual frame

alignments of the 11 AF sequences of the test data (obtained
by the alignment methods described in Section 2.2) to the AT-
trained CRF model. Comparing the upper bound performance
of the AT-trained CRF model in Table 2 with that of the OT-
trained CRF model in Table 1, it is clear that the introduction
of AF asynchrony to the backend CRF integrator has a major
impact on the performance (26.82% drop in the correct rate
and 27.97% drop in accuracy). The effect of the front-end
AFDT errors can be measured by the difference between the
performances of the AT-trained CRF model in the ideal and
real cases. Specifically, the differences are only 6.62% for the
correct rate and 7.99% for accuracy. We also compare the real
case performance of the DT-trained CRF model (the fourth
row in Table 1) with that of the AT-trained CRF model (the
third row in Table 2). Clearly, the CRF model trained with AF
asynchrony information alone outperforms the CRF model
trained with both AF asynchrony and AFDT errors. The above
evidences show that AF asynchrony plays a much more
important role than AFDT errors in detection-based ASR. In
other words, we can conclude that, to build a high-
performance detection-based ASR system, it is better to use
AFDT aligned data training for the backend CRF integrator;
and employ as many methods as possible to reduce or conceal
AF asynchrony from the front-end AFDT.

Table 2. The phone recognition results of the AFDT aligned
data trained (AT) CRF model.

Test Data Type System Corr Acc
Ideal (upper bound) AT CRF 71.49 70.31
Detected (real case) AT CRF 64.87 62.32

4.4. AF asynchrony compensation
In this section, we perform several preliminary experiments to
determine whether AF asynchrony can be reduced or
concealed. AF asynchrony compensation can be applied in the
front-end AFDT or the backend CRF integrator.

4.4.1. AF asynchrony compensation in the AFDT using
long-term information
Contextual variation in natural speech is one of the major
reasons for AF asynchrony [2]. One way to reduce the output
asynchrony is to let the AFDT learn the contextual variation
directly. This can be done by introducing long-term
information in speech to the AFDT. It has already been shown
that such information is helpful for speech recognition [12].
We believe that using long-term speech information in the
AFDT makes the detection of AFs more stable than using only
local speech information; hence, the AF boundary shift around
the phone boundary can be reduced.

Table 3. The mean AF-phone boundary distances (in frames)
of GP11 AFs generated by the original AFDT (using MFCC

as input) and the AFDT using long-term information.

AFDT sys a A E h H i I N S u U
MFCC 0.94 4.27 1.18 0.94 0.59 1.07 2.44 1.74 0.56 1.88 7.16

Long Term 0.75 3.57 0.94 0.77 0.38 0.91 2.36 1.15 0.43 1.32 4.55

Following the approach in [12], we use the Mel-frequency
filter bank vectors in a 310-ms window jointly as input to
implement an AFDT with long-term speech information.
Table 3 shows the statistics of the AF asynchrony of the
original AFDT and the AFDT with long-term information.
Clearly, the introduction of long-term information reduces the
AF asynchrony for all 11 AFs significantly.

4.4.2. AF asynchrony compensation in the CRF
integrator using long-term information
Even though the front-end AFDT generates AF asynchrony,
there are some ways to conceal the effect of this disturbance
on the backend CRF integrator. One way is to increase the
time range used for CRF feature extraction. In our original
CRF model, the state feature function considers the AF
observations in the current frame as well as those in the
adjacent frames (±1). When processing frames around a phone
boundary, where AF asynchrony occurs, the CRF model might
be more affected by the asynchrony due to the short time
range. To mitigate the asynchrony effect, we can use the AF
values in the n-th preceding frame and the n-th subsequent
frame (±n) instead of the adjacent frames in the state feature
function. The results of experiments on the development set
show that it is adequate to set n= 3.

4.4.3. The AT-trained CRF system with AF asynchrony
compensation
Table 4 shows the phone recognition performance of the AT-
trained CRF system after applying the AF asynchrony
compensation methods. Comparing the ideal case of the AT-
trained CRF systems with and without AF asynchrony
compensation, we find that the two compensation methods
improve the upper bound as expected. We also find that
compensation in the front-end AFDT is more effective than in
the backend integrator. It seems that the effects of these two
methods are cumulative. By combining them, we can improve
the accuracy upper bound from 70.31% to 74.97%. From
Table 4, we also observe that AF asynchrony compensation
improves the real performance of detection-based ASR
systems. This supports our conclusion in Section 4.3.

Table 4. The phone recognition results of the AT-trained CRF
system with AF asynchrony compensation

Test Data Type System Corr Acc
- CI-HMM 69.02 63.45
- CD-HMM 75.76 65.78

OT CRF(±3) 75.24 47.97Detected
(real case) Long Term AFDT + DT CRF(±3) 64.58 63.12

Long Term AFDT + AT CRF 74.96 73.64
MFCC AFDT + AT CRF(±3) 72.87 71.62

Ideal
(upper bound)

Long Term AFDT + AT CRF(±3) 76.41 74.97
Long Term AFDT + AT CRF 69.83 66.97
MFCC AFDT + AT CRF(±3) 66.21 63.16Detected

(real case)
Long Term AFDT + AT CRF(±3) 71.01 67.67

The AFDT with long-term information are more

complicated than the original AFDT, and the CRF model
using ±3 frames also increases the number of trainable model
parameters from 9,089 to 11,773. Thus, the improved
performance might be a result of the more complicated AFDT
and CRF model. To validate that AF asynchrony
compensation is the major reason for the improved
performance, we implement the OT-trained and DT-trained
CRF systems with the new AFDT and CRF settings. The
results are shown in the fourth and fifth rows of Table 4.
Although the new settings improve the performance of both
systems, the AT-trained CRF system still outperforms them.
This demonstrates that AF asynchrony is a very important
research issue in detection-based ASR. For reference, the
performances of HMM-based ASR systems are shown in the
second and third rows of Table 4. It is obvious that the best
detection-based ASR system outperforms the HMM-based
ASR systems.

5. Conclusion and future work
In this work, we describe a set of variable-controlled
experiments designed to identify potential difficulties in
detection-based ASR. The results show that if AF asynchrony
is not handled properly, it can cause serious problems in
mapping AF multi-streams into a single phone or word stream.
Although including information about AF asynchrony in the
backend integrator training can resolve the problems to some
extent, the asynchrony still degrades the upper bound of the
system performance substantially. Thus, there is a need for a
component or mechanism that can compensate for AF
asynchrony in the current detection-based ASR framework, in
order to imitate HSR. The need for this component is shown
by the fact that humans can use phoneme systems to represent
word pronunciations easily in spite of co-articulation effects.

Our study shows that AF asynchrony compensation would
be a worthwhile avenue for future research, and that methods
for reducing/concealing AF asynchrony are promising. For the
front-end AFDT, AF asynchrony minimization training and
AF-phone synchronization could also be investigated.
Meanwhile, for the backend integrator, a more advanced
method for concealing AF asynchrony would also be worth
studying. Information like prosody or higher level knowledge
might also help us tackle this problem in the front-end detector
of detection-based ASR systems. We believe that all of these
methods are crucial to improving the performance of
detection-based ASR.

6. Acknowledgement
This work was supported by the National Science Council of
Taiwan under Grants: NSC 97-2221-E-001-022-MY3 and
NSC98-2631-001-013.

7. References
[1] Lee, C.-H., Clements, M.A., Dusan, S., Fosler-Lussier, E.,

Johnson, K., Juang, B.-H. and Rabiner, L.R., "An Overview on
Automatic Speech Attribute Transcription (ASAT)," in Proc.
INTERSPEECH 2007.

[2] Wester, M., Frankel, J. and King, S., "Asynchronous
Articulatory Feature Recognition Using Dynamic Bayesian
Networks," in Proc. IEICI Beyond HMM Workshop, 2004.

[3] Bosch, L. ten, Baayen, H. and Ernestus, M., "On Speech
Variation and Word Type Differentiation by Articulatory Feature
Representations," in Proc. INTERSPEECH 2006.

[4] Chen, I.-F. and Wang, H.-M., "An Investigation of Phonological
Feature Systems used in Detection-Based ASR," in Proc.
ISCSLP 2008.

[5] Harris, J., English Sound Structure, Blackwell, 1994.
[6] King, S. and Taylor, P., "Detection of Phonological Features in

Continuous Speech using Neural Networks," Computer Speech
and Language, vol. 14, pp. 333-353, 2000.

[7] Strom, N., "The NICO Artificial Neural Network Toolkit,"
http://nico.nikkostrom.com

[8] Lafferty, J. McCallum, A. and Pereira, F., "Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data," in Proc. ICML2001.

[9] Morris, J. and Fosler-Lussier, E., "Combining Phonetic
Attributes Using Conditional Random Fields," in Proc.
INTERSPEECH, 2006.

[10] Siniscalchi, S.M., Svendsen, T. and Lee, C.-H, "Towards
Bottom-Up Continuous Phone Recognition," in Proc. ASRU
2007.

[11] Kudo, T., "CRF++: Yet Another CRF Toolkit,"
http://crfpp.sourceforge.net

[12] Schwarz, P., Matejka, P. and Cernocky, J., "Towards Lower
Error Rates in Phoneme Recognition," in Proc. TSD2004, Brno,
Czech Republic, 2004.

http://nico.nikkostrom.com/
http://crfpp.sourceforge.net/

	1. Introduction
	2. Front-end articulatory feature detection and AF asynchrony analysis
	2.1. Front-end articulatory feature detection
	2.2. AF and phone alignments using AFDT

	3. Backend phone recognition using conditional random fields
	3.1. Training methods
	3.1.1. Oracle data training
	3.1.2. Detected data training
	3.1.3. AFDT aligned data training

	4. Experiments
	4.1. Experiment setup
	4.2. The baseline detection-based ASR systems
	4.3. The AFDT aligned data trained system
	4.4. AF asynchrony compensation
	4.4.1. AF asynchrony compensation in the AFDT using long-term information
	4.4.2. AF asynchrony compensation in the CRF integrator using long-term information
	4.4.3. The AT-trained CRF system with AF asynchrony compensation

	5. Conclusion and future work
	6. Acknowledgement
	7. References

