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Abstract 
This paper investigates the effects of two types of 
imperfection, namely detection errors and articulatory feature 
asynchrony, of the front-end articulatory feature detector on 
the performance of a detection-based ASR system. Based on a 
set of variable-controlled experiments, we find that 
articulatory feature asynchrony is the major issue that should 
be addressed in detection-based ASR. To this end, we propose 
several methods to reduce the asynchrony or the effects of 
asynchrony. The results are quite promising; for example, 
currently, we can achieve 67.67% phone accuracy in the 
TIMIT free phone recognition task with only 11 binary-valued 
articulatory features. 
Index Terms: articulatory feature asynchrony, detection-
based ASR, speech recognition 

1. Introduction 
In recent years, detection-based automatic speech recognition 
(ASR) has become a popular research topic in fields related to 
ASR. By simulating human speech recognition (HSR), 
detection-based ASR systems attempt to reduce the gap 
between HSR and ASR. Basically, the framework of 
detection-based ASR can be divided into two key components: 
a front-end knowledge attribute detector and a backend 
knowledge integrator [1]. The front-end process collects a 
wide variety of speech-related knowledge attributes to form 
knowledge sources; and the backend process integrates the 
attributes into higher-level speech units, such as phones, 
syllables, words, and sentences. If the front-end detector 
targets articulatory features (AFs), two factors may affect the 
system's overall recognition accuracy: the errors produced by 
the detector and the asynchrony of AFs. 

The asynchrony of AFs is a phenomenon caused by 
variations in natural speech production; i.e., the onset times of 
different AFs shift differently in different contextual 
conditions in speech. Because of this phenomenon, it is 
generally believed that one of the reasons why AFs are more 
suitable than phones for ASR is their ability to describe the 
contextual information in speech. A number of studies have 
focused on this phenomenon. For example, in [2], AF 
asynchrony was introduced to the articulatory feature 
recognizer by applying an embedded training technique; while 
in [3], the authors used the pattern of AF asynchrony in the 
AF space to probe for acoustic differences in the onset of 
Dutch singulars and plurals. However, it is still unclear what 
role this phenomenon plays in a phone or word recognition 
task, which maps multiple asynchronous AF streams into a 
single phone or word stream. 

In our previous research [4], we found that the 
imperfection of the front-end articulatory feature detector 
(AFDT) can cause a substantial decline in recognition 
accuracy in detection-based ASR. Here, we investigate the 
effects of two types of the above imperfection, namely AFDT 

errors and AF asynchrony, on the backend integrator's 
performance. To compare the relative importance of the two 
factors, we design a set of variable-controlled experiments. 
The results show that AF asynchrony plays a more important 
role in detection-based ASR than AFDT errors. Based on this 
finding, we propose a number of ways to improve the system 
performance. We believe that our experiment results provide 
further insight into how to design a high-performance 
detection-based ASR system. 

2. Front-end articulatory feature detection 
and AF asynchrony analysis 

2.1. Front-end articulatory feature detection 
The AFDT's detection target is the Government Phonology 
(GP) feature set [5], a phonological feature system in which 
speech sounds are destructed into a set of primes and can be 
represented by fusing these primes structurally. We select the 
GP feature set because the results of our previous study show 
that it is the most effective for building a high-performance 
detection-based ASR system [4]. In this work, the GP feature 
set contains 11 AFs, including 8 AFs (namely "A", "I", "U", 
"E", "S", "h", "H", and "N" ) defined in the original GP feature 
system [5] and 3 AFs ("a", "i", and "u") added by King and 
Taylor [6]. 

In addition to the 11 AFs, our front-end AFDT 
simultaneously detects TIMIT 61 phones for AF asynchrony 
analysis. The objective of phone detection is to remove the 
bias introduced by the inconsistency between human 
alignment and machine alignment. AF asynchrony is defined 
as the shift between a phone's boundary and the boundaries of 
its associated AFs. Thus, the different criteria used for AF 
alignment and phone alignment might lead to inaccurate 
articulatory feature asynchrony measurements. Even though 
the TIMIT corpus provides human aligned phone labels, to 
generate unbiased AF asynchrony data, we need to re-align 
the phone sequence in speech using our front-end AFDT. 

Following the work in [6], we use a single time delay 
recurrent neural network [7] to implement the front-end AFDT. 
The inputs of the neural network are 12 Mel-frequency 
cepstral coefficients (MFCCs) plus energy, which are 
extracted by a 25-ms Hamming-windowed frame with 10-ms 
shifts. The neural network outputs a 72-dimensional vector 
representing 11 GP AFs and 61 TIMIT phones. The value of 
each element in the vector ranges from 0 to 1, which can be 
treated as a posterior probability. The values of the AFs are 
then discretized1 with a threshold to form binary-valued AF 
                                                                 
 
1  Theoretically, CRFs can handle real-valued input; however, we 
discretize the AFDT's results because the CRF++ toolkit used in our 
experiments only supports binary-valued input. Moreover, it is easier 
to define the boundaries of AFs, which are important for asynchrony 
measurement, by using the discrete AF detection results.



detection results, which are input to the backend CRF 
integrator. Our AFDT is a recurrent neural network and 
linkage pruning is not applied. Therefore, the output AF and 
phone posterior probabilities of the current frame are fed back 
to the neural network as additional inputs for the subsequent 
frame. As a result, the AFDT learns the relations and 
dependencies between AFs and phones. 

2.2. AF and phone alignments using AFDT 
To analyze the AF asynchrony around each phone boundary, 
we use the front-end AFDT to obtain the individual frame 
alignments of AFs and phones. The AFDT generates the 
posterior probabilities of the TIMIT 61 phones for each frame. 
Thus, based on the phone label sequence supplied by the 
TIMIT corpus, we can use the generated posterior 
probabilities for phone-level forced alignment with the Viterbi 
algorithm.  

AF sequence alignment is more complicated than phone 
alignment. For each AF, forced alignment is performed 
individually. The alignment shows whether or not the specific 
AF is active in each frame, which means there are only two 
kinds of labels ("active" and "inactive") to be aligned. The 
label sequence is derived from the phone label sequence 
provided by the TIMIT corpus. However, since an AF might 
be active for some phones and inactive for others, a long 
phone label sequence might correspond to a short 
active/inactive sequence for a specific AF. For example, a 
long utterance of dozens of phones might correspond to a 
short sequence /n_u  u  n_u/ for AF u, where n_ denotes the 
inactivity of the feature. As a result, the forced alignment 
constraint becomes very relaxed, and any error in the posterior 
probabilities generated by the AFDT may cause the data to be 
wrongly aligned. In such cases, it is not possible to analyze the 
AF asynchrony accurately. To solve this problem, we use the 
realigned-phone-derived AF labels as prior knowledge to 
softly constrain the aligned boundaries of AFs to the realigned 
phone boundaries. Thus, for an articulatory feature AFK, the 
smoothed active posterior probability of frame i is computed 
by 
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where  is the posterior probability generated by the 
front-end AFDT; 
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_  is the AFK's value, either 1 

(active) or 0 (inactive), derived from the realigned phone label 
of frame i; and α  is a weighting factor for smoothing, which 
is empirically set to 0.2 in this paper. The smoothed inactive 
posterior probability of frame i is calculated 
by . Forced alignment is then 
performed based on the smoothed posterior probabilities for 
AF
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K and the active-inactive sequence using the Viterbi 
algorithm. 

3. Backend phone recognition using 
conditional random fields 

In the phone recognition task addressed in this paper, we use 
conditional random fields (CRFs)[8] as the backend integrator. 
The observation sequence x of our CRF model is comprised of 
the frame-based GP11 AFs detected by the front-end AFDT, 
and the target label sequence y is a frame-based phone 
sequence. We build a CRF model to map a frame-based AF 
sequence to its associated frame-based phone sequence. Then, 
the latter is merged into a phone sequence as the final phone 
recognition output. The state feature function in the CRF 
model is set to , in which the preceding, 
current, and subsequent phonological feature observations are 

considered simultaneously. The transition feature function is 
set to label bi-grams, i.e., . We use the CRF++ 
toolkit to implement CRFs 
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[11]. 

3.1. Training methods 
In our previous research, we found that the system 
performance is highly dependent on how the CRF model is 
trained [4]. Thus, in this paper, we consider three methods for 
CRF training. The major difference between the methods is 
the information contained in the training data. 

3.1.1. Oracle data training 
The first method uses the phone-derived, frame-based AF 
value sequence to train the CRF model. Since, the values of 
the 11 AFs and the phone label for each frame are perfectly 
matched according to the definition of the phonological 
feature system, this method is called oracle data training (OT). 
A CRF model trained in this way does not learn the AFDT 
errors and the AF asynchrony effect. In our previous research, 
we found that it can extract more phonological information 
while performing phone recognition on the detected AF data 
generated by the front-end detector. However, due to the 
mismatch between the training and testing conditions, the 
recognition results suffered from serious insertion errors. 

3.1.2. Detected data training 
The second method treats the function of the front-end AFDT 
more like acoustic feature extraction than AF detection. The 
CRF model is trained on the feature vectors generated by the 
front-end AFDT directly, even if the data contains errors and 
might be inconsistent with the phonological feature system. 
This method, called detected data training (DT), is commonly 
used by researchers [9][10]. In contrast to the oracle data, the 
detected data provides the CRF model with information about 
the AFDT errors and the AF asynchrony, which may help the 
model to handle erroneously detected AFs better in the 
recognition phase. However, the presence of this information 
reduces the weight of phonological knowledge in the data. The 
DT-trained CRF model is thus less sensitive to the 
composition of AFs, which is important information for a 
phonological feature system to differentiate between two 
phones. Our previous study [4] showed that, compared to the 
OT-trained CRF model, the DT-trained CRF model yields 
lower insertion errors; however, its recognition results provide 
less information to the fusion system, which combines the 
recognition results of different ASR systems. 

3.1.3. AFDT aligned data training 
In this paper, we propose a new method for training the CRF-
based backend integrator. The individual frame alignments of 
the phone sequence and the 11 AF sequences of the training 
data (obtained by the alignment methods described in Section 
2.2) are used to train the CRF model. Therefore, we call the 
method AFDT aligned data training (AT). The aligned 
training data contains the AF asynchrony information but no 
AFDT errors. From another perspective, AFDT aligned data 
training can be seen as a compromise between oracle and 
detected data training. The AF compositions in the aligned 
data are similar to those in the detected data around phone 
boundaries, and are close to those in the oracle data in non-
boundary regions. Therefore, the CRF model can learn both 
phonological knowledge and AF asynchrony information from 
the training data. 

By comparing the performance of systems using the three 
methods described in this section, we can determine the 
individual effects of AFDT errors and AF asynchrony on the ),,,( 11 +− iiii xxxys



recognition performance in detection-based ASR. The derived 
knowledge will help us to further refine our detection-based 
ASR system. 

4. Experiments 

4.1. Experiment setup 
We conduct experiments on the TIMIT acoustic-phonetic 
continuous speech corpus, but the dialect utterances (SA1 and 
SA2) are not used. The database is divided into three parts: a 
training set (3296 utterances), a development set (400 
utterances), and a test set (1344 utterances). The training and 
development sets are subsets of the standard TIMIT training 
set, while the test set is the standard TIMIT test set. In the 
experiments, all the models are trained by the training set, and 
the configurations and parameters associated with the models 
are assigned empirically based on the development set. The 61 
phones defined in TIMIT are used as recognition units; 
however, for the performance evaluation, the recognized 
TIMIT 61-phone results are mapped to the CMU/MIT 39-
phone set. No language models are used in recognition. 

4.2. The baseline detection-based ASR systems 
First, we evaluate the baseline detection-based ASR systems, 
in which the CRF models are trained by oracle data training 
(OT) and detected data training (DT). We consider two test 
conditions: the ideal case and the real case. In the ideal case, 
the test data is set to match the CRF model's training 
conditions. In the OT-trained CRF system, the AFs converted 
from the human phone labels of the testing data are input to 
the CRF model. In this way, we can measure the performance 
upper bound of the CRF-based system. In the real case, the 
inputs to the CRF models are the AFs detected automatically 
by the AFDT. The phone recognition results of these baseline 
systems are shown in Table 1, where Corr (correct rate) and 
Acc (accuracy) are obtained by HTK's HResults tool; and Acc 
= Corr – insertion rate. The second row shows that if there are 
no AFDT errors and AF asynchrony, the OT-trained CRF 
system can achieve a very high phone recognition 
performance. Clearly, the GP11 AF set demonstrates high 
potential for detection-based ASR; therefore, we may consider 
this performance upper bound our ultimate goal in this 
research. In the real case, since the detected AFs inevitably 
contain errors and asynchrony, though with a high correct rate, 
the OT-trained CRF system suffers from serious phone 
insertion errors, as shown in the third row of Table 1. 
Although the performance of the DT-trained CRF system is 
quite stable in terms of the correct rate and accuracy, the 
values are not satisfactory. 

Table 1. The phone recognition results of the oracle data 
trained (OT) CRF model and the detected data trained (DT) 

CRF model. 

Test Data Type System Corr Acc 
Ideal (upper bound) OT CRF 98.31 98.28 

OT CRF 70.55 34.38 Detected (real case) DT CRF 57.30 56.14 

4.3. The AFDT aligned data trained system 
To identify the degrees of AFDT errors and AF asynchrony 
that cause the substantial difference in the performance of the 
OT-trained CRF model between the ideal case and the real 
case, we applied AFDT aligned data training (AT) in the 
experiments. Table 2 shows the ideal and real performances of 
the AT-trained CRF system, where the ideal performance 
(upper bound) is obtained by feeding the individual frame 

alignments of the 11 AF sequences of the test data (obtained 
by the alignment methods described in Section 2.2) to the AT-
trained CRF model. Comparing the upper bound performance 
of the AT-trained CRF model in Table 2 with that of the OT-
trained CRF model in Table 1, it is clear that the introduction 
of AF asynchrony to the backend CRF integrator has a major 
impact on the performance (26.82% drop in the correct rate 
and 27.97% drop in accuracy). The effect of the front-end 
AFDT errors can be measured by the difference between the 
performances of the AT-trained CRF model in the ideal and 
real cases. Specifically, the differences are only 6.62% for the 
correct rate and 7.99% for accuracy. We also compare the real 
case performance of the DT-trained CRF model (the fourth 
row in Table 1) with that of the AT-trained CRF model (the 
third row in Table 2). Clearly, the CRF model trained with AF 
asynchrony information alone outperforms the CRF model 
trained with both AF asynchrony and AFDT errors. The above 
evidences show that AF asynchrony plays a much more 
important role than AFDT errors in detection-based ASR. In 
other words, we can conclude that, to build a high-
performance detection-based ASR system, it is better to use 
AFDT aligned data training for the backend CRF integrator; 
and employ as many methods as possible to reduce or conceal 
AF asynchrony from the front-end AFDT. 

Table 2. The phone recognition results of the AFDT aligned 
data trained (AT) CRF model. 

Test Data Type System Corr Acc 
Ideal (upper bound) AT CRF 71.49 70.31 
Detected (real case) AT CRF 64.87 62.32 

4.4. AF asynchrony compensation 
In this section, we perform several preliminary experiments to 
determine whether AF asynchrony can be reduced or 
concealed. AF asynchrony compensation can be applied in the 
front-end AFDT or the backend CRF integrator. 

4.4.1. AF asynchrony compensation in the AFDT using 
long-term information 
Contextual variation in natural speech is one of the major 
reasons for AF asynchrony [2]. One way to reduce the output 
asynchrony is to let the AFDT learn the contextual variation 
directly. This can be done by introducing long-term 
information in speech to the AFDT. It has already been shown 
that such information is helpful for speech recognition [12]. 
We believe that using long-term speech information in the 
AFDT makes the detection of AFs more stable than using only 
local speech information; hence, the AF boundary shift around 
the phone boundary can be reduced. 

Table 3. The mean AF-phone boundary distances (in frames) 
of GP11 AFs generated by the original AFDT (using MFCC 

as input) and the AFDT using long-term information. 

AFDT sys a A E h H i I N S u U
MFCC 0.94 4.27 1.18 0.94 0.59 1.07 2.44 1.74 0.56 1.88 7.16

Long Term 0.75 3.57 0.94 0.77 0.38 0.91 2.36 1.15 0.43 1.32 4.55
 

Following the approach in [12], we use the Mel-frequency 
filter bank vectors in a 310-ms window jointly as input to 
implement an AFDT with long-term speech information. 
Table 3 shows the statistics of the AF asynchrony of the 
original AFDT and the AFDT with long-term information. 
Clearly, the introduction of long-term information reduces the 
AF asynchrony for all 11 AFs significantly. 



4.4.2. AF asynchrony compensation in the CRF 
integrator using long-term information 
Even though the front-end AFDT generates AF asynchrony, 
there are some ways to conceal the effect of this disturbance 
on the backend CRF integrator. One way is to increase the 
time range used for CRF feature extraction. In our original 
CRF model, the state feature function considers the AF 
observations in the current frame as well as those in the 
adjacent frames (±1). When processing frames around a phone 
boundary, where AF asynchrony occurs, the CRF model might 
be more affected by the asynchrony due to the short time 
range. To mitigate the asynchrony effect, we can use the AF 
values in the n-th preceding frame and the n-th subsequent 
frame (±n) instead of the adjacent frames in the state feature 
function. The results of experiments on the development set 
show that it is adequate to set n= 3. 

4.4.3. The AT-trained CRF system with AF asynchrony 
compensation 
Table 4 shows the phone recognition performance of the AT-
trained CRF system after applying the AF asynchrony 
compensation methods. Comparing the ideal case of the AT-
trained CRF systems with and without AF asynchrony 
compensation, we find that the two compensation methods 
improve the upper bound as expected. We also find that 
compensation in the front-end AFDT is more effective than in 
the backend integrator. It seems that the effects of these two 
methods are cumulative. By combining them, we can improve 
the accuracy upper bound from 70.31% to 74.97%. From 
Table 4, we also observe that AF asynchrony compensation 
improves the real performance of detection-based ASR 
systems. This supports our conclusion in Section 4.3.  

Table 4. The phone recognition results of the AT-trained CRF 
system with AF asynchrony compensation 

Test Data Type System Corr Acc
- CI-HMM 69.02 63.45
- CD-HMM 75.76 65.78

OT CRF(±3) 75.24 47.97Detected 
(real case) Long Term AFDT + DT CRF(±3) 64.58 63.12

Long Term AFDT + AT CRF 74.96 73.64
MFCC AFDT       + AT CRF(±3) 72.87 71.62

Ideal 
(upper bound) 

Long Term AFDT + AT CRF(±3) 76.41 74.97
Long Term AFDT + AT CRF 69.83 66.97
MFCC AFDT       + AT CRF(±3) 66.21 63.16Detected 

(real case) 
Long Term AFDT + AT CRF(±3) 71.01 67.67

 
The AFDT with long-term information are more 

complicated than the original AFDT, and the CRF model 
using ±3 frames also increases the number of trainable model 
parameters from 9,089 to 11,773. Thus, the improved 
performance might be a result of the more complicated AFDT 
and CRF model. To validate that AF asynchrony 
compensation is the major reason for the improved 
performance, we implement the OT-trained and DT-trained 
CRF systems with the new AFDT and CRF settings. The 
results are shown in the fourth and fifth rows of Table 4. 
Although the new settings improve the performance of both 
systems, the AT-trained CRF system still outperforms them. 
This demonstrates that AF asynchrony is a very important 
research issue in detection-based ASR. For reference, the 
performances of HMM-based ASR systems are shown in the 
second and third rows of Table 4. It is obvious that the best 
detection-based ASR system outperforms the HMM-based 
ASR systems. 

5. Conclusion and future work 
In this work, we describe a set of variable-controlled 
experiments designed to identify potential difficulties in 
detection-based ASR. The results show that if AF asynchrony 
is not handled properly, it can cause serious problems in 
mapping AF multi-streams into a single phone or word stream. 
Although including information about AF asynchrony in the 
backend integrator training can resolve the problems to some 
extent, the asynchrony still degrades the upper bound of the 
system performance substantially. Thus, there is a need for a 
component or mechanism that can compensate for AF 
asynchrony in the current detection-based ASR framework, in 
order to imitate HSR. The need for this component is shown 
by the fact that humans can use phoneme systems to represent 
word pronunciations easily in spite of co-articulation effects. 

Our study shows that AF asynchrony compensation would 
be a worthwhile avenue for future research, and that methods 
for reducing/concealing AF asynchrony are promising. For the 
front-end AFDT, AF asynchrony minimization training and 
AF-phone synchronization could also be investigated. 
Meanwhile, for the backend integrator, a more advanced 
method for concealing AF asynchrony would also be worth 
studying. Information like prosody or higher level knowledge 
might also help us tackle this problem in the front-end detector 
of detection-based ASR systems. We believe that all of these 
methods are crucial to improving the performance of 
detection-based ASR. 
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