
Learning to Rank from Bayesian Decision Inference

Jen-Wei Kuo
∗

Department of Computer
Science and Information

Engineering
National Taiwan University

Taipei 106, Taiwan
rogerkuo@iis.sinica.edu.tw

Pu-Jen Cheng
Department of Computer
Science and Information

Engineering
National Taiwan University

Taipei 106, Taiwan
pjcheng@csie.ntu.edu.tw

Hsin-Min Wang
Institute of Information

Science
Academia Sinica

Taipei 115, Taiwan
whm@iis.sinica.edu.tw

ABSTRACT
Ranking is a key problem in many information retrieval (IR)
applications, such as document retrieval and collaborative
filtering. In this paper, we address the issue of learning
to rank in document retrieval. Learning-based methods,
such as RankNet, RankSVM, and RankBoost, try to cre-
ate ranking functions automatically by using some train-
ing data. Recently, several learning to rank methods have
been proposed to directly optimize the performance of IR
applications in terms of various evaluation measures. They
undoubtedly provide statistically significant improvements
over conventional methods; however, from the viewpoint of
decision-making, most of them do not minimize the Bayes
risk of the IR system. In an attempt to fill this research gap,
we propose a novel framework that directly optimizes the
Bayes risk related to the ranking accuracy in terms of the
IR evaluation measures. The results of experiments on the
LETOR collections demonstrate that the framework outper-
forms several existing methods in most cases.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval - Retrieval models

General Terms
Algorithms, Experimentation, Theory

Keywords
Learning to Rank, Ranking function

1. INTRODUCTION
The rapid growth and popularity of the Web in the last

decade has resulted in a huge number of information sources

∗The author is also with the Institute of Information Science,
Academia Sinica, Taiwan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2– 6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

on the Internet, but it has made information retrieval (IR)
more difficult for end users. Search engines have therefore
become increasingly important in helping users accurately
locate relevant content based on their information needs. IR
can be formulated as a binary classification problem in which
documents are categorized as relevant or irrelevant. How-
ever, in practice, the textual content should have multiple
degrees of relevance to a query. Therefore, the IR problem
can also be formulated as a ranking problem, which means
that, given a query, the documents are sorted by the ranking
function, and then the ranked list is returned to the user.
Ranking functions influence both the quality of the search
results and users’ search experience directly. Research on
ranking models has become a fundamental research topic.
Many models and methods have been proposed to solve this
problem, e.g., the Boolean model, vector space model [23],
probabilistic model [22], and language modeling-based meth-
ods [19]. In empirical IR models, tuning parameters by us-
ing certain training data is a common practice; however, as
ranking models become more sophisticated, parameter tun-
ing becomes an increasingly challenging issue.

In the last decade, several human-judged relevance assess-
ments have been made available for IR research. This makes
it possible to incorporate many of the significant advances
in machine learning into the design of ranking models. For
this reason, many learning methods have been developed
and applied to document retrieval and related fields. Basi-
cally, these methods transform the ranking problem into bi-
nary classification on pairs constructed between documents.
In fact, methods like RankNet [3], RankSVM [7, 10], and
RankBoost [6] typically minimize a loss function that is
loosely related to the ranking accuracy in terms of the eval-
uation measures, such as Mean Average Precision (MAP)
and Normalized Discounted Cumulative Gain (NDCG) [9].
Therefore, a substantial amount of research effort has fo-
cused on constructing ranking functions by optimizing these
evaluation measures directly. Related algorithms, such as
SV Mmap [28] and AdaRank [26], have proved effective for
IR applications.

In this paper, we propose a learning to rank framework
based on a Bayesian perspective. Under the framework,
the Plackett-Luce Model is introduced as the probability
model of permutations. Like the approach in [5], we trans-
form the ranking scores to permutation probabilities such
that the ranking function can be optimized indirectly from
Bayesian decision inference. The optimal ranking function
appears when the expected Bayes risk reaches the mini-
mum. Accordingly, we call the proposed learning to rank

framework BayesRank. The framework is fairly general and
provides flexibility for many applications, such as informa-
tion retrieval, automatic summarization, and collaborative
filtering. Under the framework, one can optimize the ex-
pected performance of a ranking function by adopting an ar-
bitrary permutation loss related to desired metrics. Similar
to other learning algorithms, BayesRank also minimizes an
upper bounding function of the ranking error, which means
that the ranking error can be iteratively reduced during the
training process. For document retrieval, we design a learn-
ing algorithm for BayesRank with NDCG related permuta-
tion loss based on multi-layer perceptron neural networks.
The results of experiments on the LETOR collections [13,
20], containing both TREC and OHSUMED benchmarks,
demonstrate that, in most cases, BayesRank achieves con-
sistent improvements over the compared ranking algorithms,
namely AdaRank [26], ListNet [5], and SV Mmap [28].

The remainder of this paper is organized as follows: In
Section 2, we review previous works, and then formulate
the ranking problem in terms of Bayes decision theory in
Section 3. In Section 4, we describe the proposed learn-
ing framework and algorithm. In Section 5, we compare
BayesRank with ListNet [5] and PermuRank [27] from a
theoretical perspective. Section 6 contains the experiment
results and a discussion of their implications. Then, in Sec-
tion 7, we summarize our conclusions and indicate several
directions for future research.

2. RELATED WORK
Information retrieval can be viewed as a ranking problem

or a decision-making problem. In this section, we review
previous works on information retrieval from these two as-
pects.

2.1 Ranking Aspect
IR problems, such as document retrieval, can be formu-

lated as ranking problems, which can be solved by various
popular models, such as the Boolean model, vector space
model, probabilistic model, and language model. In recent
years, many attempts have been made to utilize machine
learning methods to solve IR problems. Learning to rank
approach which tries to construct a ranking model using
some training data, has been addressed in pointwise, pair-
wise, and listwise ways. The pointwise approach [17, 12]
transforms the ranking problem into a regression or classifi-
cation problem of a single document. The pairwise approach
[24, 4, 30] defines a pairwise loss function and is concerned
with classification of document pairs; typical methods in-
clude RanSVM [7, 10], RankBoost [6], and RankNet [3].

The listwise approach [2] has become increasingly popular
in recent years. It attempts to solve the ranking problem by
minimizing a listwise surrogate loss function. ListNet [5],
an extension of RankNet, defines the loss function as the
cross entropy between two parameterized probability distri-
butions of permutations. RankCosine [21] and ListMLE [25]
inherit a similar structure from ListNet, except for the sur-
rogate loss functions.

However, minimizing the surrogate loss does not guaran-
tee that the IR performance in terms of evaluation measures
can also be optimized. Let us take the pairwise case as an
example and consider the following scenario. For a given
query, two ranking functions, fA and fB , are considered to
rank 10 documents, two of which are judged as ’relevant’ and

Table 1: An example of the inconsistency between
PER (pairwise error rate) and AP (average preci-
sion)

Ranked lists PER AP
fA 1 0 0 0 0 0 0 0 0 1 8/16=50.0% (1/1+2/10)/2=0.600
fB 0 0 0 1 1 0 0 0 0 0 6/16=37.5% (1/4+2/5)/2=0.325

the others are judged as ’irrelevant’ by human. The ranked
lists produced by these two ranking functions are shown in
Table 1, where the relevant and irrelevant documents are
denoted as ’0’ and ’1’ respectively. We observe that fA in-
curs 50% PER (pair error rate), but it yields a better AP
(average precision) than fB , which only introduces 37.5%
PER. The kind of mismatch occurs when the surrogate loss
function is inconsistent with the evaluation metrics.

For this reason, a branch of listwise methods, such as
SV Mmap [28], AdaRank [26], and PermuRank [27], tries
to optimize the evaluation measures directly. Undoubtedly,
they provide significant improvements over conventional meth-
ods; however, when we view IR as a decision-making prob-
lem, most of them do not minimize the Bayes risk of the
system.

2.2 Decision-making Aspect
Information retrieval can be treated as a statistical decision-

making problem [11, 29]. Given a user’s query, the re-
trieval system faces a decision-making problem in that it
must choose relevant documents from a hypothesized space
and return a ranked list to the user. From the aspect, Zhai
and Lafferty [29] proposed a risk minimization framework
for information retrieval. However, they did not address the
supervised learning scenario from the viewpoint of decision-
making. Instead, they focused on developing retrieval meth-
ods for various retrieval cases, such as set-based retrieval,
rank-based retrieval, and aspect retrieval. To the best of our
knowledge, not much work has considered these two aspects
jointly, especially for direct optimization of IR performance.
In this paper, we propose a learning to rank framework that
addresses both aspects.

3. RANKING PROBLEM
In document retrieval, documents related to a query are

managed by a ranking model and presented to the user ac-
cording to their relevance to the query. In practice, the rank-
ing problem may be reduced to finding an appropriate scor-
ing function that can evaluate individual documents. The
ranking function sorts the documents in descending order of
the assigned scores, and then forms a ranked list1. The nota-
tions used in this paper are summarized in Table 2. Suppose
D = {d1, d2, ..., dn} is a set of n documents. In the retrieval
stage, given a query q, the scoring function g ∈ G evaluates
every document in D, and then compiles a score list, say
{y1, y2, ..., yn}. The documents are sorted according to the
scores and presented to the user. In the supervised learn-
ing stage, a set of training queries Q = {q1, ..., qm} and a
relevance mapping r ∈ G are given. The relevance mapping
r, which can be regarded as a kind of scoring function in
the function space G, reflects the relevance judgments. The

1In this paper, ranked (document) list and permutation are
identical.

Table 2: Summary of notations
Notation Explanation

di ∈ D ith document in D
q ∈ Q Query
g ∈ G Scoring function
r ∈ G Relevance mapping
π ∈ Πq Permutation for q
π∗

q ∈ Πq Perfect ranked list for q
p(π; q) Conditional probability of π given q
l(π, π∗

q) Permutation-level loss incurred by
making a decision α(π; q)

R(π; q) Expected risk of selecting π for q

learning to rank approach tries to create the scoring func-
tion automatically from the training data, which include the
query set Q and the relevance mapping function r.

3.1 Formulation
Given a user’s query q, a retrieval system attempts to

make a decision α(π; q) that selects a ranked document list π
from a set of possible permutations Πq to return to the user.
Note that we assume π is a random variable in the hypoth-
esized permutation space Πq with an unknown probability
distribution Pq(π). Let l(π; π∗

q) be the permutation-level loss
incurred by taking decision α when the perfect ranked list is
π∗

q = sortr{d1, · · · , dn} in which the documents are sorted
according to the relevance mapping r. Generally, π∗

q should
be a subset of Πq rather than a unique perfect permutation.
However, for ease of presentation, we let π∗

q be a perfect
permutation hereafter.2 In the retrieval stage, no explicit
information about π∗

q is presented; i.e., any arbitrary per-
mutation could be π∗

q . Therefore, we model the uncertainty
by the conditional probability p(π; q), which corresponds to
the probability that π would be judged as the perfect per-
mutation for query q. As a result, in the general framework
of Bayesian decision theory, the expected risk of taking de-
cision α(π; q) is given by

R(π; q) =

∫
Πq

l(π, π′)dp(π′; q). (1)

The best decision ᾱ can be selected by minimizing the ex-
pected risk as follows:

ᾱ = arg min
π

∫
Πq

l(π, π′)dp(π′; q). (2)

The minimum expected risk is called the Bayes risk. In
the supervised learning scenario, the ground-truth associ-
ated with each query q is presented. Hence, the Bayes risk
of π∗

q over the training query set Q is given by

R =
∑
q∈Q

p(q)R(π∗
q ; q) =

∑
q

p(q)

∫
Πq

l(π∗
q , π′)dp(π′; q). (3)

R is the expected Bayes risk over Q. If we assume that
the prior p(q) is uniformly distributed and the permutation
space Πq is finite, the expected Bayes risk can be approxi-
mated by

2The assumption does not affect the correctness of the
derivation.

Figure 1: Changes in the probabilities of permuta-
tions with different permutation-level losses during
the learning process.

R ≈ 1

m

∑
q∈Q

∑
π′∈Πq

l(π∗
q , π′)p(π′; q), (4)

where m is the number of queries in Q. Unlike many existing
methods that embed the scoring function in the surrogate
loss function, our approach tries to model the conditional
probability p(π; q) where the scoring function is embedded.
This strategy suggests two advantages:

1. It is not necessary to formulate the ranking error as a
surrogate loss function because of the non-differentiable
nature.

2. The permutation-level loss can be directly related to
the desired IR evaluation measures, such as MAP and
NDCG.

In other words, the learning process tends to adjust the pa-
rameters in the scoring function such that a lower prob-
ability is assigned to the permutation with a higher loss,
and the probability of that with a lower loss is increased.
This leads, indirectly, to minimization of the objective func-
tion, i.e., the expected Bayes risk. Figure 1 illustrates the
changes in the probabilities of permutations with different
permutation-level losses during the learning process.

3.2 Permutation-level Loss
The permutation-level loss l(π∗

q , π) is incurred by select-
ing π from Πq for query q when the perfect ranked list is
π∗

q ; therefore, it can be directly related to an arbitrary IR
evaluation metric that measures the distance between π and
π∗

q . In general, we have to restrict the range of the loss, e.g.,
between zero and one, to bound the expected Bayes risk
in order to prevent the model from being biased by some
hard queries. To maximize the IR performance, the loss
can be derived directly from the evaluation measures, i.e.,
l(π∗

q , π) = 1− E(π, π∗
q), where E(·, ·) can be MAP, P@n, or

NDCG@n.

3.3 The Plackett-Luce Model
To model the ranked list appropriately, many probabilis-

tic models have been proposed for modeling rank data, e.g.,
the Bradley-Terry-Luce model [1, 14], the Mallows model
[15], and the Plackett-Luce model [18, 14]. Marden provided
an excellent analytical review of the research on models for
rank data [16], one of which is the Plackett-Luce model. It
models a ranking as a sequential process and has been used

Algorithm 1 Learning Algorithm
1: Input:training queries Q = {qi},
2: relevance mapping r
3: Initialize parameters: λ, learning rate γ
4: repeat
5: R← 0, Δλ ← 0
6: for i = 1, · · · , m do
7: for j = 1, · · · , n do //Precalculation
8: Input qi, dj to neural networks,

9: Evaluate exp (g(dj ; qi, Λ)) and
∂g(dj ;qi,Λ)

∂λ
10: end for
11: for πk

1 do
12: for j = 1, · · · , n do

13: Evaluate
∂pk(πk

1 ;qi,Λ)

∂g(dj ;qi,Λ)

14: Δλ ← Δλ + Gk(πk
1 , π∗

qi
)

∂pk(πk
1 ;qi,Λ)

∂g(dj ;qi,Λ)

∂g(dj ;qi,Λ)

∂λ

15: end for
16: R← R− pk(πk

1 ; qi,Λ)Gk(πk
1 , π∗

qi
)

17: end for
18: end for
19: Update λ← λ− γΔλ

20: Update γ
21: until R converges

successfully in ListNet [5]. Cao et al. have introduced an
increasing and strictly positive function to transform rank-
ing scores into probabilities [5]. In line with their work, we
adopt the following form of the Plackett-Luce model in our
framework:

p(π; q, g) =
n∏

i=1

exp (g(π(i); q))∑n
j=i exp (g(π(j); q))

, (5)

where i and j are the rank indices and π(i) denotes the
document with rank i in π. The permutation probability is
estimated through the scoring function g. In [5], the authors
clarified an important property for this form of Plackett-
Luce Model. Given a scoring function, the ranked list of
the documents sorted based on the scores has the highest
permutation probability, while the list of documents sorted
in the inverse order has the lowest permutation probability.
The property implies that choosing the ranked list with the
highest probability is equivalent to the way a typical ranking
function selects a list.

4. ALGORITHM
In this paper, we take the multi-layer perceptron neural

networks as an example of the scoring function in the rank-
ing model and design the permutation-level loss as the op-
posite of NDCG@k score, i.e.,

l(π∗
q , π) = −Gk(π, π∗

q), (6)

where

Gk(π, π∗
q) = (

k∑
i=1

2r(π∗
q (i))

log (1 + i)
)−1(

k∑
j=1

2r(π(j))

log (1 + j)
). (7)

Then, the objective function to be minimized becomes

R(Λ) = − 1

m

∑
q∈Q

∑
π∈Πq

Gk(π, π∗
q)p(π; q,Λ), (8)

where Λ is the set of parameters in the neural networks. For
each permutation π, we divide the document list into two
sublists: πk

1 and πn
k+1, as follows:

π = < π(1), · · · , π(k)︸ ︷︷ ︸
πk
1

, π(k + 1), · · · , π(n)︸ ︷︷ ︸
πn

k+1

>

= < πk
1 , πn

k+1 > . (9)

Because of the nature of the position-dependent loss, per-
mutations with the same πk

1 incur the same loss −Gk, i.e.,
Gk(π, π∗

q) = Gk(πk
1 , π∗

q). This makes it possible to sum the
probabilities of those permutations directly, and evaluate
Equation (8) by only considering the top k documents, i.e.,
πk

1 . Therefore, Equation (8) can be re-written as

R(Λ) = − 1

m

∑
q∈Q

∑
πk
1

Gk(πk
1 , π∗

q)pk(πk
1 ; q,Λ), (10)

where

pk(πk
1 ; q,Λ) =

∑
πn

k+1

p(< πk
1 , πn

k+1 >; q,Λ)

=

k∏
i=1

exp (g(πk
1 (i); q,Λ))∑k

j=i exp (g(πk
1 (j); q,Λ)) + T k

g,q

(11)

and

T k
g,q =

∑
d′ /∈πk

i

exp (g(d′; q,Λ)). (12)

where pk(πk
1 ; q, Λ) is identical to the top k probability defined

in [5]. Taking the derivative of Equation (10) with respect
to the parameter λ yields

∂R

∂λ
= − 1

m

∑
q∈Q

∑
πk
1

∑
d

Gk(πk
1 , π∗

q)
∂pk(πk

1 ; q, Λ)

∂g(d; q,Λ)

∂g(d; q,Λ)

∂λ
,

(13)
where

∂pk(πk
1 ; q,Λ)

∂g(d; q,Λ)
= pk(πk

1 ; q,Λ)×
⎧⎨
⎩

1−∑rank(d)
i=1

exp (g(d;q,Λ))∑k
j=i exp (g(πk

1 (j);q,Λ))+Tk
g,q

d ∈ πk
1

−∑k
i=1

exp (g(d;q,Λ))∑k
j=i exp (g(πk

1 (j);q,Λ))+Tk
g,q

d /∈ πk
1 ,

(14)

where rank(d) denotes the rank of document d in the ranked

list πk
1 . The gradient of g(d; q, Λ) with respect to λ, ∂g(d;q,Λ)

∂λ
,

can be found in [3]. Thus, λ is updated using the gradient
descent with a positive learning rate γ:

λ← λ− γ
∂R

∂λ
. (15)

In the estimation of the gradient in Equation (14), the expo-
nentiation operation incurs a high computational overhead;
therefore, we evaluate exp (g(d; q,Λ)) beforehand and then
update λ using the batch gradient descent algorithm. The
learning algorithm is detailed in Algorithm 1.

5. THEORETICAL ANALYSIS
In this section, we provide a proof of the correctness of

BayesRank and discuss its relation to ListNet [5] and Per-
muRank [27].

5.1 Error Bound

Theorem 1. Let π̃q be the ranked document list that pos-
sesses the maximal probability p(π̃q; q,g) for a training query
q ∈ Q. Then, the bound holds on the ranking error∑

q

l(π∗
q , π̃q) ≤ κ ·R,

where κ = maxq #Πq ,and #Πq is the size of the permutation
space for query q.

A proof of Theorem 1 is given in the Appendix. Since κ
is a fixed constant during the training process, the theorem
implies that minimizing the expected Bayes risk R will lead
to a continuous reduction of the upper bound of the ranking
error. Xu et al. [27] classify the methods that directly opti-
mize IR evaluation measures into three categories in terms of
loss function optimization. Our method belongs to the first
category, which minimizes the upper bound of the basic loss
function defined according to the IR evaluation measures.

5.2 Relation to ListNet
BayesRank bears some resemblance to ListNet [5], which

models the ranking error as a surrogate function based on
the cross entropy. It is assumed that there is uncertainty
in the prediction of ranked lists using the ranking func-
tion. In contrast, BayesRank focuses on modeling the con-
ditional permutation probability so as to minimize the ex-
pected Bayes risk from the decision-making aspect. We now
show that, in some cases, the loss function of ListNet is the
upper bound of the expected risk.
For ListNet, the loss function for query q is defined as

lListNet
q = −

∑
π∈Πq

p(π; q,g) log p(π; q, r) (16)

where p(·; q) represents the ranking probability, which can
be defined as the top k probability provided by

pk(π; q,g) =
k∏

i=1

exp (g(π(i); q))∑n
j=i exp (g(π(j); q))

As the result, we have the following theorem:

Theorem 2. Equation (16) is an upper bound of expected
risk R(π∗

q ; q) in the case that l(π∗
q , π) is evaluated as 1 −

pk(π; q, r).

It is straightforward to verify that Theorem 2 holds by ap-
plying Jensen’s inequality. ListNet can be viewed as maxi-
mizing the performance in terms of pk(π∗

q ; q, r). From this
perspective, BayesRank provides a tighter bound for opti-
mizing such a measure.

5.3 Relation to PermuRank
To minimize the ranking error l(π∗

q , π̃q) of π̃q, which is
the permutation selected for q by the ranking model, Xu et
al. introduced two types of bounds for direct optimization
methods [27]. The type one bound, optimized by AdaRank
[26], is defined directly on the IR measures; while the type
two bound is defined with the pairs comprised of a perfect
permutation and an imperfect permutation. PermuRank is

0.35�

0.4�

0.45�

0.5�

0.55�

0.6�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

AdaRank.MAP� AdaRank.NDCG� ListNet �

BayesRank1� BayesRank2�

Figure 2: Ranking accuracy of various methods on
OHSUMED (LETOR 2.0).

a generalized algorithm that minimizes the type two bound,
which is derived from a loss function [27] as follows:

max
π∈Πq

l(π∗
q , π)[[F(π∗

q ; q) ≤ F(π; q)]] (17)

where F(π; q) evaluates permutation π and [[·]] is one when
the condition is satisfied; otherwise, it is zero.

In contrast, the expected Bayes risk can also be extended
to a generalized form of the upper bound of the ranking er-
ror.

Theorem 3. For all π ∈ Πq, the following bound holds
on the ranking error l(π∗

q , π̃q):

l(π∗
q , π̃q) ≤ max

π∈Πq

l(π∗
q , π)

∑
π′ exp (F(π; q))∑
π′ exp (F(π′; q))

. (18)

A proof of Theorem 3 is given in the Appendix. It implies
that BayesRank does not try to minimize the two types of
bounds defined by Xu et al. Instead, it adopts a new type
of upper bounding function, as shown in Equation (18). As
a result, in future research, it will be possible to develop
new ranking models of soundness based on the new type of
bound.

6. EXPERIMENTS

6.1 Data Collections
LETOR (LEarning TO Rank) [13] is a benchmark collec-

tion constructed for learning to rank research. The second
version (LETOR 2.0) has been widely used to evaluate vari-
ous ranking algorithms; however, the provider acknowledged
that there are some issues with LETOR 2.0 [20]. For exam-
ple, some low-level information is missing, and the sampling
of documents associated with each query is somehow biased.
To make LETOR more reliable, the provider improved it in
three ways and released LETOR 3.0 in December, 2008. We
conducted our experiments on LETOR 2.0 and LETOR 3.0,
both of which contain two datasets: OHSUMED and .Gov.

OHSUMED [8] is a subset of MEDLINE, a database of
medical publications. There are totally 106 queries, each of
which has about 152 documents on average for feature ex-
traction. In contrast to LETOR 2.0, each query-document

0.35�

0.4�

0.45�

0.5�

0.55�

0.6�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

SVMmap� AdaRank.MAP� AdaRank.NDCG�

ListNet � BayesRank1� BayesRank2�

Figure 3: Ranking accuracy of various methods on
OHSUMED (LETOR 3.0).

pair in LETOR 3.0 has 45 features. The .Gov dataset was
crawled in early 2002 and has been used as the data col-
lection for TREC Web Track, which involves three research
tasks: topic distillation (td), homepage finding (hp), and
named page finding (np). The dataset contains 125 queries
in total. In LETOR 3.0, for each query-document pair, 64
features are extracted for learning and testing.

The whole collection was created as a set of document-
query pairs, each represented as a feature vector and a corre-
sponding relevance judgment. In the TREC collections, each
example is labeled as relevant or irrelevant. For OHSUMED
examples, there are three possible labels: relevant, possibly
relevant, and irrelevant. All datasets are partitioned for 5-
fold cross-validation. In each trial, three of the subsets are
used for training, one for validation, and the other for testing
the performance of the trained model. The score reported
is the average of the five folds.

6.2 Experiment Setup
We compared BayesRank with four popular listwise rank-

ing algorithms, namely, AdaRank.MAP, AdaRank.NDCG
[26], SV Mmap [28], and ListNet [5]. The evaluation tools
used in the experiments and the results of the baseline rank-
ing algorithms are all available on the LETOR website3. The
neural networks used as the scoring function for BayesRank
have only one hidden layer, and the number of neurons in
the hidden layer is tuned on the validation sets. The exper-
iment results of BayesRank using NDCG@1 and NDCG@2
as training measures are denoted as BayesRank1 and BayesRank2
respectively.

6.3 Experiment Results
We use the abbreviations ”L2”and ”L3” to denote LETOR

2.0 and LETOR 3.0 respectively.

6.3.1 Experiments on the OHSUMED Dataset
Figures 2 and 3 show the results for the OHSUMED dataset.

From Figure 2, we observe that all methods perform simi-
larly. If we focus on the NDCG@1 measure, BayesRank1
outperforms the other methods on this dataset. However,
surprisingly it performs worse than the other methods on L3.
On the other hand, BayesRank2 achieves notable improve-
ments consistently over the baseline methods. Note that

3http://research.microsoft.com/en-
us/um/beijing/projects/letor/index.html

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

AdaRank.MAP� AdaRank.NDCG� ListNet �

BayesRank1� BayesRank2�

Figure 4: Ranking accuracy of various methods on
TD2003 (LETOR 2.0).

0.2�

0.25�

0.3�

0.35�

0.4�

0.45�

0.5�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

SVMmap� AdaRank.MAP� AdaRank.NDCG�

ListNet � BayesRank1� BayesRank2�

Figure 5: Ranking accuracy of various methods on
TD2003 (LETOR 3.0).

there is no significant difference between the MAP measures
of these methods.

6.3.2 Experiments on the TD2003 Dataset
Figures 4 and 5 show the results for the TREC2003 dataset.

We observe that ListNet is the best method on L2, almost
outperforming all the other algorithms except AdaRank.NDCG
at the very top position. However, on L3, BayesRank yields
a promising performance across every position compared to
the other methods.

6.3.3 Experiments on the TD2004 Dataset
Figures 6 and 7 show the results for the TREC2004 dataset.

Clearly, BayesRank2 achieves the best performance in this
experiment. In terms of MAP, BayesRank obtains relative
improvements of 4% and 14% over ListNet on L2 and L3
respectively. We also performed a significance test (t-test)
on the improvements of BayesRank2 over the baseline algo-
rithms on L2. As shown in Table 3, BayesRank2 achieves
significant improvements. On L3, BayesRank1 performs as
well as BayesRank2.

6.4 Discussion
The learning curve of BayesRank in terms of the expected

NDCG and pairwise loss is shown in Figure 8. We observe
that the pairwise loss is reversely correlated with the ex-
pected NDCG, which means that we can also reduce the

Table 3: The p-value of the t-test on the improvements of BayesRank over the baseline methods on TD2004
MAP NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5 NDCG@10

AdaRank.MAP 0.023468 0.187320 0.009056 0.023454 0.010537 0.022297 0.007674
AdaRank.NDCG 0.000485 0.058655 0.001628 0.007598 0.003891 0.004865 0.000571
ListNet 0.120390 0.310160 0.029130 0.082094 0.040034 0.049598 0.189950

0.2�

0.25�

0.3�

0.35�

0.4�

0.45�

0.5�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

AdaRank.MAP� AdaRank.NDCG� ListNet �

BayesRank1� BayesRank2�

Figure 6: Ranking accuracy of various methods on
TD2004 (LETOR 2.0).

pairwise loss effectively as the number of training itera-
tions increases. The experiment results demonstrate that,
in most cases, the proposed BayesRank framework is more
effective than the compared listwise ranking algorithms, es-
pecially on the newly released LETOR 3.0 collection. The
results also indicate that BayesRank1 is not as effective as
BayesRank2. The observation implies that as the truncation
level of NDCG increases, more information about this met-
ric becomes available for learning. However, for preventing
the over-fitting problem, the regularization might become
an important issue as the truncation level increases.

7. CONCLUSIONS AND FUTURE WORK
We have proposed a learning framework, called BayesRank,

for learning to rank from the Bayesian decision inference.
The framework tries to minimize the expected Bayes risk
over the training set and can be regarded as a direct op-
timization method for evaluation measures when the loss
function is related to IR metrics. Experiment results show
that BayesRank yields consistent improvements over base-
line methods in most cases. Our contribution in this work is
threefold: First, we propose a novel learning to rank frame-
work from the Bayesian decision inference. The framework
is fairly general and an arbitrary ranking model and loss
function can be adopted; thus, it can be applied to other
ranking problems. Second, we take the multi-layer percep-
tron neural networks as the ranking function and develop a
listwise learning algorithm based on minimization of the ex-
pected Bayes risk. The effectiveness of the algorithm with
the NDCG-based permutation-level loss is verified on the
LETOR collections. Finally, we compare BayesRank with
ListNet and PermuRank, and provide a new type of upper
bound of the ranking error. As a result, in future research, it
will be possible to develop new ranking models of soundness
based on the proposed bounding function.

When considering non-positional dependent permutation-
level losses, we may face a problem with the enormous of the

0.1�

0.15�

0.2�

0.25�

0.3�

0.35�

0.4�

0.45�

0.5�

0.55�

 MAP � NDCG@1 � NDCG@2 � NDCG@3 � NDCG@5 � NDCG@10 �

SVMmap� AdaRank.MAP� AdaRank.NDCG�

ListNet � BayesRank1� BayesRank2�

Figure 7: Ranking accuracy of various methods on
TD2004 (LETOR 3.0).

0.005

0.007

0.009

0.011

0.013

0.015

0.017

0.019

0.021

0.023

0.025

0 100 200

Epochs�

N
D

C
G

 m
ea

su
re

�

10

15

20

25

30

35

E
rr

or
 r

at
e�

Expected NDCG�
Pairwise Error Rate (%)�

Figure 8: Expected NDCG vs. Pairwise loss

hypothesized space of permutations. This computational is-
sue exists in most listwise algorithms. In [27], the authors
proposed keeping a small pool of permutations for training.
Based on their technique, we can consider optimizing the
MAP measure directly and evaluating the performance on
the ad-hoc retrieval task with longer queries.

8. ACKNOWLEDGMENTS
This work was supported in part by Taiwan e-Learning

and Digital Archives Program (TELDAP) sponsored by the
National Science Council of Taiwan under Grant: NSC98-
2631-001-013.

9. REFERENCES
[1] R. Bradley and M. Terry. Rank analysis of incomplete

block designs. Biometrika, 39(3/4):324–345, 1952.

[2] C. Burges, R. Ragno, and Q. Le. Learning to Rank
with Nonsmooth Cost Functions. In Advances in
Neural Information Processing Systems: Proceedings
of the 2006 Conference. MIT Press, 2007.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ’05: Proceedings
of the 22nd international conference on Machine
learning, pages 89–96, New York, NY, USA, 2005.
ACM.

[4] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking svm to document retrieval. In
SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 186–193,
New York, NY, USA, 2006. ACM.

[5] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07: Proceedings of the 24th
international conference on Machine learning, pages
129–136, New York, NY, USA, 2007. ACM.

[6] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. Mach. Learn. Res., 4:933–969, 2003.

[7] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. MIT
Press, Cambridge, MA, 2000.

[8] W. Hersh, C. Buckley, T. J. Leone, and D. Hickam.
Ohsumed: an interactive retrieval evaluation and new
large test collection for research. In SIGIR ’94:
Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 192–201, New York, NY,
USA, 1994. Springer-Verlag New York, Inc.

[9] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In SIGIR
’00: Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 41–48, New York, NY,
USA, 2000. ACM Press.

[10] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 133–142,
New York, NY, USA, 2002. ACM.

[11] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In SIGIR ’01: Proceedings of the 24th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 111–119,
New York, NY, USA, 2001. ACM.

[12] P. Li, C. Burges, and Q. Wu. Mcrank: Learning to
rank using multiple classification and gradient
boosting. In Advances in Neural Information
Processing Systems 20.

[13] T. Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor:
Benchmark dataset for research on learning to rank
for information retrieval. In SIGIR ’07: Proceedings of
the Learning to Rank workshop in the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, 2007.

[14] R. Luce. Individual Choice Behavior: A Theoretical
Analysis. New York, 1959.

[15] C. MALLOWS. NON-NULL RANKING MODELS. I.
Biometrika, 44(1-2):114–130, 1957.

[16] J. Marden. Analyzing and Modeling Rank Data.
Chapman & Hall/CRC, 1995.

[17] R. Nallapati. Discriminative models for information
retrieval. In SIGIR ’04: Proceedings of the 27th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 64–71,
New York, NY, USA, 2004. ACM.

[18] R. Plackett. The analysis of permutations. Applied
Statistics, 24(2):193–202, 1975.

[19] J. M. Ponte and B. B. Croft. A language modeling
approach to information retrieval. In SIGIR ’98:
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 275–281, New York, NY,
USA, 1998. ACM Press.

[20] T. Qin, T. Liu, J. Xu, and H. Li. How to make letor
more useful and reliable. In Proceedings of SIGIR
2008 Workshop on Learning to Rank for Information
Retrieval, 2008.

[21] T. Qin, X. Zhang, M. Tsai, D. Wang, T. Liu, and
H. Li. Query-level loss functions for information
retrieval. Information Processing and Management,
44(2):838–855, 2008.

[22] S. Robertson and K. Sparck-Jones. Relevance
weighting of search terms. Journal of the American
Society for Information Science, 27(3):129–146, 1976.

[23] G. Salton, editor. Automatic text processing.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1988.

[24] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. Frank: a ranking method with fidelity loss. In
SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 383–390,
New York, NY, USA, 2007. ACM.

[25] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li.
Listwise approach to learning to rank: theory and
algorithm. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, pages
1192–1199, New York, NY, USA, 2008. ACM.

[26] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 391–398, New York, NY, USA, 2007. ACM.

[27] J. Xu, T. Y. Liu, M. Lu, H. Li, and W. Y. Ma.
Directly optimizing evaluation measures in learning to
rank. In SIGIR ’08: Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 107–114,
New York, NY, USA, 2008. ACM.

[28] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 271–278, New York, NY, USA, 2007. ACM.

[29] C. Zhai and J. Lafferty. A risk minimization
framework for information retrieval. Information
Processing and Management, 42(1):31–55, 2006.

[30] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. A general boosting method and its

application to learning ranking functions for web
search. In Advances in Neural Information Processing
Systems 20.

APPENDIX
Proof of Theorem 1.

Proof. π̃q is the ranked document list that possesses the
maximal probability p(π̃q; q,g), which implies that

π̃q = arg max
π

p(π; q,g)

Since l(π∗
q , π̃q) ∈ [0, 1], the expected risk is bounded by

l(π∗
q , π∗

q)

#Πq

≤ R(π∗
q ; q)

Therefore, l(π∗
q , π∗

q) is upper bounded by #Πq ·R(π∗
q ; q), and

we obtain

∑
q

l(π∗
q , π∗

q) ≤
∑

q

#Πq ·R(π∗
q ; q) ≤ κ ·R

where

κ = max
q

#Πq

Proof of Theorem 3.

Proof. Since an exponential function is monotonically
increasing and for all π ∈ Πq,F(π; q) ≤ F(π∗; q), we have

∀π ∈ Πq,

l(π∗
q , π̃q) ≤ l(π∗

q , π̃q)

∑
π′ exp (F(π∗; q))∑
π′ exp (F(π′; q))

≤ max
π∈Πq

l(π∗
q , π)

∑
π′ exp (F(π; q))∑
π′ exp (F(π′; q))

