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Abstract—This paper presents a method for extracting vocal
melodies from popular songs. Underlying the extraction proce-
dure is a sinusoidal representation applied to the input song
signal. The desired vocal melody is isolated by focusing on
specific (amplitude- and frequency-modulated) sinusoids that are
identified as vocal, with the identification based on minimum
mean square error (MMSE) estimation of the singing voice. The
experiment results show that sensitivity to vocality brings a 15%
absolute gain in vocal pitch recall, and that the proposed system
is effective in indexing a 95-song database in a query-by-singing
application.

I. INTRODUCTION

A popular song is typically composed of a solo singing

voice and a polyphonic, instrumental accompaniment. The

singing voice plays a predominant role in a listener’s attention

to, and memory of, a song, and unambiguously sets the

song apart from other songs; therefore in a song retrieval

application, descriptions of the singing voice would naturally

make adequate searching criteria. Since it is usually difficult

to reproduce the vocal quality in a query, a practical represen-

tation of the singing voice would consist of the melody and

rhythm only. A system that automatically reduces a song signal

into such a representation would be valuable for automatic

indexing of a song database. In this context, we present a

method for extracting essential singing-voice features from

a song signal. Specifically, this work addresses the issue of

locating voiced frames in the signal (voicing detection) and

estimating the fundamental frequency of the voice for each

voiced frame (vocal pitch estimation); that is, for each audio

frame in the song signal, we aim to determine 1) whether or

not there exists a singing voice, and 2) the pitch sung by the

artist if voice is detected at the frame.

Fig. 1. The vocal melody extraction system.

As represented in Fig. 1, our approach consists of decom-

posing the input song signal into a set of amplitude- and
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frequency-modulated sinusoids, and subsequently classifying

the modulated sinusoids into vocal sinusoids and instrumental

sinusoids. We adopt the standard sinusoidal modeling ap-

proach [1], [2] to the decomposition. The classification is

based on minimum mean square error (MMSE) estimation of

the singing voice, which has been inspired by Ozerov et al.’s

work [3] on Wiener separation of singing voice. After the voice

signal is estimated from the song signal according to separate

probabilistic models of singing voice and accompaniment, we

compute frame-wise frequency responses that map the song

signal to the voice estimate, and apply these responses to

each modulated sinusoid separately. The result from this time-

varying filtering is supposed to be either slight or significant

attenuation in sinusoidal energy, depending on whether a vocal

or an instrumental sinusoid is being filtered. To give vocality

decisions, we define a vocality score for each modulated

sinusoid as its associated energy gain under the filtering, which

represents the proportion of the sinusoidal energy that is vocal.

With such a measurement, a modulated sinusoid is designated

as vocal if the vocality score is above a certain threshold;

otherwise, it is considered instrumental. Once vocal sinusoids

in the input song signal have been identified, both voicing

detection and vocal pitch estimation can be carried out as

straightforward extensions of sinusoidal modeling.

The contribution of this work is explained in the following

two aspects:

• We propose a transformation from a separating filter to an

array of timbre recognition modules. Such transformation

is achieved by summarizing the frequency response of

the filter along various sinusoidal trajectories traced by

the input song signal in the time-frequency plane, which

gives the vocality scores.

• We demonstrate the practical efficacy of the proposed

melody extractor by a retrieval application where 90 sung

queries are matched against a 95-song database indexed

fully automatically by the extractor.

The remainder of this paper is organized as follows. Section

II reviews some related work. In Sections III, IV, and V,

we present the sinusoidal decomposition, adaptive Wiener

filtering, and pitch extraction methods, respectively. The exper-

iment results are detailed in Section VI. Finally, in Section VII

we present our conclusions and suggest some future research

directions.



II. RELATED WORK

One of the central precepts of professional music interpre-

tation is the need to make each melodic note in the music

stand out from all other concurrent (non-melodic) notes in the

resulting performance. This has motivated a body of work [4],

[5], [6], [7] where, of all the pitches detected in each audio

frame, the one with the largest power is considered melodic.

Compared with this family of methods, the development of our

approach has been limited by its dependence on the timbral

distinction of the melody; however, sensitivity to timbre is

required of a melody extraction system in applications where

a user’s interest in the musical contents is closely tied to such

distinction, as in song retrieval, where the user typically does

not supply an instrumental melody as a query.

Timbre-aware melody extraction is not new in musical

signal processing. Li and Wang [8] built acoustical knowledge

into their system, where vocal pitch is detected by checking

for beating (a phenomenon usually caused by strong high-

order partials in the voice) in a particular frequency range. A

purely statistical approach was taken by Ellis and Poliner [9],

where timbral selectivity is implicitly learned from a set of

vocal-pitch-labeled song spectra prepared for SVM training.

Eggink and Brown [10] took a hybrid approach, whereby

the audio signal is decomposed by sinusoidal modeling, and

modulated sinusoids generated by the solo instrument are

identified according to a probabilistic model of such sinusoids,

without modeling the accompaniment. The method in [11]

is more closely related to our approach, in that monophonic

components in the input song signal are classified into vocal

components and instrumental components according to both

a vocal-component model and an instrumental-component

model. In our work, instead of modeling each separate mono-

phonic component, we build models for the entire spec-

trum (a singing-voice spectrum model and an accompaniment

spectrum model), and classify multiple modulated sinusoids

according to a single singing-voice spectrum estimated from

the input song spectrum.

Sinusoidal modeling and grouping, which underlies our

signal decomposition and pitch extraction procedures, has

recently been pursued by Lagrange et al. [12] via a graph-

theoretic clustering of spectral peaks. By interpreting the

resulting clusters as separated acoustic objects, and pruning

simultaneous objects by harmonicity, they achieved singing

voice separation from accompanied singing signals.

III. SINUSOIDAL DECOMPOSITION

A musical pitch is realized in an acoustic signal as a short-

time quasi-periodic component of the signal. In the frequency

domain, the component takes the form of one or more sharp

peaks in the short-time spectrum that are often harmonically

related. Therefore, to find pitches in the input song signal,

the first step of processing would be finding all the short-

time spectral peaks in the spectrogram. To approach this task,

we adopt the sinusoidal modeling technique in [2], which

performs the task in much the same way as how we see

continuous curves in a spectrogram of musical sound (see

Fig. 2), by organizing all the peaks into a much smaller number

Fig. 2. Spectrogram of a 10-second song clip.

of 2-dimensional trajectories, or what we call amplitude- and

frequency-modulated sinusoids. The decomposition procedure

extracts a list of modulated sinusoids from the song signal,

each comprising a sequence of spectral peaks satisfying certain

continuity constraints both in frequency and in amplitude.

To ensure tractable processing at later stages, any modulated

sinusoid that has relatively low average power is excluded

from the final list. As an illustration, Fig. 3 shows a sinusoidal

Fig. 3. Modulated sinusoids extracted from a 10-second song clip.

representation of the signal depicted in Fig. 2.

Note that we do not resynthesize separate sinusoids. Instead,

each modulated sinusoid in the song signal is represented by

its associated sinusoidal parameters, i.e., a frequency sequence,

an amplitude sequence, and a frame span. These parameters

define the song signal s(t) as follows:

s(t) ≈
∑

i

ai(t) cos

(

2π

∫ t

0

fi(τ) dτ

)

, (1)



where ai(t) and fi(t) are the amplitude and frequency of the

ith modulated sinusoid, respectively; the support of ai(t) is

defined by the frame span of the modulated sinusoid; and the

amplitude and frequency sequences of the modulated sinusoid

sample ai(t) and fi(t) within the support, respectively.

IV. ADAPTIVE WIENER FILTERING

Standard Wiener filtering separates two stationary source

signals using knowledge of their respective power spectral

densities (PSDs). In the case of singing voice separation, an

extension to the standard technique was proposed in [3] to

handle the nonstationary song signal, which can be viewed as

adapting the filter to “time-varying” source PSDs estimated

from the song signal. The estimation is based on modeling

the joint probability of the voice and accompaniment PSDs

at a particular instant given a short-time song signal around

the instant, which, in our implementation, depends on two

Gaussian mixture models (GMMs) built in advance: V-GMM,

fitted to a training set of singing voice power spectra [13],

and A-GMM, fitted to a training set of accompaniment power

spectra. The adaptive Wiener filter is determined by the GMMs

as well as by the input song signal.

Given a song signal, estimation of its vocal component is

performed in the short-time Fourier transform (STFT) domain,

with each short-time voice spectrum inferred solely from the

corresponding short-time song spectrum. Given a song power

spectrum s, the MMSE estimator of the corresponding voice

power spectrum v is

E [v|s]

=
∑

i,j

P (qv = i, qa = j |s) · E [v|s, qv = i, qa = j] ,

(2)

where the discrete random variable qv is the index of the

“active” component in V-GMM, and qa is the same index for

A-GMM.

A. Evaluating the Conditional Mean

Practical evaluation of the conditional mean expanded in (2)

involves some approximations:

• Evaluation of the joint prior probability of qv and qa is

based on the assumption that they are almost independent,

i.e.,

P (qv = i, qa = j |s)

∝ P (qv = i, qa = j) · p (s|qv = i, qa = j)

≈ P (qv = i) · P (qa = j) · p (s|qv = i, qa = j) ,
(3)

where the marginal priors are among the parameters of

the GMMs, i.e., the mixing probabilities.

• Evaluation of the likelihood in (3) is based on the assump-

tion that frequency components are almost independent:

p (s|qv = i, qa = j)

≈ ∏

k p (sk|qv = i, qa = j) .
(4)

Since power spectral density is additive when two uncor-

related random processes are mixed, and can be shown

to equal the expectation of power spectrum [14], here we

assume that power spectrum was also additive when the

singing voice and the accompaniment were mixed to give

the song signal, i.e.,

sk ≈ vk + ak, (5)

where vk and ak are the power spectrum values of

the singing voice and the accompaniment, respectively,

at frequency bin k. By the construction of diagonal-

covariance V-GMM and A-GMM, we have

p (vk|qv = i) =
1√

2πσvik

exp
−(vk − µvik)2

2σ2
vik

, (6)

and

p (ak|qa = j) =
1√

2πσajk

exp
−(ak − µajk)2

2σ2
ajk

, (7)

where µvi and σvi denote the ith mean and standard-

deviation vectors in V-GMM, and µaj and σaj denote

the jth mean and standard-deviation vectors in A-GMM.

Equations (6) and (7), along with (5) and an independence

assumption between vk and ak, yield an expression for

the frequency-specific likelihood in (4):

p (sk|qv = i, qa = j)

≈ 1
√

2π(σ2

vik
+σ2

ajk)
exp

−(sk − µvik − µajk)2

2
(

σ2
vik + σ2

ajk

) ,
(8)

which is the density of the sum of two independent

Gaussian random variables.

• Suppose that the voice power spectrum is generated by

the ith component of V-GMM, and that the accompani-

ment power spectrum is generated by the jth component

of A-GMM. Again, since power spectral density equals

the expectation of power spectrum, the PSDs of the

voice and accompaniment signals are equal to µvi =
E [v|qv = i] and µaj = E [a|qa = j], respectively. Based

on the fact that the song signal is the sum of the voice

and accompaniment signals, and the assumption that the

latter two signals are orthogonal to each other, we can

approximate the MMSE estimation of the voice power

spectrum v by a special case of Wiener filtering [15], as

follows:

E [vk|s, qv = i, qa = j] ≈
(

µvik

µvik + µajk

)2

· sk (9)

B. Timbre Recognition Based on the Voice Estimate

The estimation in (2) amounts to passing the N -point win-

dowed (discrete-time) song signal through the adaptive Wiener

filter with frequency (magnitude) response H(ω) sampled by

H (2πk/N) =
√

E [vk|s] /sk, (10)

where k is the discrete Fourier transform (DFT) frequency

index. What we expect of this filter is the effect of attenuating



instrumental components in the song signal, i.e., “vocal-pass

filtering.”

The goal of the procedure described in this section is to

determine whether each modulated sinusoid in the input song

signal is vocal or instrumental. This is achieved by taking

advantage of instantaneous vocal-pass filters {Hn}L
n=1, where

n denotes the frame index, and L denotes the number of

frames. Consider a modulated sinusoid composed of P short-

time spectral peaks, where the amplitude, digital frequency,

and frame index of each peak are denoted by ai, ωi, and

ni, i = 1, . . . , P , respectively. Applying {Hn}L
n=1 to this

modulated sinusoid yields a new set of amplitudes {āi}P
i=1,

āi = Hni

(

2π

N
·
[

ωiN

2π

])

· ai, (11)

where [·] denotes the nearest integer function, which in turn

gives a multiplicative change in the sinusoidal energy, which

we call the vocality score of the modulated sinusoid:

V = (ā2
1 + · · · + ā2

P )/(a2
1 + · · · + a2

P ). (12)

An instrumental sinusoid is substantially attenuated by the

filters, which implies a small value of V , while a vocal

sinusoid has a value of V that is close to unity because, ideally,

the filters should not attenuate vocal sinusoids. Consequently,

a threshold, VT, can be set for the vocality decision, so that

if V exceeds the threshold, the modulated sinusoid can be

considered to be only slightly attenuated by {Hn}L
n=1, and

thus classified as vocal. The modulated sinusoid is deemed

instrumental if V does not exceed VT. Before fixing the value

of VT for general vocal melody extraction tasks, a tuning

process could be carried out over a validation dataset to choose

an optimal value of VT. By thresholding vocality scores for all

the modulated sinusoids in the input song signal, the adaptive

Wiener filtering procedure produces a list of vocal sinusoids,

from which the desired pitch information can be extracted.

As an illustration, Fig. 4 shows a high-vocality subset of the

modulated sinusoids plotted in Fig. 3.

V. PITCH EXTRACTION

The procedure described in this section determines for the

input song signal a vocal pitch sequence {pn}L
n=1, where

L is the number of frames in the signal. If frame n is

voiced, pn should be assigned the fundamental frequency of

the singing voice at the frame; otherwise, pn should indicate

the unvoicedness with a non-positive constant NV. The rest of

this section examines the procedure in the order of processing.

A. Grouping Modulated Sinusoids

The pitch extraction procedure starts by grouping the vocal

sinusoids into one or more harmonic series [16]. (Such sinu-

soids are identified by the procedure defined in Section IV.)

This is achieved by enumerating seed sinusoids and collecting,

for each seed, “contemporary” sinusoids that are harmonically

related to it. (A “contemporary list” is generated for each

seed sinusoid from a frame-number index of all the vocal

sinusoids.) Each seed sinusoid may be cast in at most four

Fig. 4. Vocal sinusoids extracted from a 10-second song clip. Here in adaptive
Wiener filtering, the signal is represented by power spectra bandlimited
to 1.4 kHz, and modulated sinusoids distributed above that frequency are
unconditionally excluded from this collection of vocal sinusoids.

harmonic roles: the fundamental, the second partial, the third,

and the fourth. It is cast only in the roles that respectively

imply average fundamental frequencies within the vocal range.

With the seed in a particular harmonic role, only contemporary

sinusoids that satisfy the following conditions are included as

member sinusoids of the harmonic series associated with the

seed-role combination:

• Each member sinusoid must overlap markedly in time

with the seed, i.e.,

|M ∩ S| > 0.5|M|, (13)

where M and S denote the sets of frames traversed by

the member and the seed, respectively;

• Each member sinusoid must stick to one of the following

harmonic roles throughout the overlap: the fundamental,

the second partial, . . . , and the eighth partial. In other

words, the frequency of the member must keep a fixed

and appropriate ratio to that of the seed. For example,

if the seed plays the role of the second partial and the

frequency of a candidate sinusoid remains 1.5 times that

of the seed throughout their common duration, then the

candidate is acceptable as the third partial in the harmonic

series; and

• To avoid octave errors, we require that the member sinu-

soids as a whole not exhibit significant concentration of

their trajectories on the even partials. Such concentration

implies mistaking the fundamental of the true pitch for

the second partial of the perfect octave below the true

pitch. The degree of the concentration is evaluated by

dividing the average trajectory length of the even partials

by that of the odd partials. Any missing partial is assigned

a zero length and counted toward the average. Similarly,

the members must also come with a small quotient of

dividing the average length of the third and sixth partials

by that of the other partials, in order not to erroneously



report the perfect twelfth under the true pitch.

At this stage, we have as many sinusoidal groups as there are

seed-role combinations enumerated, but many of them may

be redundant, in the sense that one group may be subset

of another group. To resolve the redundancy, the grouping

procedure eliminates any group that is subset of another group,

which is accelerated by sorting the groups by energy in

advance. As an illustration, Fig. 5 shows the result of grouping

Fig. 5. Vocal harmonic series extracted from a 10-second song clip. Modulated
sinusoids within the same harmonic series are shown in the same color.

the vocal sinusoids shown in Fig. 4.

B. Polyphony Resolution

To ensure that the vocal sinusoids represent a valid solo

voice, any spurious polyphony assumed by two sinusoidal

groups is resolved by pruning the lower-power group. The

polyphony can result by accident from a temporal overlap

between a group of vocal sinusoids and a group of instrumental

sinusoids with high vocality scores. If not fixed, the overlap

would contradict the monophony of the solo voice, leaving

ambiguities in pitch estimation.

Specifically, for any two temporally overlapping groups,

we compute the average power of each over their common

frames, which gives two power values, say, P1 and P2. While

keeping the group with the higher power value, the procedure

prunes the other group, by masking its overlap segment and

any non-overlap and “weak” segment. The lower-power group

is considered weak over a non-overlap range of frames if its

average power over the frames is under
√

P1P2, the geometric

average of the two power values computed for the overlap

across the two groups. There are three cases to the masking:

• If the lower-power group is weak both before and after

the overlap, i.e., its instantaneous power does not vary a

lot over its duration, the procedure masks the group in

its entirety, assuming the group to be instrumental;

• If the lower-power group is strong either only before or

only after the overlap, the group is simply cropped to the

only strong segment. Here it is assumed that the segment

is vocal, the rest of the group is instrumental, and they

were joined by spectral collisions in sinusoidal modeling;

and

• If the lower-power group is strong both before and after

the overlap, we truncate the group to whichever of the

two strong segments is longer.

For example, in the top pane of Fig. 6, both the green group

Fig. 6. An example of polyphony resolution. Top: Two groups of modulated
sinusoids that imply polyphony of the sound. Segment B is polyphonic.
Bottom: Two groups of modulated sinusoids that represent a monophonic
sound.

and the blue group traverse the time segment B. Suppose that

within segment B, the average power of the green group is

higher than that of the blue group, and that the blue group

is strong only at segment A. The result of resolving this

polyphony is represented in the bottom pane of Fig. 6, where

we can see that segments B and C of the blue group have been

removed.

C. Voicing Detection and Vocal Pitch Estimation

Finally, to detect voicing for frame n, the procedure checks

the frame spans of all the grouped vocal sinusoids. If none of

the vocal sinusoids has a frame span covering frame n, then

pn is set to NV; otherwise, a pitch value is computed from the

relevant sinusoid(s) and assigned to pn.

Note that, to compute the vocal pitch for a voiced frame,

each vocal sinusoid that sounds at the frame implies a separate

fundamental frequency estimate for the frame. This estimate

can be computed by dividing the sinusoidal frequency by

the harmonic role of the modulated sinusoid, so that more

than one fundamental frequency estimate may be available

for each voiced frame. The procedure computes the pitch by



averaging as many fundamental estimates as there are active

vocal sinusoids at the frame. This method for pitch estimation

works, even when the fundamental sinusoid is missing due to

errors in earlier processing. See Fig. 7 for the pitch sequence

Fig. 7. Vocal melody extracted from a 10-second song clip.

estimated from the grouped sinusoids depicted in Fig. 5.

VI. EXPERIMENTS

We start the description of our experiments by giving

implementation details in Section VI-A. The experiments on

melody extraction are documented in Section VI-B, followed

by additional experiments dedicated to the application to song

retrieval in Section VI-C.

A. Implementation Details

In order to train a male-artist V-GMM, a female-artist V-

GMM, and the A-GMM, we collected 58 recordings from 29

male and 29 female artists. The recordings are in the karaoke

format, which consists of two audio channels saved in an

ordinary stereo-audio file, where the two-channel signal is

made up of a stereo accompaniment overlaid with a right-

channel singing voice. Such a format allows a recording

to be played back as a stereo song (except that the voice

has been completely panned to the right), or as a monaural

accompaniment by muting the right channel. To train the V-

GMMs, we extracted from the 58 recordings approximately 68

minutes of clean singing voice signals in the STFT domain by

subtracting the accompaniment from the song, i.e., by setting

to zero particular right-channel frequency components that

have a magnitude comparable to (within a threshold multiple

of) that of their left-channel counterparts. To verify the quality

of the resulting 58 voice signals, one of the authors listened

to all of them, hearing almost no instrumental sound, although

he did exclude from the training set a number of other karaoke

files for which such clean singing voice could not be obtained

in this way. Also from the 58 recordings, approximately 68

minutes of purely instrumental accompaniment was taken to

train the A-GMM. With a frame rate of 21.5 Hz, approximately

100,000 power spectra were extracted from the raw data

for each GMM. All GMMs were defined by multivariate

Gaussians with diagonal covariance matrices.

In our implementation of the proposed method, all audio

data are sampled at 11,025 Hz. In the voice estimation proce-

dure defined in Section IV, to compute the short-time power

spectra, STFTs were performed using 93-ms non-overlapping

Hamming windows and 1,024-point FFT. To experiment with

various resolutions and bandlimits of the power spectra, we

convert a 513-bin power spectrum with a 5.5 kHz bandlimit,

into an nb-bin spectrum with a bandlimit of fc kHz, by

summing the power over every 512fc

5.5(nb−1) bins in the original

spectrum, to give the power in each of the nb bins in the new

spectrum. In addition, sinusoidal modeling was implemented

according to [2] with 93-ms Hann windows overlapping by

75% (without multi-resolution analysis), where the high over-

lap ratio is essential to adequate tracking of spectral peaks.

B. Melody Extraction

To verify the effectiveness of the proposed method, we

tested our software implementation of the method on 10

70-second audio excerpts, taken from commercially released

recordings of popular Chinese songs, and covering voices of

five male and five female artists. As in collecting training data,

the test recordings are in the karaoke format, which makes

it possible to obtain unaccompanied voice excerpts for the

ground truth, as well as accompanied song excerpts for the

test, as described in Section VI-A. A ground-truth melody

was computed from each voice excerpt by extracting a pitch

sequence from all modulated sinusoids as in Section V, for

experimental convenience, although a better approach would

be using another monophonic pitch estimator. Furthermore,

in this test we evaluated our method by the recall of vocal

pitch, which is defined by the percentage of truly voiced

frames whose estimated pitch falls within one quartertone of

the ground-truth pitch.

To see the effect of parameter tuning on the recall, we

conducted multiple experiments by varying 1) the number of

frequency bins, NB, for representing each power spectrum, 2)

the bandlimit of each power spectrum, FC, 3) the number of

components in each V-GMM, KV, 4) the number of compo-

nents in the A-GMM, KA, and 5) the vocality threshold VT.

As shown in Fig. 8, a bandlimit of 5.5 kHz comes with a low

frequency resolution and significantly degrades the recall; oth-

erwise, the recall appears quite robust to the number of bins.

In addition, a closer look at Fig. 8 reveals that the effect of the

bandlimit as decoupled from that of the frequency resolution,

while in part representing the completeness of information,

seems to be dominated by the curse of dimensionality, in

that the 2.8-kHz, 65-bin recall is lower than the 1.4-kHz,

33-bin recall, and the 5.5-kHz, 129-bin recall is even lower.

The recalls obtained by varying the number of components

in each of the male-artist and the female-artist voice GMMs

are listed in Table I, where an increase in the number of V-

GMM components is consistently observed to raise the recall.

However, it seems unnecessary to set the number of A-GMM



Fig. 8. Vocal pitch recalls with various lengths and bandlimits of the feature
spectrum. KV = 32; KA = 1024; VT = 0.25.

TABLE I
VOCAL PITCH RECALLS WITH VARIOUS NUMBERS OF COMPONENTS IN

EACH OF THE MALE-ARTIST AND THE FEMALE-ARTIST VOICE GMMS.
NB = 129; FC = 1.4 KHZ; KA = 1024; VT = 0.25.

components to a value as large as 1,024, as evidenced in Table

II. Finally, the effect of VT is illustrated in Fig. 9, where

TABLE II
VOCAL PITCH RECALLS WITH VARIOUS NUMBERS OF COMPONENTS IN

THE ACCOMPANIMENT GMM. NB = 129; FC = 1.4 KHZ; KV = 32;
VT = 0.25.

we can see that the optimum recall 88.03% is achieved by

a value of the vocality threshold around 0.1768. In contrast to

this optimum, the zero threshold leads to the reduced recall

at 71.57% by allowing all modulated sinusoids to enter the

stage of pitch extraction regardless of the vocality. In such a

degenerative system, high-power instrumental sinusoids could

usually be selected for pitch extraction, masking lower-power

vocal sinusoids according to the rules set forth in Section V-B

for polyphony resolution. As VT increases, the instrumental,

or low-vocality, sinusoids tend to be pruned before pitch

extraction, which renders the extracted melody more reliable

and explains the ascending trend on the left of the optimum in

Fig. 9. On the other hand, when the threshold is raised above

the vocality scores of some vocal sinusoids, the increase in the

threshold demonstrates the negative effect of eliminating more

vocal sinusoids, giving a decrease in recall. At the extremum,

with the unity threshold, no modulated sinusoid enters the

Fig. 9. Vocal pitch recalls with various vocality thresholds. NB = 129; FC =

1.4 kHz; KV = 32; KA = 1024.

stage of pitch extraction, and all voiced frames are taken as

unvoiced, receiving a zero recall.

C. Song Retrieval

To confirm the efficacy of the proposed method in indexing

a song database, we additionally carried out a query-by-singing

experiment QBS-1 with the song database indexed by the

proposed method. This experiment differs from that in [17],

mainly in that while segmentation labels are manually spec-

ified for each song in [17], they are automatically produced

by the proposed method as a sequence of voicing onsets in

this work. The labels serve as candidate times in each song

at which the query melody may be spotted. In [17], melodies

are extracted from songs by subharmonic summation without

voicing detection. In addition, we use the methods given in

Sections III and V to transcribe query voices.

For this set of experiments, the feature spectrum for GMM

training is represented by 129 frequency bins with a 1.4 kHz

bandlimit. For each V-GMM, the number of Gaussians mixed

is set to 32; for A-GMM, to 1,024. The vocality threshold VT

defined in Section IV is set to 0.25.

We made the following modifications to the method pro-

posed in [17] for melody matching:

• Pitch is quantized in 10-cent resolution. The average

pitch deviation of each melody from the standard tuning

system is computed and subtracted from the melody. To

be specific, we encode the deviation of each pitch from

the standard tuning system by a point on the unit circle.

The angle (in radians) of the point is given by

θ =
π

50
(p − ⌊p⌋) , (14)

where p is the pitch in cents, and ⌊p⌋ denotes the highest

standard pitch below p. A point at 0 radian represents

zero deviation, while a point at π radians represents the

maximum, 50 cents. For each melody, taking the two-

dimensional centroid of the points accumulated on the



Fig. 10. Illustrating the computation of the average pitch deviation. The blue
x-marks represent deviations of pitches from the standard tuning system in a
query melody. The 10 labels uniformly spaced around the circle are values
of pitch difference in the unit of 10 cents, marking the scale on which the
angle of each point encodes a pitch deviation. To facilitate visualization, the
points were plotted for un-quantized pitch values. The red circle represents the
centroid, from which we find that the person who sang this melody intended
a tuning system that is lower than the standard by nearly 25 cents.

circle (see Fig. 10), and converting the angle of the

centroid back to the pitch difference (multiplying the

angle in [0, 2π] by 50
π

), gives the average pitch deviation.

This alignment is of particular importance for resolving

a query melody sung without first listening to a standard

pitch;

• Each voicing gap is filled with the pitch immediately

preceding the gap, so that melodies can be matched by

dynamic time warping (DTW) without discontinuities.

For a pitch sequence that begins with silence, the be-

ginning gap is filled with the first voiced pitch value that

follows. In case the pitch sequence is silent throughout

its duration, we fill it with a constant middle C;

• Pitch is wrapped into chroma to disregard octave errors

occurring in melody extraction. Accordingly, instead of

computing the average pitch value for each melody [17],

the matching procedure computes the average chroma

value. Specifically, we map each chroma value onto the

unit circle, with 0 radian representing the C pitch class

and π radians representing the G-flat. Taking the two-

dimensional centroid of the points accumulated on the

circle, and converting the angle of the centroid back to

the chroma value, gives the average. Furthermore, the

distance between two chroma values x and y (cents) is

given by

min {|x − y|, 1200 − |x − y|} , (15)

which never exceeds 600 cents; and

• Multiple-level data abstraction (MLDA) is adopted from

[18] to speed up the matching.

The test results of QBS-1 are listed in the first row of Table

III, where the automatic segmentation is made possible by the

TABLE III
RETRIEVAL EXPERIMENT RESULTS.

proposed method, which generates 28,771 segmentation labels

(voicing onsets) over the 95-song database. In the second, third

and fourth rows of Table III are results of three control experi-

ments. Replacing the automatic segmentation in QBS-1 with a

771-label manual segmentation gives QBS-2. False voicings in

the automatic segmentation only lowered the top-1 accuracy by

2.2%, possibly because the size of database is not realistically

large. Experiment QBS-3 is identical to QBS-1 except that 1)

the proposed method is replaced by the melody extractor in

[17]; and 2) voicing gaps in the 90 queries are bypassed by

zero local distances in DTW as in [17], rather than filled with a

constant pitch. Substituting the 771-label manual segmentation

for the automatic segmentation in QBS-3 gives the experiment

QBS-4, where the lower accuracies as compared with QBS-

2 verify the benefit of the proposed melody extractor. Also

notice that the segmentation automation in QBS-3 gave rise

to an 8.9% drop in top-1 accuracy, much deeper than the 2.2%

drop experienced in QBS-1, as may be attributed to the lower

melodic ambiguity exhibited by the proposed method. Finally,

since no advantage of the proposed method is taken in QBS-4,

comparing the results between QBS-1 and QBS-4 reveals that

the proposed method mainly acts to automate the indexing,

or more specifically, the segmentation of the song database,

without degrading the retrieval accuracy.

VII. CONCLUSION

We have presented a system for extracting a vocal melody

from the signal of an accompanied singing performance. The

extraction exhibits sensitivity to vocality, which originates

from a voice estimator through a novel transformation. The

feasibility of the method in indexing a song database for a

song retrieval application has been verified by experiments on

real popular song data and real sung queries.

One limitation of our approach is the assumption that the

accompaniment to songs is purely instrumental. In the future, it

would be interesting to consider the timbral difference between

a solo voice and a choral voice, so that if there are any

choral voices in the accompaniment, the solo voice can be

distinguished from them. It is also worth further research to

reduce the number of segments in each song from that of all

the voicing onsets given by the proposed method, in pursuit

of shorter search time.
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