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ABSTRACT 

 
A novel framework for background music identification is 
proposed in this paper. Given a piece of audio signals that 
mixes background music with speech/noise, we identify the 
music part with source music data. Conventional methods 
that take the whole audio signals for identification are inap-
propriate in terms of efficiency and accuracy. In our frame-
work, the audio content is filtered through speech center 
cancellation and noise removal to extract clear music seg-
ments. To identify these music segments, we use a compact 
feature representation and efficient similarity measurement 
based on the min-hash theory. The results of experiments on 
the RWC music database show a promising direction. 
 

Index Terms— fingerprint identification, copy detec-
tion, content-based retrieval, min-hash 
 

1. INTRODUCTION 
 
Fast network connections and advanced capturing tech-
niques have multiplied, legally or otherwise, the dissemina-
tion of multimedia content worldwide. Content owners seek 
for efficient and effective solutions to manage the source 
and its copies. In digital music domain, some industrial sys-
tems like Snocap, Music2Share, and Shazam provide ma-
ture techniques in music sharing and search applications; 
they are suitable to identify the "clear" music without much 
speech/noise interfered. However, background music that is 
usually quality-degraded and mixed with lots of noise ele-
ments (e.g., asides, dialogs, and environmental sounds) 
makes the identification much more challenging. 

In conventional background music identification meth-
ods, the audio signal is first decomposed into numerous 
small components [1-4]. Each of which is then compared 
with the source music data, and the result is aggregated with 
each other to determine the identity of the background mu-
sic. This approach has two main disadvantages. First, all the 
decomposed components are compared with the source mu-
sic data; since many of them are speech/noise, such com-
parisons are unnecessary. Second, as a small component 
conveys insufficient information, it is apt to retrieve many 
false positives, which might interfere with the aggregation. 

To alleviate the above problems, we propose a novel 
framework for background music identification. Two prac-
tical steps are employed to analyze the audio signal. First, 
based on our observation in TV broadcasting and video, we 
leverage the stereo format capability to cancel the speech 
that is panned to the center. Second, for noise and speech 
that cannot be cancelled, they are located through GMM-
based classification and removed to obtain clear music snip-
pets for identification. Thus, we can reduce unnecessary 
comparisons and false positives. 

To achieve efficient and accurate identification, we 
present a min-hash-based feature representation and similar-
ity measurement. Each music frame is represented by a one-
dimensional min-hash value, and the similarity between two 
music segments is computed by their hash collision rate. Fig. 
1 shows an overview of the proposed framework. We vali-
date the framework through several experiments performed 
on the RWC music database [5]. 

The remainder of this paper is organized as follows. 
Sections 2 and 3 describe the content filtering and min-hash 
indexing, respectively. Sections 4 and 5 summarize the ex-
periment results and conclusions, respectively. 

 

 
Figure 1. An overview of the proposed framework 

 
2. CONTENT FILTERING 

 
2.1. Speech Center Cancellation 
 
Some knowledge derived from practical sound-editing or 
post-production used in the TV/movie industry can be em-
ployed. For example, in a movie or TV program, the sound 
editor usually tries to achieve a perceptually clear speech 
signal because it contains the information that viewers 
would probably want to focus on. Generally, this is accom-
plished by leveraging the stereo format capabilities, i.e., the 
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original stereo music track is panned to the left and/or right, 
while speech is panned to the center [6]. In other words, the 
left and right channels of the video-derived audio would 
contain the same speech information but probably different 
music signals. Let L and R be the left and right tracks, ML 
and MR be the left and right music signals, and S be the 
speech signal. A typical scenario would be as follows: 

L = S + ML ,                                 (1) 
R = S + MR .                                 (2) 

Subtracting Eq. (1) from Eq. (2) yields 

L – R = ML – MR.                              (3) 

Eq. (3) shows that speech is cancelled and a music signal 
ML – MR is obtained. Suppose that the source stereo music 
MS is panned left and right by g% and k%, respectively, 
then ML and MR would be as follows: 

ML = g MSL + (1–k) MSR ,                      (4) 
MR = (1–g) MSL + k MSR .                      (5) 

Therefore, Eq. (3) can be further derived as: 

L – R = ML – MR = (2g–1) MSL – (2k–1) MSR .        (6) 

If g = k, then Eq. (6) is simplified as: 

ML – MR = (2g–1)(MSL – MSR).                     (7) 

The result in Eq. (7) is a mono track containing the source 
MS information with lower amplitude and inversed phase; 
its normalized real-value-based FFT is identical to the 
source mono music, i.e., 0.5(MSL + MSR). Thus, it manifests 
that speech center cancellation would yield the same FFT-
based feature for the source mono music and the center-
cancelled music, as long as the original soundtrack is evenly 
panned to the left and right channels. This assumption actu-
ally agrees with the most usual case in professional pro-
duced TV/movie videos. In practice, we also apply speech 
center cancellation to our source music data to make the 
feature representation consistent. 
 
2.2. Noise Removal 
 
Ideally, after speech center cancellation, one should have a 
signal containing either silence or clear music. In fact, mov-
ies/TV programs sometimes contain different noise ele-
ments, such as environment sounds or speech panned at 
non-center positions. Thus, we analyze the mono audio sig-
nal derived from the previous subsection to remove the 
noise segments and reserve the clear music segments for 
identification. For this task, we employ a GMM-based clas-
sification approach that uses two models (24 mixtures each): 
M-GMM fitted to a training set of pure music and N-GMM 
fitted to a training set of noise (including silence, speech, 
effects, environment sounds, etc.). MFCC features are ex-
tracted every 10ms with a window size of 20ms for training. 
Both models range from 50 to 5kHz. 

Given an audio signal, we first apply a spectral change 
detector proposed by Duxbury et al. [7] to locate the 
boundaries of homogenous audio segments. Afterwards, we 
classify each audio segment as "pure music" or "noise" 
based on the M-GMM and N-GMM models. The consecu-
tive segments that are classified as music are concatenated 
into a larger segment. 
 

3. MIN-HASH MATCHING 
 
After the background music segments are extracted, each 
segment will be matched with the soundtracks in the source 
dataset. We propose a compact feature representation and 
efficient similarity measurement based on the min-hash the-
ory for background music identification. 

Let Q = {qi | i = 1, 2, ... , nQ} be a background music 
segment (denoted as a query) with nQ frames, where qi is the 
i-th query frame; and let S = {sj | j = 1, 2, ... , nS} be a source 
soundtrack with nS frames, where sj is the j-th source frame, 
and usually nQ << nS. Our goal is to quickly and accurately 
find a sequence in S for the given Q if Q is derived from the 
sequence by copying, editing, and/or transformation. 

The audio signal is first divided into overlapping 
frames of 370ms with a hop size of 11.6ms. Then, the Sign 
of Energy Difference (SED) [8] is employed to represent 
each audio frame. SED is a 32 dimensional binary vector, 
which models FFT energy differences in the neighborhood 
bands. We denote Fx,y as the y-th element (y = {1, 2, ..., 32}) 
of the SED feature for frame x. 

A sliding window is used to scan S. Let 
},...,,{ 11 −++=

Qnkkk sssW  be a windowed sequence with nQ 

frames, where k ∈ {1, nS-nq+1}. A conventional method is 
to use the Jaccard coefficient to compute the similarity be-
tween Q and W, which is defined as: 
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where | ⋅ | denotes the cardinality; }1|{ , == yqq ii
FyY  is the 

non-zero index set of qi 's SED feature, and 
jsY is the non-

zero index set of sj 's SED feature. The computation cost of 
Eq. (8) is about O(|Fx,y|⋅nQ). 

The above computation cost can be reduced by utiliz-
ing the approximation of the Jaccard coefficient, e.g., min-
hash Baluja and Covell [9] used random permutations of the 
indices and recorded in which position the first "1" occurred 
as the min-hash. However, for the purpose of efficiency, 
following [10], we simply associate a frame feature with 
hash values and take the minimum as the min-hash. The 
probability of two feature vectors having the same min-hash 
value is proportional to their Jaccard coefficient. As each 
frame is calculated by a one dimensional min-hash, the 
computation cost for matching is reduced substantially. 



To generate hash values of a SED feature, we apply the 
hash method in [11]. In the method, r random vectors, each 
with the same dimension as the SED feature vector, are gen-
erated. For each frame, its SED feature vector is projected 
to r random vectors to generate r hash values. Using the 
median of these hash values as a threshold, we generate a 
bit "1" if a hash value is greater than the threshold; other-
wise, we generate a bit "0". Subsequently, we have an r-
dimensional binary vector for the frame. Here r = 10.  

Let Zx,z be the z-th element of frame x's binary hash 
vector. We take the index of the first non-zero hash value of 
the hash vector as the min-hash: 

                     ( ) 1|min , == zxx ZzH .  (9) 

Then, the min-hash similarity can be estimated by: 

)||,min(

||
),(

1

1

1

1

∑
∑

=

=

−+

−+

∪

∩
=

Q

iki

Q

iki
n
i tqQ

n
i tq

YYn

HH
WQM .           (10) 

Our preliminary study shows that nQ was usually smaller 
than ∑ = −+
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. Therefore, we can replace the de-

nominator by nQ. As a result, the computation cost is O(nQ). 
 

4. EXPERIMENTS 
 
We evaluated the proposed framework on the classical mu-
sic part of the RWC music database [5]. Fifty music files 
with a total of 386 minutes playing time served as the 
source data. These files were converted to a uniform 22kHz, 
16-bit format in stereo. Three experiments were conducted 
against various music degradations and transformations. For 
convenience, the query files were artificially generated by 
simulating practical TV/movie video production to mix mu-
sic with speech and noise; this offers us an easy way to in-
vestigate the performance in terms of various accuracy met-
rics. 
 
4.1. Accuracy of Music Sequence Matching 
 
The first experiment evaluated min-hash matching. Seven 
test queries ranging from 10 seconds to 30 seconds were 
excerpted from the source dataset. The following degrada-
tions and transformations that are widely used in mu-
sic/video production are applied to these test queries: 

 all pass filtering using the system function H(z) = (0.81z2-
1.64z+1)/(z2-1.64z+0.81); 

 amplitude compression with the following ratios: 4.47:1 for 
|A| ≥ -28.6 dB, 0.86:1 for -46.4 dB<|A|< -28.6 dB, and 
1:1.61 for |A| ≤ -46.4 dB; 

 equalization with the setting of [8]; 
 band-pass filtering using a second order Butterworth filter 

with cut-off frequencies at 100Hz and 6000Hz; 
 noise addition with uniform white noise with a maximum 

magnitude of 512 quantization steps; 

 MPEG1-Layer3 using the Lame algorithm at 64/96/128 
kbps, and the Fraunhaufer algorithm at 96kbps; 

 AAC at 96kbps; 
 Microsoft ADPCM; 
 MPEG1-Layer2; and 
 Windows Media Audio at 28.8/48/96 kbps. 

As a result, we obtained a total of 105 (7×15) music queries 
to be used to search in the source dataset. 

The recall and precision rates are used as the accuracy 
metrics. Unlike other identification work where the source 
soundtrack id with the highest similarity score, called top-1 
precision, is returned to users, our matching method further 
checks whether the exact location in the source soundtrack 
is returned. We believe it would be helpful for users if the 
desired content can be located explicitly. A search result is 
deemed correct if the detected window has any overlap with 
the region from which the query was extracted. While this is 
a very wide tolerance, the average overlap ratio can achieve 
94% in our study. 

Table 1 lists the recall and precision rates derived by 
using the Jaccard coefficient in Eq. (8) and the min-hash 
similarity in Eq. (10) with different thresholds θ. Surpris-
ingly, the min-hash similarity outperforms the Jaccard coef-
ficient in most cases. However, as will be shown in the later 
experiment, short query sequences usually yield drastic 
variations of the min-hash similarity and thus degrade the 
precision rate. In contrast, the Jaccard coefficient is less 
affected by short query sequences. We also consider the 
top-1 precision. Both the Jaccard coefficient and the min-
hash similarity achieved the perfect 100% rate. 
 
Table 1. Recall (R) and precision (P) rates of the Jaccard 
coefficient and the min-hash similarity 
 θ = 0.5 θ = 0.55 θ = 0.6 θ = 0.65 θ = 0.7 

R 1.0000 1.0000 0.8381 0.7333 0.6667 Jaccard 
P 0.8167 0.8750 1.0000 1.0000 1.0000 
R 1.0000 1.0000 0.9810 0.8381 0.7619 min-hash 
P 0.7745 0.9833 1.0000 1.0000 1.0000 

 
4.2. Accuracy of Noise Removal 
 
The same music queries used in the previous subsection 
were applied. Each query was mixed with effects or other 
artifacts so that it consisted of 67% music part and 33% 
noise part. Degradations and transformations were applied 
to obtain a new query set for this task. We employed a 
query-based metric to measure the accuracy. Suppose that 
the groundtruth contains s clear music segments, each with 
Ms frames. For the t query segments, each of which contains 
Nt clear music frames and tN~  noise frames. The accuracy is 
defined as: 

∑
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The accuracy of a random guess for a query that considers 
the whole audio clip as "music" is about 50% ((67-
33)/67*100%). The average performance of the proposed 
method is 77.78% and 80.63% with/without degradations 
and transformations, respectively. 
 
4.3. Accuracy of the Proposed Method 
 
The final experiment evaluated the whole framework. For 
simplicity, the query files were only converted to the MP3 
and WMA families, which are the most representative for-
mats in PC and Web applications. Three configurations are 
set to deal with these query files: 

 speech center cancellation but no noise removal (abbrevi-
ated as "CC"); 

 speech center cancellation and noise removal ("CC+NR"); 
 speech center cancellation and manual noise removal, 

("MANUAL"). 

In addition, we implemented two matching schemes. The 
first scheme used the min-hash similarity only. The second 
is a coarse-to-fine scheme, which used the min-hash simi-
larity for coarse matching first, and then the candidates were 
further checked by the Jaccard coefficient for fine matching. 

The performance in terms of the recall and precision 
rates at θ = 0.55 and the top-1 precision rate are listed in 
Table 2. It is obvious that if we use the complete video 
soundtrack clip to search the source soundtracks, i.e., "CC," 
the accuracy is poor because a large portion of a query clip 
contains noise. "CC+NR" and "MANUAL" yield noticeable 
improvements in the recall rates thank to the removal of 
noise. At the same time, however, their precision rates drop 
significantly by using the min-hash matching scheme only. 
This is because after noise removal, a query clip is usually 
partitioned into several short sequences. Since a short se-
quence contains less information, the min-hash similarity 
becomes very sensitive, and thus many false positives will 
be retrieved. In contrast, the Jaccard coefficient is less af-
fected. Fig. 2 shows an example of using a short query se-
quence to match a source soundtrack, where the X-axis and 
Y-axis indicate the frame index and the similarity score, 
respectively. With the coarse-to-fine matching scheme, we 
can improve the precision rate effectively. 
 

5. CONCLUSIONS 
 
We have proposed a novel framework for background mu-
sic identification. The framework is realized through effec-
tive content filtering and efficient min-hash matching. The 
experiments on the RWC database with various degrada-
tions and transformations manifests a promising result. We 
will continue exploring its real-applications in TV broad-
casting and video blog. 
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Table 2. Recall (R) and precision (P) rates of different 
query generation and sequence matching methods 

 CC CC+NR MANUAL 
R (θ = 0.55) 0.6000 0.9200 0.9561 
P (θ = 0.55) 0.7778 0.1034 0.0706 

Min-hash

P (top-1) 1.0000 0.9867 0.9474 
R (θ = 0.55) 0.6000 0.9067 0.9473 min-hash

+ Jaccard P (θ = 0.55) 0.7778 0.8608 0.8182 
 

   
(a)                                         (b) 

Figure 2. (a) The min-hash similarity; (b) the Jaccard coef-
ficient 
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