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Abstract—A texture representation should corroborate various
functions of a texture. In this paper, we present a novel approach
that incorporates texture features for retrieval in an examplar-
based texture compaction and synthesis algorithm. The original
texture is compacted and compressed in the encoder to obtain a
thumbnail texture, which the decoder then synthesizes to obtain a
perceptually high quality texture. We propose using a probabilistic
framework based on the generalized EM algorithm to analyze the
solutions of the approach. Our experiment results show that a high
quality synthesized texture can be generated in the decoder from
a compressed thumbnail texture. The number of bits in the com-
pressed thumbnail is 400 times lower than that in the original tex-
ture and 50 times lower than that needed to compress the orig-
inal texture using JPEG2000. We also show that, in terms of re-
trieval and synthesization, our compressed and compacted textures
perform better than compressed cropped textures and compressed
compacted textures derived by the patchwork algorithm.

Index Terms—Examplar-based approach, texture compaction,
texture compression, texture retrieval, texture synthesis.

I. INTRODUCTION

T HE rapid growth in the amount of digital media con-
tent and recent advances in technologies for sharing

and learning information in a global manner have led to an
on-demand need for storage space and the data retrieval [1].
Moreover, with the advent of high resolution digital cameras
and advanced texture generation techniques, textures usually
require a large amount of storage space. Reducing the storage
space can improve real-time rendering [2], [3] as well as the
performance of remote applications on low-end devices, such
as using a mobile phone to retrieve textured data [4]. Usually,
compaction or compression is applied to reduce a texture’s
space. The former reduces the size of a texture, but not the
number of bits per pixel; while the latter reduces the number
of bits per pixel, but not the size of the texture. Some texture
compaction algorithms, e.g., those proposed in [5] and [6], use
an examplar-based approach to generate a small compacted
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texture, carefully extracted from the original texture. Besides
the space issue, efficient retrieval of textural data is essential
because of the rapid increase in the number of digital libraries
and databases [7], [8]. Traditional image retrieval systems use
text for searching; however, the method is only useful for coarse
texture retrieval because a texture usually contains several de-
tails that can not be well-described by text or keywords [9].

Although the above two issues have been widely studied,
most approaches try to optimize one issue without considering
the other. However, Vasconcelos and Lippman argue that the
two issues are closely related and should therefore be considered
jointly. To this end, they proposed a library-based coding ap-
proach that uses vector quantization techniques to execute com-
pression and retrieval tasks [10], [11]. Library-based coding can
be regarded as an implementation of the paradigm that a texture
representation should be able to integrate various applications of
textures and compression effectively. Motivated by Vasconcelos
and Lippman’s work, we propose an approach that incorporates
the retrieval requirements into a compaction and synthesis al-
gorithm. Under our approach, the goal of compacting and com-
pressing a texture is twofold: 1) to reduce the size of the texture
and the number of bits per pixel; and 2) to facilitate the retrieval
of textural data. In other words, the compressed and compacted
texture retains the textural features of the original texture for
the retrieval task. Fig. 1(a) illustrates an application of our ap-
proach, where texture is compacted to a smaller thumbnail tex-
ture, and then compressed. The compressed thumbnail texture
can then be used to synthesize a high quality texture and retrieve
a texture from the target database. As shown in Fig. 1(b), the ap-
proach can also be used to generate a database of compressed
thumbnail textures; then, any texture in the database can be used
to retrieve the original texture from the original database.

To implement our approach, we propose using a probabilistic
framework that explores the relations between the compaction
and synthesis processes and incorporates the retrieval require-
ments into the framework. We show that an optimized solu-
tion of the proposed framework can be obtained and analyzed
by applying the generalized EM approach [12]. In addition, we
use a subjective test to evaluate the approach’s performance in
terms of the compaction, compression, and synthesization pro-
cesses, and adopt an objective measurement to assess the re-
trieval performance.

In our implementation, compaction and synthesis are based
on the examplar-based approach described in [13], which can
generate perceptually high quality textures. The texture feature
used for retrieval is the local binary pattern (LBP) [14]. It can be
derived easily and incorporated into an examplar-based texture
compaction and synthesis algorithm to support texture retrieval.
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Fig. 1. Schematic diagram of the potential applications of the proposed ap-
proach. (a) Input texture I is compacted to i and compressed to obtain ci and DI
is synthesized from ci, which is also used to retrieve the texture RI in DB that
is perceptually similar to ci. (b) The original database is compacted and com-
pressed to obtain a compressed and compacted database, which requires less
storage space and can be stored in a low-end device. Any texture in the com-
pacted database can be used to retrieve a texture in the original database at the
server.

We present several numerical results to demonstrate the effec-
tiveness of the proposed algorithm compared to that of other
methods. First, we show that our compressed thumbnail texture,
in which the number of bits is 400 times lower than that in the
original texture and 50 times lower than that needed to compress
the original texture using JPEG 2000, can generate a texture that
looks like the original texture. Then, we show that the proba-
bility of synthesizing a perceptually high quality texture from
our thumbnail texture is higher than that of a texture synthesized
by cropping a part of the original texture, and also higher than
that of compacting the texture by the patchwork algorithm. Fi-
nally, the LBP features of different-sized compressed textures
derived by our approach are used to retrieve relevant textures
from a database. Our results demonstrate that incorporating the
LBP feature into the texture compaction and synthesis approach
not only helps synthesize high quality textures, but also facili-
tates texture retrieval.

The remainder of this paper is structured as follows. In Sec-
tion II, we review the multipatch algorithm [15], which is a vari-
ation of the patchwork algorithm [13], [16], and the LBP fea-
ture. The multipatch algorithm is an implementation of the ex-
amplar-based texture synthesis approach and is used to demon-
strate our numerical results. In Section III, we describe the prob-
abilistic framework of the proposed paradigm as well as the gen-
eralized EM algorithm, which is used to analyze the solutions
in the encoding and decoding phases. In Section IV, we discuss
some implementation issues critical to the performance of our
framework, and provide the numerical results of various exper-
iments. Then, in Section V, we summarize our conclusions and
consider possible avenues for future research.

Fig. 2. Schematic diagram of the patchwork algorithm. (a) Patches of size �
are sampled from the input texture. The pool of sampled patches is called the
patch domain. (b) A new image is generated from the top left-hand corner to
the bottom right-hand corner. In each step, the patch selected from the patch
pool is pasted. The shaded area indicates the area already patched. (c) The cost
of generating the new image is calculated from the overlapping area (the solid
area).

II. EXAMPLAR-BASED APPROACH AND THE LBP
TEXTURE FEATURE

In this section, we review the examplar-based approach and
the LBP texture feature.

A. Multipatch Algorithm

Texture compaction or synthesis is a technique that creates
a new image from a sample texture image such that, to an ob-
server, the new image appears to be generated by the same un-
derlying process as the sample texture. If the size of the new
image is smaller than that of the sample texture, the technique
is called compaction; otherwise, it is called synthesis. Although
several synthesization methods can generate satisfactory results,
e.g., [13], [17]–[22], the examplar-based approach proposed in
[13] is fast and easy to implement, and it yields a high-quality
texture for a broad range of textures. First, the algorithm sam-
ples patches of equal size from the original texture. The sam-
pled patches form a domain for generating a new image. Then,
a patch is selected and pasted to generate a new image in the
scanning order. If the size of the patch is one pixel, the ap-
proach is called a pixel-based approach; otherwise, it is called a
patch-based approach. A schematic diagram of the patchwork
algorithm is shown in Fig. 2 [13], [16]. Irrespective of the type
of implementation, the examplar-based approach is a random
process because some randomness is usually imposed to create
variations when many texture images are generated from the
original texture [23], [24]. Thus, by running the algorithm sev-
eral times, we can obtain different textures.

Since the approach models textures as homogeneous Markov
random fields, it is extremely effective in generating homoge-
neous textures. Some researchers have modified the approach
with the goal of making it work as well for near-homoge-
neous textures [6]. Moreover, some analytical results based on
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Fig. 3. Five cropped textures are taken from the image, which is from the
Outtex database.

nonparametric resampling of random fields and a variational
point of view are presented in [25] and [26], respectively. One
problem with the approach is the selection of the correct patch
size because using different-sized patches tends to generate
different textures [15]. In addition, the performance of many
examplar-based algorithms has not been evaluated in terms
of the probability metric. The multipatch algorithm, shown in
Fig. 4, was developed to address these issues [15]. The idea is to
simply sample different-sized patches and use a combination of
them to generate a new image, thereby increasing the size of the
patch domain and improving the synthesized result. However,
using different-sized patches for synthesis also increases the
synthesization time because there are many ways to combine
patches. The algorithm assigns a cost to each legal combination
of different-sized patches and iteratively modifies each combi-
nation until the cost cannot be reduced further. The results of
the multipatch algorithm have been evaluated in terms of the
probability of generating a perceptually high quality texture
and the average time required to complete the process. It has
been shown that the algorithm is superior to other methods
[16], [23].

B. Local Binary Pattern of a Texture

The local binary pattern (LBP) is a texture descriptor whose
performance in different applications has been evaluated in sev-
eral works [14], [27], [28]. The LBP of a texture can be applied
in various ways depending on the invariance property of the tex-
ture feature to be retained. In this paper, we use the 3 3 neigh-
borhood of the LBP, as shown by the following example.

To calculate the LBP value of a center pixel, the value of each
of the eight neighboring pixels of the center pixel is
first labeled 0 or 1 by subtracting the neighboring pixel’s value
from the center pixel’s value Cp

if
otherwise.

(1)

Then, the obtained binary values are multiplied by their corre-
sponding weights and aggregated to the LBP value of the center
pixel: . Table I shows how the LBP value is
computed at the center pixel. A histogram of the LBP values is
normally used as the texture descriptor because, after the his-
togram has been appropriately modified, it is invariant under
gray-scale transformation of a texture, as well as under trans-
lation and rotation of the texture [29].

Fig. 4. Schematic diagram of the multipatch algorithm. (a) Two different-sized
patches, � and �, are sampled from the input texture. The patch domain is the
union of the domains of patches of sizes � and �. (b) New image is generated by
modifying the rows in the image iteratively; even-numbered rows are modified
when odd-numbered rows are fixed, and odd-numbered rows are modified when
even-numbered rows are fixed. (c) Each row in (b) contains four patches. There
are two ways to paste each patch: by using one size � patch or four size � patches.
We represent the two methods by two nodes: one for size � patches and the other
for size � patches. Each node is associated with a cost, which is the MSE of the
overlapping area of pasting a patch to the node. The cost is calculated by (38)
and � is set to 0. A row can be represented as a directed graph, and dynamic
programming is used to select the optimal path of each row. For example, the
path that passes through the solid nodes in the graph is the optimal path, which
is the path of the directed graph that has the minimum total cost, summed from
the nodes on the path. (d) The cost of the generated texture is calculated from
the overlapping area, indicated by the solid area in the image. The multipatch
algorithm generates a texture whose cost is a local minimum.

TABLE I
FROM LEFT TO RIGHT, THE FOUR UNITS ARE NUMBERED 1, 2, 3, AND 4,

RESPECTIVELY. UNIT 1 IS THE ORIGINAL UNIT. THE VALUE OF THE CENTER

PIXEL OF UNIT 1 IS TAKEN AS THE THRESHOLD VALUE TO LABEL THE

BINARY VALUES OF THE NEIGHBORING PIXELS, AS SHOWN IN UNIT 2. UNIT

3 COMPRISES THE WEIGHTING FACTORS ASSIGNED TO EACH PIXEL IN THE

UNIT. MULTIPLYING THE CORRESPONDING PIXELS IN UNITS 2 AND 3 BY THE

APPROPRIATE WEIGHTS YIELDS THE LPB VALUE OF THE CENTER PIXEL IN

UNIT 4, I.E., � � � � � � � � ��� � ���

III. FORMULATION AND ANALYSIS

In this section, we describe the proposed probabilistic frame-
work used to design an examplar-based algorithm for the com-
paction, synthesis, and retrieval of textures. The framework is
comprised of an encoding phase and a decoding phase, as shown
in Fig. 5. The encoding phase compacts and compresses an orig-
inal texture into a thumbnail texture, after which the decoding
phase synthesizes the compressed thumbnail texture.

Authorized licensed use limited to: ACADEMIA SINICA COMPUTING CENTRE. Downloaded on July 14,2010 at 06:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1310 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 5, MAY 2010

Fig. 5. Proposed system. The input texture � is used to generate a compacted
texture � and a synthesized texture � in the encoding phase. The compacted
texture is compressed to obtain � before it is transmitted to the decoder, which
performs texture synthesization to obtain the output texture � . The two paths,
� � � � � and � � � � � , in the encoder indicate that the mod-
ification is performed on images iteratively to obtain the compacted and the
synthesized textures.

A. Encoding

To retain the textural properties of the original texture in a
compacted thumbnail texture, we use the approach applied in
a closed loop video coding system. More specifically, the en-
coder contains the decoder so that it can adjust the coding pa-
rameters to obtain the optimum decoded frame. In addition to
the compaction and compression components for generating a
thumbnail, our encoder contains a synthesization component
that can synthesize a texture from a thumbnail texture. Based
on the Markov chain assumption of conditional probability, the
proposed encoding algorithm iteratively modifies the synthe-
sized and compacted textures in a probability framework. We
will show that the Markov chain assumption helps us analyze
the result of the encoding phase, as well as the result of the de-
coding phase.

Let be the input texture, and let (the subscript
stands for “synthesized”) and (the subscript stands for
“compacted”) be the synthesized and compacted textures,
respectively. In addition, let be the probability that
the pair of textures can be generated from the given
texture . In the encoding phase, the goal is to generate the
pair and that maximizes the probability

(2)

Then, by using the chain rule of the probability and the Markov
chain assumption , we have

(3)

(4)

where (3) is obtained according to the chain rule of the proba-
bility, and (4) is derived by the Markov chain assumption. Sim-
ilarly, based on the Markov chain assumption ,
we have

(5)

(6)

We can use (4) and (6) iteratively to find the pair of textures that
maximizes (2). Fig. 5 shows a diagram of the proposed encoder,
which applies the following encoding algorithm.

Encoding Algorithm

Step 0: Let be 0 and and be, respectively, the
initial synthesized texture and the compacted texture.
Step 1: Generate by solving
with as the initial texture.
Step 2: Generate by solving

with as the initial
texture.
Step 3: Generate by solving
with as the initial texture.
Step 4: Generate by solving

with as the initial
texture.
Step 5: If ,
terminate the process; otherwise, let and
go to Step 1.

End Algorithm.

Steps 1 and of the above algorithm improve (4) and yield
; while Steps 3 and improve (6) and

yield . The algorithm iteratively improves
according to (4) and (6) until the value does not in-

crease any further. Thus, the solution of the algorithm is the pair
of textures that is the local maximum of .

The algorithm needs to calculate the maxima of
, and in Steps 1, 2, 3,

and , respectively. Next, we explain the method used to derive
. We omit the derivation of the other three terms

because they can be obtained in a similar manner.
1) Generalized EM Approximation: Because estimating

the probability is difficult, we introduce a hidden
variable, , for a texture feature to simplify the derivation of

. For any function , the above
log probability is

(7)

(8)

(9)
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The bound used in the above equations takes the form of
Jensen’s inequality

(10)

where , and are arbitrary scalars. The above deriva-
tion is also called the generalized EM approach [12]. The goal is
to estimate and jointly, so as to max-
imize (9). Let be the texture feature extraction function. We
define

if
otherwise.

(11)

where denotes the cost incurred by using to generate
measures the differences between the textural features; is the
parameter that balances the two costs and ; and is the vari-
ance of the distribution. is a function of two vari-
ables and . If the value of is very small, then
will peak at with and will be the solu-
tion of

(12)

If , then the solution of the above equation
is independent of the value of . Usually, the texture features

and are different; therefore, is dependent. In
this case, (11) can be approximated by the 2-D Dirac function

if and minimizes

otherwise
(13)

Then, by substituting (13) into (9), we can obtain the following
approximation:

(14)

(15)

Since is like a Dirac distribution and the entropy
of the Dirac distribution is zero, we have

in the derivation of (15). To maximum (9),
we have

(16)

(17)

(18)

(19)

The derivation of (16) is based on (14) and (15); and the deriva-
tions of (17), (18), and (19) are based on (13). Above derivation
shows that the texture that maximizes (13) also maximizes
(9). Note that is not the solution of . It is the
optimal solution derived by the generalized EM approach for
(9) with the function in (13).

From our derivations, we conclude that finding the solu-
tions of ,
and in our encoding algorithm corresponds,
respectively, to finding the solutions of the following equations:

(20)

(21)

(22)

(23)

B. Decoding

The decoding algorithm simply up-synthesizes a compressed
thumbnail texture to a given size. Based on our probability
framework, the best estimation of both the original texture
and the synthesized texture from the is

(24)

The Markov chain assumptions, and
, can be applied to analyze (24) [30]. According to

, we have

(25)

(26)

Similarly, from , we have

(27)

(28)

From (26) and (28), we obtain

(29)

(30)

Hence, for any is factored into the product of two
functions, and ; i.e., the functions of

and , respectively. By choosing , we have

(31)
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Substituting for and for
in (26), we obtain

(32)

(33)

Therefore

(34)

Thus, for any given , we have

(35)

The results in (35) demonstrate that the synthesized texture
can be estimated independently of the estimation of the orig-
inal texture . Thus, we can apply the procedure described in
Section III-A1 to derive the synthesized texture, which is the so-
lution of the maximum a posterior (MAP) estimation

(36)

Like the encoder, the decoder synthesizes a texture by mini-
mizing the cost function

(37)

from the compressed thumbnail texture . Our decoder simply
synthesizes a texture from the given compressed thumbnail tex-
ture , as shown in Fig. 5.

IV. IMPLEMENTATION AND NUMERICAL RESULTS

We introduced the theoretical structure of the proposed ap-
proach in Section III. In Fig. 7, we provide an implementation
result, where an input texture is iteratively down-synthesized
and up-synthesized to obtain a thumbnail texture, which is then
compressed and used to synthesize a texture that looked similar
to the input texture. Fig. 6 shows some textures derived by our
approach. We now consider the issues that are critical to the ap-
proach’s implementation and detail our experiment results.

A. Cost of the Multipatch Algorithm

Texture compaction and synthesis are implemented by the
method used in the multipatch algorithm, but there is a slight
difference in the calculation of the cost function during the patch
selection phase. In the proposed model, the cost function for
generating texture from texture is

(38)

where and are, respectively, the cost of using to gen-
erate and the distance between the texture features of and

. The cost function is defined as the mean squared error of
the total overlapped area in the image domain when is gen-
erated [see Fig. 4(d)]. The cost function is defined as the the
Kullback-Leibler divergence of the histograms and ,
where is the LBP feature extraction function, and the param-

Fig. 6. Synthesized textures of size 464 � 464 (on the right) and the com-
pressed compacted texture of size 64 � 64 (in the middle), where the synthe-
sized textures are generated from the compressed compacted textures. Left: The
original 128� 128 textures. The top texture is from the Outtex database and the
bottom texture is from the MIT VisTex database.

eter balances the two terms. Since we use color textures, the
total cost of generating is the sum of three costs, obtained in-
dependently by generating the R, G, and B channels of from
the corresponding channels of .
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Fig. 7. Some textures generated by our method. The compacted thumbnail tex-
ture (size 64 � 64) and the synthesized texture (size 256 � 256) are generated
from the input texture (size 128 � 128) in the encoding phase. The thumbnail
compressed at a quality factor of 60% by JPEG 2000 and the synthesized tex-
ture (size 256� 256) are shown in the decoding phase. Note that the synthesized
textures in the encoder and the decoder are the same size. The texture is from
the Outtex database.

B. Patch Domain (Patch Pool)

The sizes of the patches used for texture compaction and
texture synthesis are 16 16 and 32 32, respectively [see
Fig. 4(a)]. We sample patches of the above sizes from the input
texture; that is, any patch of the above sizes whose top-left co-
ordinate is dividable by is sampled and added to the patch do-
main. We studied the parameter by assigning its value as either
2 or 4. Clearly, sampling with assigned to 2 in the patch do-
main will generate 4 times more patches than using assigned
to 4. Usually, we assign to 4 to stabilize the algorithm when
the input texture is 128 128, and assign it to 2 when the size
of the input texture is 64 64.

C. Texture Compaction

When implementing Markovian chain iterations, we take the
input image and initialize the synthesized image and the
compacted image to the sizes required by the patchwork al-
gorithm. The multipatch algorithm is then applied to modify
with , and the generated is then used to modify and so
on, as described in the Encoding Algorithm in Section III-A.
Empirically, we find that our encoding algorithm usually termi-
nates in less than three iterations. The sizes of our patches are 16

16 and 32 32. In our experiments on various input textures
of size 128 128, we found that if the compacted texture was
smaller than 64 64, then the number of candidate patches in
the patch pool of the compacted texture was insufficient to syn-
thesize a texture larger than 464 464. As a result, our algo-
rithm tends to synthesize a texture with repeated patterns when
the compacted texture is smaller than 64 64 and the synthe-
sized texture is larger than 464 464. We experimented with
different values and found that the perceptual quality of the
synthesized textures was poor when a value was greater than

0.1. Thus, we sampled with values ranging from 0.02 to 0.1.
We found that by setting the value of to 0.08, the thumbnail
textures were perceptually better than those derived by using the
other values.

D. Texture Compression and Performance Comparisons

We use a subjective test to evaluate the perceptual quality
of the compressed and synthesized textures derived by our ap-
proach. In the encoder, the original texture is compacted to a
thumbnail, which is then compressed and transmitted to the de-
coder, where it is synthesized to the required size. The com-
pacted thumbnail texture is compressed by JPEG 2000, which
uses the quality factor parameter to compress an image. In our
experiment, to determine the quality factor for our system, we
placed the compressed and uncompressed textures on a screen
side by side so that they were displayed with the same screen lu-
minance condition. The screen was a DEL LCD display with a
resolution of 1280 1024 pixels with 8 bits/color/pixel; the di-
agonal dimension was 20 in and the screen luminance was 305.0
lux. We asked eight subjects to score each compressed texture as
either a good quality texture or a poor quality texture. None of
the subjects were color blind; and none were aware of the pur-
pose of the experiment, or familiar with the image processing
methods. Sitting no more than half a meter from the computer
screen, each subject was asked to make a decision about each
texture within 30 s. Fig. 8 shows the nine textures used in the ex-
periments. They are taken from the Outtex database [31] and the
MIT Vision Texture database [32]. The results shown in Fig. 9
indicate that the probability of deriving good quality textures is
very high when the quality factor of JPEG 2000 is set at 60%
or above for textures of size 464 464 and 64 64. Thus, we
choose 60% as the quality factor in our study, since compressing
a texture with a quality factor equal to or above that level will
produce a compressed texture that is perceptually the same as
the original texture.

The top sub-figure of Fig. 10 shows the number of bytes used
to encode a compressed colored thumbnail texture of size 64
64 with different quality factors. The thumbnail texture was ob-
tained by our encoding algorithm with the parameters described
in Subsections A, B and C above. The sizes of the original tex-
ture, the thumbnail texture, and the synthesized texture were 128

128, 64 64, and 464 464, respectively. Note that at a
quality factor of 60%, the number of bytes declines from 12.28
to 1.6 KB, which is about a factor of 8. The bottom sub-figure of
Fig. 10 shows a 464 464 texture compressed by JPEG 2000
at different quality factors. The number of bits is only reduced
by a factor of 8 at a quality factor of 60%. Since the size of the
original texture is 464 464, which is approximately 50 times
larger than the 64 64 compacted texture, and both the orig-
inal and compacted textures are compressed by JPEG 2000 by a
factor of 8 at a quality factor of 60%, our approach achieves ap-
proximately 50 times more bit reduction than that derived by
using JPEG 2000. Moreover, the number of bits in the com-
pressed thumbnail is times lower than that in
the original texture. However, the tremendous saving in storage
space and the reduction in the number of transmission bits is
achieved at the cost of sacrificing the MSE error. If the texture
quality is measured in terms of the MSE error, then a texture
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Fig. 8. We use OT to denote the Outtex database, and MIT to denote the MIT
Vistex. Top left: Bricks, available in OT and MIT. Top middle: Bricks, available
in OT. Top right: Wood, available in OT and MIT. Middle left: Food, available
in OT and MIT. Middle left: Food, available in MIT. Middle right: Flowers,
available in OT. Bottom left: Wood, available in OT and MIT. Bottom middle:
Fabric, available in OT and MIT. Bottom left: Fabric, available in OT and MIT.

Fig. 9. Probability of generating a high quality texture, derived from the av-
erage scores of eight subjects, when a texture of size 64 � 64 or 464 � 464 is
compressed at different quality factors by JPEG 2000. When the qualify factor is
equal to or above 60%, the probability of generating a high quality compressed
texture is 1, which implies that the compressed texture is perceptually the same
as the original texture.

compressed by applying JPEG 2000 directly will definitely con-
tain far fewer MSE errors than a texture compressed by our ap-
proach, as shown in Fig. 11.

E. Decoder Performance

Our system’s decoder uses the multipatch algorithm to syn-
thesize a texture from a compressed thumbnail texture. The de-
coder’s parameters are given in Subsections A and B above. The

value used to calculate the cost function is 0.08, which is the
same as that used for encoding. Many examplar-based texture
synthesization methods use randomization to create variations
of a synthesized texture. The examplar-based multipatch algo-
rithm is also a random algorithm that chooses a patch at random
from a candidate set to paste on to the synthesized texture. Per-
formance comparisons of various randomized texture-synthe-
sization algorithms are detailed in [15] and given in Subsec-
tion F below. The performance benchmark that we use to eval-
uate our decoder is based on a subjective test, which measures
the probability of deriving acceptable and good quality textures
synthesized from a compressed thumbnail texture. The original
464 464 texture generated by our encoder was placed on a
screen with the 464 464 texture synthesized by our decoder.
The eight subjects who participated in the subjective evaluation
described in Subsection D were asked to rate the quality of each
decoder-synthesized texture as either good or acceptable. The
other parameters of our subjective test are the same as those re-
ported in Subsection D.

F. Our Thumbnails Versus Cropped Thumbnail Textures and
Patchwork’s Thumbnails

Intuitively, one might think that it is not necessary to compact
a homogeneous texture in the encoding phase, since we could
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Fig. 10. Top: The compression value in KB of 64� 64 thumbnail images at
each quality factor ranging from 10%–100%. The quality factor greater than
100% relates to the original image, which is not compressed. Bottom: the av-
erage compression ratio of compressing a 464 � 464 texture by JPEG 2000
at different quality factors. Note that the 60% quality factor is the maximum
compression for generating a texture without perceptual distortion, but the bit
reduction is only eight times that of the original texture.

simply crop the original texture to the required size [5]. More-
over, our approach’s encoder may be considered too complex
because we could simply use the patchwork algorithm to gen-
erate a compacted texture. To compare the three methods, we
used our thumbnail textures, cropped thumbnail textures, and
patchwork’s thumbnail textures to synthesize images, and asked
our subjects to rate the quality of each texture as either good or
acceptable. In the experiment, all the synthesized textures were
464 464, while the thumbnail textures were in five different
sizes compressed by JPEG 2000 at a quality factor of 60%. The
cropped texture was taken from the center and the four corners
of the input texture, as shown in Fig. 3. Fig. 12 shows that the
average probabilities of obtaining acceptable and high quality
textures vary as the sizes of cropped and compacted textures

Fig. 11. Comparison of the MSE (mean squared error) and PSNR
(peak-signal-to-noise ratio) of different approaches. T-MSE and T-PSNR
are the results of compressing 464� 464 textures with different quality factors
by JPEG 2000. The MSE and PSNR are the results of our approach when
the compacted 64 � 64 textures, compressed at different quality factors, are
synthesized to textures of size 464 � 464. These results are the average of
MSE and PSNR of the nine textures in Fig. 8.

Fig. 12. Average probabilities of generating acceptable (AP) and good quality
textures (GQT) synthesized by cropped (C), our compacted (O), and patchwork
compacted (PW) textures, whose sizes range from 48 � 48 to 112 � 112. For
each texture, we generated five synthesized textures. We also used the nine tex-
tures in Fig. 8. Note that our approach has a higher probability of generating
both acceptable and high quality textures. The parameters of the patchwork al-
gorithm are 16 � 16 and � � �, as described in Section IV-B.

increase. The textures synthesized from our compacted textures
have higher probabilities of generating both acceptable and high
quality textures than those synthesized from the cropped tex-
tures and the patchwork algorithm’s compacted textures. For a
thumbnail of size 64 64, the textures synthesized by a de-
coder had a 30% probability of being high quality and a 50%
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Fig. 13. Average recall, obtained by averaging seven query textures, versus the
quality factor of JPEG 2000. The recall is maximized when � � ����. When
� � ���, the perceptual quality of the synthesized images is poor; thus, we
experimented with � � 0.02, 0.05, and 0.08.

probability of being acceptable. The other interesting measure-
ment reported in [15] is the expected number of synthesiza-
tions required for a decoder to successfully synthesize an ac-
ceptable or a high quality texture. The concept of the expected
number of synthesizations can be explained easily by the exper-
iment of tossing a biased coin, with a probability of coming
up HEADS (SUCCESS) and a probability of coming up
TAILS (FAIL). The expected number of synthesizations refers
to the average number of synthesizations required for the coin
to come up HEADS the first time. This can be derived by the
geometric distribution

(39)

Thus, the expected number of synthesizations required for our
decoder to generate an acceptable 464 464 texture from a
compressed 64 64 texture is 2, and for a high quality texture
it is .

G. Texture Retrieval

We now present an analysis of the texture retrieval approach.
The cost function in (38) is comprised of two terms, and ,
which are balanced by the parameter . The term represents
the perceptual quality of the generated texture, while the term
denotes the distance between the textural features of the gener-
ated texture and those of the original texture. The cost function

facilitates texture retrieval because relevant textures usually
have similar features; therefore, their is small. In general, it
is difficult to determine the value of analytically, so we derive
it from our experiments.

We took 40 textures of size 512 512 from the categories of
bricks, fabrics, wood, food, flowers, and tiles in the MIT Vision
Texture database and divided each one into 16 nonoverlapping
sub-images. Thus, our texture set contained a total of 640 sub-
images. The query textures, which must belong to one of the

Fig. 14. Comparison of the average recall rates for the retrieval of our textures
(O), the retrieval of the patchwork’s compacted texture (PW), and the retrieval
of cropped textures (C). In the decoder, a smaller-sized texture of size 48� 48 or
64� 64 compressed by JPEG 2000 at a quality factor of 60% is synthesized to a
texture of size 464� 464. We use line segments to connect the recall rates of two
textures of different sizes. The rightmost end point of a segment indicates that
the 464 � 464 texture is synthesized from the texture at the leftmost end point
of the segment. Clearly, the recall rate of a 464� 464 texture synthesized from
our thumbnail textures is better than that of a 464 � 464 texture synthesized
from any of the different-sized cropped textures and the patchwork algorithm’s
compacted textures. In addition, the recall rates of the 464 � 464 textures syn-
thesized from our thumbnail textures are almost the same; however, there is a
large difference in the recall rates of the 464 � 464 textures synthesized from
different sized cropped textures. The compressed 464 � 464 cropped texture
[464� 464(C)] is not synthesized; instead, it is cropped from the original 512
� 512 texture. We use its recall rate as our reference point for the retrieval of
the synthesized textures of that size. The rightmost line represents the retrieval
results of using the compressed original textures at different qualify factors of
JPEG 2000. The line is used as a reference to measure how much retrieval infor-
mation is lost during the compaction process. Compared to the reference line,
the recall rate of our compaction algorithm is reduced by 0.15 at a qualify factor
of 60%.

above categories, are taken from the database. For each query,
the top-32 textures whose RGB-colored LBP features are most
similar to those of the query texture are retrieved.

Recall and precision are usually used to measure the retrieval
performance. We use and to denote the set of relevant im-
ages and the set of retrieved images respectively. Let the number
of relevant images be , where is retrieved and
is not retrieved; and let be the number of retrieved
images, where is relevant and is irrelevant. Recall is defined
as ; hence, it is formulated as . Precision
is defined as ; hence, it is formulated as .
If and are fixed, it is easy to derive that the recall is

times the precision. Since the number of relevant
images in our experiment is 16 and the number of retrieved im-
ages is 32, the recall rate is twice the precision rate. Thus, we
only discuss the experiment results for the recall metric. Fig. 13
shows the recall rates using different values. At , the
recall value is at the maximum. Thus, we used in the
retrieval experiment.

Our final experiment compared the retrieval performance of
different-sized textures obtained by various methods. The sizes
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Fig. 15. Examples of a successful result and a failed result returned by the
proposed algorithm. Top: The successful result. Bottom: The failed result. Both
textures are from the Outtex database. Left: The original 128 � 128 texture.
Middle: The 64 � 64 compressed and compacted texture. Right: The 464 �
464 synthesized texture.

of the thumbnail textures were 48 48 and 64 64, and they
were compressed by JPEG 2000 at a quality factor of 60%. The
size of the synthesized textures was 464 464. The average
recall rates for the thumbnail textures and synthesized textures
obtained by different methods are shown in Fig. 14. The recall
results on the rightmost line of Fig. 14 are the references that we

use to measure how much information is lost when compacting a
texture by different methods. Without considering the reference
recall values, the 464 464 cropped textures compressed at
a quality factor of 60% achieved the highest recall, which is
reasonable because that size retains the most information about
the original texture. The 464 464 textures generated from 48

48 and 64 64 thumbnail textures by our method yielded the
second highest recall rates. From the results shown in Fig. 14,
it is clear that incorporating LBP features improves the retrieval
performance of both compacted and synthesized textures.

H. Limitation

It is always useful to specify the limitation of a texture pro-
cessing algorithm since textures are so difficult to represent and
analyze. The proposed algorithm works well on periodic tex-
tures, but it is not effective on all nonperiodic textures, as shown
in Fig. 15. It would be interesting to develop an algorithm that
could work on nonperiodic textures. Some synthesization re-
sults on near-regular textures are reported in [33].

V. CONCLUSION

We propose a novel approach that integrates texture features
for retrieval into an examplar-based texture compaction and syn-
thesis approach, and show that the approach can be implemented
by using the generalized EM algorithm. To validate the perfor-
mance of our approach, we use the LBP feature and the mul-
tipatch algorithm. Our experiment results show that the pro-
posed approach can achieve 50 times more bit reduction than
that achieved by using JPEG 2000 to compress the input texture.
We also compare the retrieval performance of textures derived
by our method, by the patchwork algorithm, and by cropping the
original texture. The recall results show that our method outper-
forms the other methods. The proposed approach is promising
because it requires a much smaller space to represent a large
texture and the representation is also very effective for texture
retrieval. In future studies, we will incorporate more texture ap-
plications into the examplar-based approach and also improve
our algorithm’s performance on inhomogeneous textures.
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