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Abstract

Typical mosaicing schemes assume that to-be-combined images are equally

informative; thus, the images are processed in a similar manner. However,

the new imaging technique for confocal fluorescence images has revealed a

problem when two asymmetrically informative biological images are stitched

during microscope image mosaicing. The latter process is widely used in

biology studies to generate a higher-resolution image by combining multiple

images taken at different times and angles. To resolve the above problem, we

propose a multiresolution optimization approach that evaluates the blending

coefficients based on the relative importance of the overlapping regions of the

to-be-combined image pair. The blending coefficients are the optimal solu-

tion obtained by a quadratic programming algorithm with constraints that

are enforced by the biological requirements. We demonstrate the efficacy of

the proposed approach on several confocal microscope fluorescence images

and compare the results with those derived by other methods.
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1 Introduction

Confocal microscopes are now widely used in biological imaging because of

the recent development of fluorescent probes and high-resolution imaging

techniques. Large numbers of two- or three- dimensional images have been

produced to visualize subcellular components in vivo; however, the images

require post-processing to ensure proper interpretation, which creates new

challenges for current image processing techniques [1]. An outstanding re-

view of the major challenges that arise when processing fluorescence micro-

scope images can be found in [2]. Because a microscope’s field of vision is

limited, biologists usually form a higher-resolution image by acquiring mul-

tiple images of a sample, taken at different times and from different angles,

and then combine them via a mosaicing scheme.

Image mosaicing, which combines two or more images, is used in many

fields, such as photogrammetry, computer vision, image synthesis, and com-

puter graphics [3, 4, 5, 6, 7, 8, 9]. The process usually involves two phases:

image registration and image blending. The former tries to identify the best

blending position where the overlapping areas of the to-be-combined images

are aligned, while the latter adjusts the intensity to obtain a smooth and

seamless result. Some approaches try to combine both phases in a single

framework; however, the operations are usually performed independently in

the sense that most approaches try to optimize one phase without consider-

ing the other phase, or by assuming that the other phase has been solved. In

this paper, we assume that the to-be-combined microscope images or image

stacks have been registered by using one of many good registration algo-

rithms that have been developed [10, 11, 12, 13, 14]. It is usually necessary

to combine several images in microscope image mosaicing. Although a graph

2



cut approach has been proposed to stitch multiple overlapping areas of sev-

eral to-be-combined images [15], for simplicity, we propose a sub-optimal

approach that combines two images at a time.

Most current blending algorithms assume that to-be-combined images are

equally informative; thus, the images are processed in a similar manner [16].

However, this assumption may not hold for confocal microscope fluorescence

images because the fluorescence intensity often attenuates rapidly and may

deteriorate. The intensity degradation, which results from photobleaching of

the overlapping region of the later-acquired image, means that the earlier-

acquired image is more informative for image mosaicing. Figure 1 shows

the effect of photobleaching on multiple Drosophila brain images taken by

confocal microscopes. The images in the leftmost column of the figure were

acquired after the corresponding images in the same row in the middle col-

umn. Clearly, the overlapping regions, which are to the right of the dashed

line of the images in the leftmost column, are darker than the correspond-

ing regions to the left of the dashed line of the images in the middle column.

Therefore, the issue of mosaicing this image pair is different to the traditional

case because one of the two overlapping regions is less informative than the

other.

Of the many image blending methods in use, Burt and Adelson’s method

[17] is the most popular because it is effective and can be implemented easily

by using a fixed 3-tap blending vector and a pyramid structure [18], which is

a multi-resolution representation of an image. A commonly used weighting

sequence for blending two subband components is 0.25, 0.5, and 0.75. More

specifically, an image is decomposed into a series of subbands by REDUCE

and EXPAND operations, as shown in Figure 3. The reduce operation ap-
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plies a low-pass filter and sub-samples by a factor of 2 in each dimension;

and the expand operation up-samples by a factor of 2 in each dimension

and applies a low-pass filter. In [19], an optimization approach is used to

derive data-dependent weighting coefficients from the wavelet coefficients by

solving two quadratic functions alternately. The approach requires that the

derived weighting coefficients ensure that the area of the combined image

affected by the blending process is smooth and retains as much information

about the original images as possible. The blending approach proposed in

this paper is a combination of the approaches in [17] and [19]. The sub-

band coefficients in the Laplacian pyramid domain are blended by using the

weighting coefficients derived by solving a constrained optimization problem.

Our optimization algorithm is simpler than that in [19], and the information

imbalance between the earlier- and later- acquired images is treated as a

constraint. A simple optimization algorithm can be implemented easily and

generalized by incorporating elements of the domain knowledge as constraints

on the optimization problem.

We conducted experiments to compare the mosaicing results of the pro-

posed method with those of Burt and Adelson’s algorithm and the MosaicJ

algorithm [16] for a set of images obtained by confocal microscope imaging.

The results demonstrate that our mosaic images exhibit better local contrasts

and smoothness.

1.1 Intensity loss in microscope imaging

The fluorescent intensity of microscope images suffers from several distor-

tions. Because of the scattering and absorption of fluorescence, when an

image stack is obtained by confocal microscopes, the intensity of the deeper
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layers in a specimen is usually lower, resulting in a loss of intensity along the

z axis. Moreover, because of repeated imaging and the photobleaching effect,

the contrast and brightness in the overlapping areas of a later-acquired image

are lower. Most biological laboratories correct the contrasts of later-acquired

images manually, but the approach is time-consuming and unreliable. Figure

2 shows that it is difficult to adjust the contrasts of later-acquired images to

match those of the earlier-acquired images.

Other solutions have been proposed to compensate for intensity loss dur-

ing microscopic imaging. The first solution utilizes biological methods. For

example, it is now possible to make biological samples transparent to about

500 micrometers with FocusClear (a special reagent) [20, 21]. In such cases,

the attenuation of light intensity due to photo scattering and absorption

along the z axis is minute; therefore, a laser, which consumes less than 50%

of the power required for imaging untransparent samples, is sufficient to ac-

tivate the fluorescent molecules in samples. Moreover, the overall bleaching

effect is also reduced because the amount of power required to activate a

laser is very low.

The second solution modifies the microscope optics as an image captured

[22, 23]; and the third uses post-processing methods. For example, a compu-

tational method was proposed in [24] to extend the depth-of-field of images

obtained by using conventional bright field microscopy. The scattering and

absorption of fluorescence, which cause intensity loss mainly along the op-

tical axis, and repeated scanning of an image are modeled as exponential

functions of time and depth respectively [25]. The parameters of the func-

tions are estimated and then used to compensate for the loss of intensity

in an image. In some situations, researchers use bi-exponential functions to
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model the photobleaching effect [26, 27]. Another class of methods matches

the histograms of image stacks [28, 29]. Other robust estimation methods

have been proposed to remove outliers and adapt structures to compensate

for the loss of intensity in microscope images [30].

We use FocusClear to obtain the confocal microscope images used in our

experiments. Although the FocusClear technique is not yet popular, the

high resolution and high quality confocal images that it yields have been

used in several outstanding biomedical studies [31, 32, 33]. The bleaching

along the z-axis is minimal; however, this is not the case along the border

of overlapping intersections, so the intensity difference caused by bleaching

becomes apparent in the same section, as shown in Figure 1. To resolve

the problem, the proposed method blends asymmetrically informative image

pairs by estimating a set of optimal blending vectors. In a sense, the solution

compensates for the less-informative region by exploiting the information

contained in the earlier-acquired image.

The remainder of this paper is organized as follows. In Section 2, we

formulate the proposed approach as a constrained quadratic optimization

problem; and in Section 3, we compare our experiment results with those

of other methods. Then, we summarize our conclusions and consider future

research directions in Section 4.

2 Multiresolution Blending Coefficients

We formulate our approach as a multiresolution parameter estimation prob-

lem, and propose an optimal parameter estimation procedure to derive an

array of blending vectors M. The vectors are used to compute the weighted

average of two overlapping images on subbands of the image’s pyramid rep-
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resentation. For an earlier-acquired image, I, and a later-acquired image, J ,

the blending procedure can be formulated as minimizing the function defined

by

min
M

Tblend(M|I,J ) + µTM(M), (1)

where Tblend and TM are the blending function term and the regularization

term respectively, and the weighting µ balances the relative importance of

the two terms. Tblend(M|I,J ) denotes the cost of using M to blend images I

and J ; and, TM(M) measures the penalty of M. The function Tblend requires

that the combined image should be smooth and that it retains as much of the

original information as possible. Specifically, it requires that the overlapping

region is smooth and that the blending process does not affect the truthful-

ness of the area. Because adjacent rows of to-be-combined images tend to

have similar image structures, the function TM requires that the blending

coefficients in adjacent rows are similar to each other.

The information in the overlapping regions of a pair of to-be-combined

images is asymmetric; therefore, we have to find the optimal blending vectors

as well as a suitable blending position to satisfy the above requirement.

2.1 Selecting the blending position

In fluorescence microscope imagery, the later-acquired image contains less

trustworthy overlap information than the earlier-acquired image; thus, the

blending position should be selected so that the information in the earlier-

acquired image is affected as little as possible by the blending process. Mean-

while, the weighting coefficients used to blend two overlapping images should

be content dependent so that the values of the pixels in the transition zone

can be evaluated according to the relative importance of two overlapping re-
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gions. However, because the complexity of deriving the blending coefficient

for each pixel would be high, we simplify the procedure by assuming that all

the pixels in a row are blended by the same vector.

Figure 4 illustrates the relationship between the blending position, the

overlapping regions, and the transition region, which is the area where pixels

are affected by the blending process. Let u1, u2, · · · , un be the pixels in the

overlapping region of the earlier-acquired image I, and let v1, v2, · · · , vn be

the corresponding pixels in the later-acquired image J . When we blend

confocal microscope images, the objective is to retain as much information

as possible in the overlapping area of the earlier-acquired image I; thus,

we select the blending position that aligns with the right boundary of I.

Then, we can formulate Equation (1) precisely and estimate the blending

parameters by the following optimization approach.

2.2 Estimating optimal blending parameters

In this subsection, we describe the blending function Tblend, the penalty func-

tion TM , and the proposed constrained quadratic optimization algorithm used

to estimate the blending parameters that solve Equation (1) optimally.

2.2.1 The blending function

We use the following blending function

Tblend(M|I,J ) =
∥∥[I|MJ ]− [I|J ]

∥∥2
F
+ λ

∥∥∇h [I|MJ ]
∥∥2
F
, (2)

where [I|MJ ] denotes a two-dimensional matrix whose entries are the pixel

values of the mosaiced image obtained by combining images I and J with the
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blending vectors M; and [I|J ] denotes the matrix of the directly mosaiced

image obtained by overlaying I on J without blending (i.e., the intensities of

the pixels in the overlapping region of the directly mosaiced image are copied

from the corresponding region of the earlier-acquired image I), as shown in

the rightmost image in Figure 1. Moreover,
∥∥[I|MJ ]− [I|J ]

∥∥2
F
calculates

the square of the Frobenius norm of the difference between the matrix of the

blended image and that of the directly mosaiced image.∥∥∇h [I|MJ ]
∥∥2
F
measures the smoothness of the blended image over the

overlapping region of the two images; ∇h is the first-order difference of ad-

jacent pixels in a row; and the parameter λ balances the importance of the

integrity and smoothness terms.

The proposed blending process is applied on a Laplacian pyramid domain.

Let us decompose each of the two to-be-combined images into N levels. Be-

cause the images I and J are already registered, we can assume that they

are combined row-by-row. Thus, different rows may yield different blending

parameters.

LN,r =


I [N ](i)

mr
1I [N ](i1) + (1−mr

1)J [N ](j1)

mr
2I [N ](i2) + (1−mr

2)J [N ](j2)

mr
3I [N ](i3) + (1−mr

3)J [N ](j3)

J [N ](j)



=


0̄ 0̄ 0̄

I [N ](i1)− J [N ](j1) 0 0

0 I [N ](i2)− J [N ](j2) 0

0 0 I [N ](i3)− J [N ](j3)
0̄ 0̄ 0̄




mr
1

mr
2

mr
3

+


I [N ](i)

J [N ](j1)

J [N ](j2)

J [N ](j3)

J [N ](j)


= ANmr + CN , (3)
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A. Blending a row :

For simplicity, we assume that the blending coefficients in the same row in

different Laplacian pyramid levels are the same. Without loss of generality,

we use a blending vector of length 3: [mr
1 mr

2 mr
3]

T for row r, where the

superscript T denotes the matrix transpose. Let the pixels in the blending

zone of this row at the coarsest level, i.e., the N th level, of the Laplacian

pyramids of images I and J be i1, i2, i3 and j1, j2, j3 respectively. The two

rows are blended to obtain mr
kI(r, ik) + (1−mr

k)J (r, jk), with k = 1, 2, 3 in

row r of the coarsest level of the blended image, as shown in Figure 5. Note

that the intersection of pixels i3 and j3 is chosen as the blending position.

The mosaic result of the N th level Laplacian subband of this row can be

represented by Equation (3), where I [N ](i) and J [N ](j) denote, respectively,

the pixels not affected by blending the N th level I and J Laplacian images;

and 0̄ denotes a sequence of zeros of an appropriate length. The mosaiced

Laplacian subbands of this row at other levels can be derived in the same

way.

The width of the transition area depends on the number of pyramid de-

compositions, N , and the length of the filter, l, used to construct the pyramid.

Let v be the length of the blending vector. Then, the width of the transition

region, Wtrans, can be calculated as follows:

Wtrans(N) = 2Wtrans(N − 1) + l − 2, with Wtrans(0) = v. (4)

Generally speaking, a wider transition area yields a smoother blending result,

but it preserves less original information. The approach that sets the blending

position on the boundary of I yields a smooth blended image that preserves

as much information as possible in the earlier-acquired image I.
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As shown in Figure 3, the Gaussian pyramid at the (N − 1)th level of

the combined image can be obtained by performing an expand operation on

LN,r and adding the result to LN−1,r. Let Uk and Wk denote, respectively,

the upsampling kernel and the low-pass kernel at the kth level. To obtain the

combined image at the (N − 1)th level of the Gaussian pyramid, the expand

operation up-samples LN,r by applying UN and smoothes the result by ap-

plying WN , which yields

GN−1,r = LN−1,r +WNUNLN,r

= (AN−1 +WNUNAN )mr + (CN−1 +WNUNCN ). (5)

Based on the above procedure, the mosaic result at the finest resolution of

the Gaussian pyramid can be derived by

G0,r = Armr +Cr, (6)

where

Ar = A1 +

N∑
j=2

(
j∏

i=2

WiUi

)
Aj , (7)

and

Cr = C1 +
N∑
j=2

(
j∏

i=2

WiUi

)
Cj . (8)

Let [I|J ]r denote the signal obtained by combining the r-th rows of images

I and J directly. According to Equation (2), the cost of blending row r with
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vector mr is

∥(Armr + Cr)− [I|J ]r∥22 + λ ∥D(Armr + Cr)∥22 , (9)

where D is the kernel matrix of the first-order difference along the direction

of the column. Let

Pr = [I|J ]r − Cr. (10)

Equation (9) can now be re-written as

∥Armr − Pr∥22 + λ ∥D(Armr + Cr)∥22 . (11)

Note that the Frobenius norm of a 1-D vector is identical to the vector’s

2-norm.

B. Blending all the rows in the overlapping region:

Before describing how an image pair is mosaiced by blending all K rows
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in the overlapping area, we define the following symbols:

A =



A1 0 · · · 0

0 A2 · · · 0

...
. . .

0 0 · · · AK


, (12a)

DA =



DA1 0 · · · 0

0 DA2 · · · 0

...
. . .

0 0 · · · DAK


, (12b)

P =

[
P1 P2 · · · PK

]T
, (12c)

C =

[
C1 C2 · · · CK

]T
, and (12d)

DC =

[
DC1 DC2 · · · DCK

]T
, (12e)

where the definitions of Ak, Ck and Pk are the same as in Equations (7),

(8) and (10) respectively, and the superscript k denotes the row-index; D

is the kernel matrix of the first order difference along the direction of the

column; and the superscript T denotes a transpose operation. The block

diagonal matrices A and DA are introduced to extend the formulation of

blending a row to blending sets of rows. Accordingly, the blending function

for mosaicing the overlapping region can be written as follows:

Tblend(M|I,J ) =
∥∥[I|MJ ]− [I|J ]

∥∥2
F
+ λ

∥∥∇[I|MJ ]
∥∥2
F

= ∥AM−P∥22 + λ ∥DAM+DC∥22 , (13)

where M is the vector formed by cascading the blending vector of each row.
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The vector is defined as

M =

[
m1

1 m1
2 m1

3 . . . mK
1 mK

2 mK
3

]T
. (14)

2.2.2 The penalty function of the blending vector

Because adjacent rows of images tend to have similar structures and in-

tensities, the function TM measures the discrepancy between the blending

coefficients in adjacent rows. Let

M =


m1

1 m2
1 · · · mK

1

m1
2 m2

2 · · · mK
2

m1
3 m2

3 · · · mK
3


T

. (15)

Note that M = vec(MT ), where vec is the vec operator in matrix calculus.

The penalty function can be defined as the sum of the squared differences of

the blending vectors of two adjacent rows:

TM(M) = ∥∇y M∥2F

=
K−1∑
j=1

3∑
i=1

(mj+1
i −mj

i )
2, (16)

where ∇y is the derivative along the direction of the column. The objective

of the penalty is to ensure that the values of adjacent blending vectors are
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similar. Equation (16) can be re-written in the following equivalent form:

TM (M) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



−1 0 0 1 0 0 . . .

0 −1 0 0 1 0 . . .

0 0 −1 0 0 1 . . .

...
. . .

...
. . .


M

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

= ∥HM∥22 , (17)

where HM is a vector, and H is a Toeplitz matrix denoting the discrete

convolution.

2.2.3 Solving the optimal blending parameters

Combining the results of Equations (13) and (17), the objective function in

Equation (1) of the blending procedure can be derived as follows:

Tblend(M|I,J ) + µTM(M)

= ∥AM−P∥22 + λ ∥(DAM+DC)∥22 + µ ∥HM∥22

= MT (ATA+ λDATDA+ µHTH)M

−2(PTA− λDCTDA)M +PTP+DCTDC.

By omitting the constant terms and letting Q = ATA+λDATDA+µHTH

and fT = −(PTA−λDCTDA), the objective function becomes the following

quadratic programming problem:

min
M

Tblend(M|I,J ) + µTM(M) = min
M

1

2
MTQM+ fTM. (18)
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Recall that, because of the photobleaching of microscope images, the

overlapping region of the earlier-acquired image is more informative than

that of the later-acquired image. To preserve as many Laplacian coefficients

as possible during the blending of the earlier-acquired image, we require

that the blending coefficients for that image should be larger than those for

the later-acquired image. The requirement corresponds to the constraint

that each element in M is not less than Mmin, whose value is set at 0.5 in

our experiments. We also require that the intensity of the mosaic image is

upper bounded, which corresponds to the constraint that each element in

M is not larger than Mmax, whose value is set at 1 in our experiments. In

[17], the coefficients of the mosaic image form a convex combination of the

corresponding coefficients in the earlier- and later-acquired images. This can

also be formulated easily as a linear constraint and incorporated into our

framework.

3 Experiment Results

In our implementation, we use the Daubechies bi-orthogonal 5-3 low-pass

filter to decompose and reconstruct an image pyramid [34]. Specifically, we

use the 5-tap analysis low-pass filter in the reduce operation and the 3-tap

synthesis low-pass filter in the expand operation. The length of a row’s

blending vector is 3. Because we assume that the image pair is already

registered, the overlapping region of each pair of images is determined by the

registration process. In all the experiments described below, we decompose

the images into 5 levels; hence, according to Equation (4), the width of the

transition region is 127 pixels, which is 1
8
of the width of image I. The

parameters λ and µ in Equation (18) are set at 12 and 5 respectively in all
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cases. The values of the two parameters are determined experimentally. The

optimal blending vectors M are derived by solving the constrained quadratic

problem in Equation (18) with the constraint that each element ofM belongs

to the interval [0.5, 1]. There are several outstanding methods that can derive

the optimal solution of the constrained quadratic problem [35, 36, 37]. We use

Matlab’s built-in functions, quadprog.m or qpdantz.m, to solve the equation.

Note that qpdantz.m implements Dantzig-Wolfe’s algorithm [38]. Further,

details can be found in the Chapter 7 of [39].

The images were acquired by using a Zeiss LSM 510 confocal microscope

with a 40x C-Apochromat water-immersion objective lens. The fluorochrome

can be green fluorescent protein (GFP) or a fluorescent antibody. The pro-

cedures for preparing and imaging the samples are exactly the same as those

described in [33] in the sections entitled ”Sample Preparation” and ”Con-

focal Imaging.” The images to be blended are registered manually. In the

following, we evaluate the proposed algorithm’s performance in combining

confocal microscope images.

Figure 6 shows a sequence of six images taken from fluorescent confocal

microscope images of a Drosophila’s brain. The images were captured in a

clockwise direction, starting from the top left-hand image. Although some

images overlap with one or more other images, we only combined two images

at a time. The pairs (OPi,OPi’) with i = 1, · · · , 7 are the overlapping areas

of the images. The image containing OPi was taken before that containing

OPi’. In all cases, the intensity of OPi is larger than that of OPi’ except

in OP7 and OP7’. Biologists adjusted the intensity of the bottom left-hand

image manually by multiplying a constant gain on the whole image. Since

the bottom-left image has two overlapping areas, OP7’ and Op6’, it is very
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difficult to adjust the image correctly; hence, the later-acquired area OP7’

appears to be lighter than OP7. This shows that compensating for intensity-

loss by adjusting the mean values is not a straightforward task. To obtain

the whole mosaic image, we mosaic the top images to form one image, and

do the same for the bottom images. Then, the two resulting images are

combined. To obtain the top mosaic image, we follow the blending line of

images (a) and (b) on the right-hand boundary of OP1’ and the blending

line of images (b) and (c) on the right-hand boundary of OP2’. Similarly,

to obtain the bottom mosaic image, we follow the blending line of images

(d) and (e) on the left-hand boundary of OP6’ and that of images (e) and

(f) on the left-hand boundary of OP4’. When the resulting top and bottom

mosaic images are combined, the blending lines between the upper-mosaiced

and the lower-mosaiced half images are on the bottom boundaries of OP7’,

OP5’, and Op3’ respectively.

Figure 7 compares the results of mosaicing the component images in Fig-

ure 6 by the proposed method (top), Burt and Adelson’s method (middle),

and MosaicJ (bottom). The blending coefficients used to obtain the middle

image are 0.25, 0.5, and 0.75. For example, let i1, i2, i3 and j1, j2, j3 be, re-

spectively, the coefficients of the over-lapping areas of two lines in the lth-level

Laplacian images. Then, the blended values are 0.75i1 +0.25j1, 0.5i2 +0.5j2

and 0.25i3+0.75j3. Our method yields better contrast as shown by the rect-

angular area in the overlapping regions; however, MosaicJ yields a smoother

result, e.g., the ellipse region of the bottom image is more blurred than the

regions in the other two images. Note that the blending process only affects

the regions in the transition zone. We observe that the three methods derive

similar results in non-overlapping regions. Figure 8 shows some mosaicing

18

whwang
Highlight



results of Drosophila brain images at different depths. Note that when we

process the EM images, we set Mmax = 1 and Mmin = 0 because they are

equally informative.

The other set of data contains mouse pancreas images that were also

acquired by a Zeiss LSM 510 confocal microscope under almost the same

conditions as those described earlier. The top row in Figure 9 shows the im-

ages to be combined, and the bottom image is our mosaic image. Since the

right-hand image was acquired later, the blending position, indicated by the

arrow in the middle image of Figure 9, is selected near the right-hand bound-

ary of the overlapping area of the top left image. These images only contain

two channels: an R-channel for nuclei and a G-channel for other tissues.

Due to possible vibrations, there was a misalignment in the slice depth when

these two image stacks were acquired; thus, the size of the same tissues in

the top-left and top-right images may look slightly different. Our algorithm

mosaiced the R- and G- channels separately; that is, the blending vectors

for the channels were estimated independently. For example, the optimized

blending vectors of the 994th, 995th and 996th rows for the R-channel are

[0.9500 0.9500 0.9500]T , [0.9500 0.9500 0.9500]T and [0.9472 0.9472 0.9472]T

respectively; and those for the G-channel are [0.4938 0.9500 0.5474]T ,

[0.7322 0.9500 0.7464]T and [0.8691 0.9472 0.8672]T respectively. We observe

that these two sets of blending coefficients vary gradually row-by-row due

to the regularization term in Equation (1). For regions that do not contain

any nuclei, the corresponding blending coefficients for the R-channel remain

unchanged, but those for the G-channel vary.

Finally, applying our algorithm on all the images, we measured the aver-

age computational time versus the number of rows. The results are shown
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in Figure 10. The data was processed on a Windows 7 server with an Intel

i7 CPU (3.07GHz) and 6 GB RAM; and the algorithm was implemented by

Matlab R2009a without parallel computing. We observe that the average

time required for mosaicing is almost constant when the number of rows is

less than 640, but it increases thereafter. To reduce the average computation

time, we can either downsample the rows or partition the images. By down-

sampling the rows, we can obtain images with fewer rows. After deriving the

optimal blending coefficients for the rows of the downsampled images, we can

interpolate the blending coefficients for rows that were not sampled in the

downsampling process. By partitioning the images, we can obtain several

sub-images with fewer rows. The sub-images are processed independently

and their results are combined to obtain a final mosaic image.

4 Conclusion

Mosaicing of confocal microscope images has some unique and latent prop-

erties that do not appear in other applications. For example, because of the

photobleaching effect, earlier-acquired images should be given more weight

than later-acquired images in the mosaicing process. We incorporate these

properties into a mosaicing procedure and define a multi-resolution optimum

blending parameter estimation problem that can be solved by quadratic pro-

gramming with linear constraints. The perceptual quality of the resulting

mosaic images is compared with that of the results derived by Burt and

Adelson’s algorithm and the MosaicJ algorithm. Based on the proposed

optimization framework, it would be easy to extend the proposed method to

other scenarios with case-dependent constraints.

Finally, in our future research, we will consider developing a technique
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that can combine multiple image stacks simultaneously as well as a standard

perceptual measurement of the mosaic results for comparing different meth-

ods.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Images affected by photobleaching. The dashed-line indicates the
boundary of the overlapping region. (a) and (d): the later-acquired image
J ; (b) and (c): the earlier-acquired image I. (c) and (f): the direct stitching
result of I and J , denoted as [I|J ] hearafter. The overlapping region of J
is much darker than that of I because of repeated imaging.
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(a) (b)

(c) (d)

Figure 2: Adjusting the contrast of later-acquired images. The dashed-line
indicates the boundary of the overlapping region. (a) and (c): the contrast
of the overlapping regions of the images in Figure 1(a) and Figure 1(d) after
adjustment. Note the discontinuity on the boundary of the overlapping re-
gions in (a) and (c). (b) and (d): the contrast of the whole images in Figure
1(a) and Figure 1(d) after adjustment. Note that the contrast of the pixels
to the left of the overlapping region in images (b) and (d) matches to that of
the earlier-acquired images. However, the contrast of the pixels to the right
of the overlapping regions in (b) and (d) is still lower. The contrast in images
(a)-(d) is adjusted as follows. First, we obtain the histograms of the pixels in
the overlapping regions of earlier-acquired images and in the to-be-adjusted
regions of later-acquired images. Then, we remove the intensity below 1%
and above 99% from all the histograms. Finally, we map the resultant his-
tograms of the later-acquired image to those of the earlier-acquired image by
linear stretching.

28

whwang
Highlight

whwang
Highlight

whwang
Highlight



Figure 3: The Image Pyramid Structure. The Gaussian pyramid is G0, · · · ,
Gn, and the Laplacian pyramid is L1, · · · , LN . The pyramid representa-
tion of the input image is a collection of pyramid sub-band images com-
prised of Gn(= Ln) and Ln−1, · · · , L0. The sizes of the images are different.
The smaller images correspond to lower frequency bands. As shown in the
rightmost column, the original image, G0, can always be recovered from the
pyramid representation of the image.

Figure 4: Top: The blending position, the overlapping region and the transi-
tion region. Image I is the earlier-acquired image and J is the later-acquired
image. The width of the transition region depends on the levels of pyramid
decomposition. Bottom: The blending position aligns the pixels un in I and
vn in J .
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Figure 5: The blending coefficients are [m1 m2 m3]
T . The coefficients for the

top line are m1, m2, m3 and those for the bottom line are 1 −m1, 1 −m2,
and 1 −m3. I [l] and J [l] denote the lth level Laplacian images of I and J
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 6: Confocal microscope images of a Drosophila’s brain. The dimen-
sions of each image stack are 1024×1024×123, and the sampling resolutions
along the x-, y- and z-directions are 0.32µm, 0.32µm and 1.0µm respectively.
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Figure 7: Comparison of mosaicing the images in Figure 6 by different meth-
ods. Top: the mosaic image obtained by the proposed method. Middle: the
mosaic image derived by the method in [17]. Bottom: the mosaic image
obtained by using the MosaicJ algorithm. The dimensions of the mosaiced
result are 2272 × 992. Some parts of the images are highlighted to indicate
where the contrast of the mosaiced image derived by our method is better
than that obtained by other methods.
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Figure 8: Left column: the mosaic results derived by our method on images
at different depths. Right column: the direct stitching results. From top
to bottom: the 24th slice of the whole image stack, the 32nd, 94th, 112th

slices and an EM image of Drosophila’s neuron fibers. The dimensions of
the mosaiced confocal microscope images are 2274×992, and the dimensions
of the EM image are 3520 × 1696. The properties at different depths of
the images are distinct. Briefly, in the 24th and 32nd slices, the contours of
different tissues are clear; and in the 94th slice, the intensity of most areas is
homogeneous, except the regions of the two oval-shaped optical lobes, which
are much brighter. Finally, the brightness and contrast in the 112th slice are
quite low. 32
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Figure 9: Combining microscope images of mouse pancreases . Top: two
images to be combined. The dashed-lines denote the boundaries of the over-
lapping regions. Middle: the image combined directly without blending. The
arrow indicates the selected blending position. Bottom: the mosaic image
obtained by the proposed method. 33



Figure 10: The average computation time of our method versus the number
of rows of to-be-combined images. When the number of rows is less than
640, the time complexity is approximately constant; however, the average
time complexity increases when the number of rows in the images is higher.
Methods designed to reduce the computational complexity when the number
of rows is large are discussed in the text.
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