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Wavelet Bayesian Network Image Denoising
Jinn Ho and Wen-Liang Hwang, Senior Member, IEEE

Abstract— From the perspective of the Bayesian approach, the
denoising problem is essentially a prior probability modeling and
estimation task. In this paper, we propose an approach that
exploits a hidden Bayesian network, constructed from wavelet
coefficients, to model the prior probability of the original image.
Then, we use the belief propagation (BP) algorithm, which
estimates a coefficient based on all the coefficients of an image,
as the maximum-a-posterior (MAP) estimator to derive the
denoised wavelet coefficients. We show that if the network is
a spanning tree, the standard BP algorithm can perform MAP
estimation efficiently. Our experiment results demonstrate that, in
terms of the peak-signal-to-noise-ratio and perceptual quality, the
proposed approach outperforms state-of-the-art algorithms on
several images, particularly in the textured regions, with various
amounts of white Gaussian noise.

Index Terms— Bayesian network, image denoising, wavelet
transform.

I. INTRODUCTION

COMPLEX phenomena usually involve a large number
of hidden variables and data sources. Graphical models

provide a unifying framework for modeling the probability
distributions of such phenomena by decomposing joint
probability distributions into a set of local constraints and
dependencies [1]. After formulating a problem as a graphical
model, a wide range of statistical learning and inference
algorithms can be applied directly to derive a solution.
Bayesian networks are probably the most popular type of
(directed) graphical model. In this paper, our objective is
to construct a Bayesian network from a single image for
denoising purposes. To do this, we need to overcome two
difficulties: 1) constructing a Bayesian network is computa-
tionally inefficient and 2) the data over-fitting problem, which
exaggerates minor fluctuations in the input data.

The construction of a Bayesian network involves prior
knowledge of the probability relationships between the vari-
ables of interest. Learning approaches are widely used to
construct Bayesian networks that best represent the joint prob-
abilities of training data [2]–[5]. In practice, an optimization
process based on a heuristic search technique is used to find
the best structure over the space of all possible networks.

Manuscript received October 5, 2011; revised July 6, 2012; accepted
August 26, 2012. Date of publication September 21, 2012; date of current
version February 4, 2013. This work was supported in part by the National
Science Council, under Grant NSC-100-2221-E-001-017. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Hitoshi Kiya.

J. Ho is with the Institute of Information Science, Academia Sinica, Taipei
115, Taiwan (e-mail: hjinn@iis.sinica.edu.tw).

W.-L. Hwang is with the Institute of Information Science, Academia
Sinica, Taipei 115, Taiwan, and also with the Department of Infor-
mation Management, Kainan University, Luchu 33857, Taiwan (e-mail:
whwang@iis.sinica.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2012.2220150

However, the approach is computationally intractable because
it must explore several combinations of dependent variables to
derive an optimal Bayesian network. The difficulty is resolved
in this paper by representing the data in wavelet domains and
restricting the space of possible networks by using certain
techniques, such as the “maximal weighted spanning tree”
(MWST). Three wavelet properties - sparsity, clustering, and
persistence - can be exploited to reduce the computational
complexity of learning a Bayesian network. First, the wavelet
transform of a natural image tends to be sparse with large
coefficients at the edges. The sparsity reduces the number of
variables required to construct a graph. Second, the adjacent
wavelet coefficients tend to have similar values as a cluster.
Third, wavelet coefficients at the same location and orientation
tend to be positively correlated in adjacent scales.

The over-fitting problem occurs because the underlying
network is too complex; for example, there may be too
many parameters for the number of observations [6]. In the
effort of using hidden Markov tree (HMT) model [7]–[9] to
capture the joint statistics of wavelet coefficeints, the marginal
probability of each wavelet coefficient is modeled as a mixed
density function with a hidden state variable; for example,
an M-state Gaussian mixture model for a wavelet coefficient
consists of M states and M Gaussian conditional probability
density functions (pdf), one for each state. To generate wavelet
coefficients, the HMT first draws a state value s based on
the pdf p, and then draws an observation according to the
conditional probability f of the state. The pdf of the wavelet
coefficient is given by

∑M
s=1 p(s) f (.|s), where the conditional

pdf f (.|s) is written as a parametric formula that depends on
certain parameters. Because several parameters are used to
estimate a wavelet coefficient, the HMT approach can only be
used to model the marginal probability when the number of
training images is large; then the underlying parameters can be
estimated accurately. If there is only one image, the over-fitting
problem under the HMT approach would be severe. Thus,
instead of associating each wavelet coefficient with a random
variable, we split all the wavelet coefficients into equal-size
blocks and assume that the blocks are independently sampled
from a matrix of random variables (called a wavelet patch).
The approach allows us to estimate non-parametric statistics,
which do not require a pdf assumption, from the samples in
the wavelet patch.

The image denoising problem is particularly serious in
modern image capturing devices because the increase in the
sensor’s density per unit area of a chip reduces the signal-to-
noise (SNR) and increases the capturing device’s sensitivity to
noise [10]. The state-of-the-art denoising algorithms are based
on the non-local means approach [11]–[13], which exploits
the self-similarity and redundancy in an image. The most
representative approach is the block matching and 3-D filtering
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(BM3D) algorithm [13]. It combines similar 2-D patches that
can be overlapped to form a 3-D group, and then uses collab-
orative 3-D filtering techniques to perform non-local filtering.
The filtered blocks are returned to their original positions,
and the final estimate of a pixel is computed as the weighted
average of the estimates of the pixel in several different blocks.
This simple approach is very efficient and it yields better
results than regular non-local means approaches. In [14], a
denoising Wiener filter, motivated by the statistical analysis of
the performance bounds of patch-based methods, is proposed.
The filter’s parameters are estimated from geometrically as
well as photometrically similar patches. Recent developments
in sparse representation have been used together with the non-
local means approach for noise reduction purposes [15], [16].
The sparse model approach assumes that image patches can be
represented sparsely by an over-complete redundant dictionary,
which can be learned from a family of training data. In [17],
Milanfar demonstrates that the non-local means approach as
well as recent multi-dimensional filtering approaches (e.g.,
bilateral filtering and kernel regression) are operations that are
adaptive to the local structure of an image. He also presents
a general framework for understanding the basic principles
behind the approaches.

The Bayesian approach is also widely used to resolve the
image denoising problem. The Bayesian formula indicates
that the denoising problem is essentially a prior probability
modeling and estimation task. If y = x + n, where n is
white Gaussian noise with known variance, then the Bayesian
formula is P(x |y) = P(y|x)P(x), where P(y|x) = Pn(y − x)
is the noise probability. The maximum-a-posterior (MAP)
solution of P(x |y) is determined by the priori probability
P(x). The structure of image priors is usually modeled by
Markov Random Fields (MRFs), where the probability of a
pixel depends solely on the joint probability of the pixels
in its neighborhood. According to the Hammersley-Clifford
theorem, the probability distribution of an MRF is the Gibbs
distribution whose energy function is the sum of the poten-
tial functions defined on the cliques (i.e., maximal complete
subgraphs) in image neighborhoods.

Many wavelet-based denoising algorithms integrate the
wavelet properties in MRFs to retain the structure of a
denoised image. The main differences between the algorithms
are the methods used for neighborhood selection, the
modeling of the original image over the neighborhood, and
the techniques employed to derive solutions. In [18], the
estimated wavelet coefficient at index l (position, scale), ŵl ,
is obtained by

ŵl = wl P(xl |M) ≈ wl P(M|xl ) P(xl),

where wl is the observed wavelet coefficient, xl is the hidden
label, P(xl |M) is the probability of the label l as an edge,
and M is the measurement derived by inter-scale Lipschitz
exponent estimation [19], [20]. The prior probability P(xl) at
the scale of l is modeled by a 2 ×2 MRF, where the potential
functions between two neighboring wavelet coefficients on
hand-chosen cliques are defined as xi x j , with each variable
taking the value 1 or −1. The approach is extended in [21] by
incorporating robust inter-scale estimators M and P(xl |M)

and a generalized anisotropic MRF prior P(xl) on each
scale.

Simoncelli examined the empirical statistical properties
of images in adjacent scales and presented an inter-scale
probability model for the wavelet coefficients in two adjacent
scales [22]. The joint statistical model assumes that the density
of an estimated wavelet coefficient is conditionally Gaussian,
where the variance is a linear combination of the squared coef-
ficients in a local neighborhood. The neighborhood consists
of coefficients at other orientations and adjacent scales, as
well as adjacent spatial locations. For example, Simoncelli’s
model uses a neighborhood comprised of the 12 nearest spatial
neighbors in the same subband, the 5 nearest coefficients in
subbands at other orientations on the same scale, the 9 nearest
coefficients in the adjacent subband of the coarser scale, and
some coefficients in other subbands.

The BLS-GSM algorithm [23] models the distribution of a
vector of wavelet coefficients in a 3 × 3 region, together with
the coefficient at the center location and the same orientation
at the next coarser scale, as a Gaussian Scale Mixture (GSM).
Then, the Bayesian least square method is used to estimate the
wavelet coefficient at the center of the neighborhood system.
In [24], a mixture of Gaussian Scale Mixtures (MGSM) is
proposed to make the GSM model adaptive to the image
content. Its denoising performance is almost as good as that of
the BM3D algorithm. In [25], a dimension reduction technique
is applied to the MGSM to reduce the computational cost and
avoid the curse of dimensionality problem in learning the high
number of free parameters of the model.

The MRF is modeled on an undirected graph. In this paper,
we propose an approach that uses a hidden directed graph to
model the prior probability of an image. Specifically, the graph
is a Bayesian network with a multi-layer network structure
constructed from the wavelet coefficients of an image. Our
approach has two advantages over existing approaches. First,
the MAP solution can be derived by using the standard BP
algorithm [26], [27]. BP inference passes messages forward
from coefficients at coarser scales to finer scales and back-
ward from finer scales to coarser scales. Forward message
passing tends to smooth fluctuations in fine scales, while
backward message passing tends to retain the fine details of
an image. Thus, our method is more capable of retaining
the fine structure of an image than existing approaches. The
second advantage is that the hidden structure is derived by
a data-adaptive process. In addition, the prior probabilities
over inter-scale edges and intra-scale edges are modeled in
a similar way to those in [22] and [28] respectively. We
also analyze the complexity of estimating the solution of a
Bayesian network and show that BP inference can derive the
MAP solution efficiently provided that the Bayesian network
is a spanning tree. To evaluate our approach, we compare its
performance with that of other approaches, including BM3D,
and demonstrate that it yields a better peak-signal-to-noise
ratio (PSNR) as well as better perceptual quality on the
textured areas of an image.

The remainder of this paper is organized as follows. In
Section II, we explain the rationale behind the proposed data-
adaptive graph modeling of an image. We also analyze the
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(a) (b)

(c) (d)

Fig. 1. Constructing a hidden directed graph from a wavelet subband.
(a) Subband of 4 × 4 coefficients. (b) Wavelet patch is a matrix of 2 × 2
random variables, X1, X2, X3, and X4. (c) Subband is divided into four
rectangles, each containing 2 × 2 coefficients. The coefficients at the same
location in each rectangle are assigned to the node at the same location in
the wavelet patch, and the coefficients of the same color are grouped as the
observations of a node. (d) Directed edges are constructed to form a spanning
tree.

computational cost of using BP inference to estimate the MAP
solution for the proposed approach. In Section III, we present
the method used to construct and model wavelet Bayesian
networks; and in Section IV, we describe how the networks
are used for denoising. In Section V, we discuss the proposed
denoising algorithm and compare its performance with that
of other approaches. Section VI contains some concluding
remarks.

II. DATA-ADAPTIVE HIDDEN NETWORK APPROACH

In this section, we describe the proposed framework for
constructing a data-adaptive graph structure and formulating
the prior probability of the original image in the wavelet
domain. We also explain how the graph structure is used with
the BP algorithm to derive the MAP solution.

We assume that the wavelet coefficients of the original
image represent a realization of a hidden graph. To construct
the graph, we first create a matrix of random variables
(a wavelet patch) for each subband (indexed by orientation
and scale), and assign the subband coefficients as the observed
data of the random variables. Then, a subgraph (network)
is constructed from the wavelet patch as follows. First, we
associate each random variable with a node; hence, the coef-
ficients assigned to the random variable can be regarded as
node’s observed data. Second, the arcs (directed edges) in
the subgraph are derived according to a data dependence
measurement between the observed data in any pair of nodes.
In this way, we can construct a one-layer network from the
wavelet subband and associate the subband’s coefficients with
the nodes in the network. The procedure is shown in Fig. 1.
Finally, the one-layer networks of adjacent subbands can be
linked by inter-scale arcs, from coarser scales to finer scales, to
form a multi-layer network structure, as shown in Fig. 2(a)–(c).

Two problems may arise during the above construction
procedure: 1) the coefficient and wavelet patch association
problem, which involves associating subband coefficients with
a wavelet patch; and 2) the graph selection problem, i.e.,

(b)(a)

(d)(c)

Fig. 2. Constructing a multilayer hidden network. (a) Two subbands, with
the coarser subband on top. (b) Procedure creates two wavelet patches, each
of which is associated with a subgraph. Subband coefficients are assigned to
the nodes, as specified in Fig. 1(c). (c) Nodes in the two-layer network are
linked by intra-scale (solid) arcs and inter-scale (dashed) arcs. (d) To derive
the prior probability, the hidden coefficients are organized into groups a, b,
c, and d. In group a, the coefficients are {Pai , ai |i = 1, 2, 3, 4} and they are
highlighted in the local blocks of the subbands in (a). Coefficients in the other
groups can be derived in a similar manner.

determining the type of graph to construct. To solve the
first problem, we propose the following heuristic procedure.
Assume that the wavelet patch is a matrix of m × m random
variables. Let the size of a subband be N × N and let
m divide N . We partition the subband into ( N

m )2 rectangular
blocks, each of which contains m × m coefficients. Then, the
coefficient at location (i, j) in each block is assigned as a
realization of the random variable at location (i, j) in the
wavelet patch. Thus, each random variable has ( N

m )2 sampled
observations.

For the second problem, we analyze the computational
cost of a graph structure for which the MAP solution can
be derived efficiently by the standard BP algorithm. The
standard implementation of the message passing algorithm in
BP on m × m cliques runs in O(N2km×m T ), where N2 is
the number of coefficients in a subband, k is the number of
labels for each coefficient, and T is the number of iterations.
Basically, computing each message takes O(km×m) time and
there are O(N2) messages per iteration. The computational
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cost of the conventional BP algorithm can be reduced if the
algorithmic techniques in [29]–[31] are used for Bayesian
inference. If parallelism is also exploited as described in
[32], BP inference can achieve a near linear parallel scaling
performance. We use a graph G(V , E) to represent the (one-
layer) subgraph structure, where V is the node set and E
is the arc set. If G is a loopy Bayesian network, the BP
algorithm sometimes yields surprisingly good approximate
results; however, sometimes, it fails to produce any results,
even after a large number of iterations. BP can derive an exact
MAP solution in two iterations if G is a directed-acyclic-graph
(DAG), but the inference cost depends on the structure of
the DAG. A DAG that incurs a high inference cost can be
constructed as follows: let the nodes in G be indexed from
1 to m2. For each node j , we link an arc from any node of
a smaller index to it. Thus, the message passing at node j
involves k j−1 operations, where k is the label of a wavelet
coefficient. The total cost of the operation for all nodes is

m×m−1∑

j=1

k j−1 = km×m−1 − 1

k − 1
. (1)

For typical values of k and m, which are 512 and 4 respec-
tively, BP inference of the DAG is too high to be of practical
use.

If we assume that G is a spanning tree structure, we can
show that the average computation time for BP inference is
O(m2k). Let us assume that any two nodes have an equal
chance of being linked by an arc in a spanning tree. As the
tree contains m2 −1 edges, each node has 1 in-degree at most;
and, in total, all the nodes have m2 − 1 out-degrees. Because
all the nodes are treated equally, the average out-degree of
each node in a spanning tree is m2−1

m2 ≤ 1. BP inference in a
spanning tree is comprised of two phases: forward message
passing and backward message passing, which use the in-
degree arcs and out-degree arcs respectively to pass messages
to a node. Because the average in-degree and out-degree arc of
a node is at most 1, the average number of messaging passing
operations on a node is O(k). There are m2 nodes, so the
average number of message passing operations is O(m2k) for
BP inference in spanning trees. The analysis shows that the
cost of BP inference on a spanning tree can be significantly
less than that in a general DAG. However, the power of a
spanning tree to express the structure of a wavelet patch is
limited. For a subgraph of m × m nodes, there are m2 × m2

pairwise relations, but a spanning tree only uses m2 − 1 of
them. Thus, a spanning tree cannot fully capture a complicated
structure that contains more than m2 − 1 highly correlated
pairwise relations and a smooth region in which all the nodes
are highly correlated to one another.

The joint probability of a spanning tree G = (V , E) can
be formulated by the dependency structure in G as follows.
Let f (vi |ui ) be the probability function associated with arc
ui → vi , where ui , v j ∈ V , and let u be the root of
the tree with probability f (u). Then, the joint probability of
G is

f(G) =
∏

ui →vi∈E

f (vi |ui ) f (u). (2)

Note that the intra-scale clustering property of wavelet coeffi-
cients indicates that the neighboring coefficients in a subband
are positively correlated. Thus, the pairwise joint probability
can be modeled as a measurement of |ui − vi |, resembling the
marginal statistics of the gradient of neighboring nodes with
values ui and vi .

We can stack the subgraphs of two adjacent scales to
form a two-layer graph. Let Gc = (Vc, Ec) be the graph
corresponding to a subband at the coarser scale of G. Based
on the inter-scale persistence property, inter-scale arcs can be
constructed between Vc and V , denoted as A, by combining
the parent node and child node (nodes at the same location)
in Gc and G respectively. Let p(vk) in Vc be the parent node
of vk in V ; and let uc and u be the root of the tree in Gc

and G respectively. Because of the node dependency in the
graphs, the joint probability of the resulting directed graph
can be formulated as follows:

f(Gc, G) = [
fc(uc)

∏

ui→u j ∈Ec

fc(u j | ui )
]

×[
f (u|p(u))

∏

vk→vl∈E

f (vl | vk, p(vl))
]

(3)

where p(u) → u ∈ A, and p(vl) → vl ∈ A. Equation (3)
gives the joint probability of all the nodes in the graph shown
in Fig. 2(c). The prior probability of the hidden coefficients in
the graph is derived as follows. We take one coefficient from
each node to form a data group; for example, Fig. 2(d) has
four data groups. The joint probability of each data group can
be written in the form of Equation (3) by replacing the node
variables with the hidden coefficients. Finally, it is assumed
that the joint probability of all the data groups is the product
of that of each data group.

After constructing the hidden network, we create a layer of
observation nodes for each noisy wavelet subband. Next, we
assign the noisy coefficients to the observation nodes in the
same way as the ideal subband coefficients are assigned to
the hidden nodes, as shown in Fig. 3(a) and (b). Then, arcs
are created to link the observation nodes to the corresponding
hidden nodes, as shown in Fig. 3(c). BP inference can now be
applied to derive the MAP solution for the denoising problem.
Recall that each node in a wavelet patch has ( N

m )2 realizations.
If we take one wavelet coefficient from each node and use the
BP algorithm to estimate the solution, the denoising process
makes ( N

m )2 BP inferences. Note that, as shown in Fig. 3(d),
all the wavelet coefficients located in the same rectangular
blocks in various subbands are estimated simultaneously by
one BP inference.

We calculate the computational cost of image denoising
under the proposed model as follows. Because each node has
one in-degree and one out-degree inter-scale edge at most,
the number of operations that BP inference performs for the
multi-layer graph is J times the number performed for one
wavelet patch. For a spanning tree, each inference involves an
average of O(m2k) operations and there are ( N

m )2 BP; thus, the
proposed algorithm performs an average of O(N2k) operations
for one wavelet patch. As a result, the average BP inference
cost of the J layers network is O(J N2k).
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(b)(a)

(d)(c)

Fig. 3. (a) Top layer and the bottom (dashed) layer of each group are
composed of hidden subband coefficients and coefficients observed at the
corresponding subband, respectively. (b) Coefficients in observed (dashed)
layers are organized in the same way as the coefficients in the hidden
layers. (c) Observation nodes {ypi , yi } are created and linked to hidden
nodes {xpi , xi }. (d) For denoising proposes, data in the network is organized
into four groups and BP inference is applied to each group. For example,
{ypai , pai , yai , ai |i = 1, 2, 3, 4} is a group. The other three data groups can
be derived in a similar manner.

We have explained the basic approach used to construct a
spanning tree from a wavelet patch and stack the spanning
trees to form a multi-layer network. In addition, we have
shown that if the subgraph structure is a spanning tree, the
exact MAP solution can be derived efficiently by BP inference.
Before describing the construction in detail, we remark that
the wavelet coefficients at the same location and scale, but
in different orientations, are correlated. However, they are not
necessarily positively correlated, so their potential functions
are not suitable for modeling as a function of their absolute
difference. Therefore, we construct a wavelet Bayesian net-
work for the wavelet subbands in each orientation.

III. CONSTRUCTING WAVELET BAYESIAN NETWORKS

A Bayesian network, denoted as B = (V , E, P), comprises
a set of random variables and their conditional dependencies
represented by a directed acyclic graph in which the nodes
represent the elements in V . Each edge element in E takes
the form of a directed arc x → y, where x and y ∈ V .

The likelihood p(y | x) ∈ P of an edge x → y ∈
E is the conditional probability of observing y given that
x exists.

We call the Bayesian networks constructed in wavelet
domains wavelet Bayesian networks (WBNs). Our primary
objective is to construct a WBN from the undecimated discrete
wavelet transform (DWT) of a single image. Initially, wavelet
decomposition of an image F yields three images of wavelet
coefficients with horizontal, vertical, and diagonal orientations
respectively, and one approximate image of F . Then, at the
next scale, the approximated image is further decomposed
to obtain three images of the wavelet coefficients and one
coarser approximate image of F . Let Wh

j F(u, v), Wv
j F(u, v),

and Wd
j F(u, v) denote, respectively, the horizontal, vertical,

and diagonal images of the wavelet coefficients at scale 2 j ;
and let A j F(u, v) represent the approximated image at the
same scale. If the undecimated DWT is decomposed J times,
we will have wavelet coefficients Wh

j F , Wv
j F , and Wd

j F
with j = 1, . . . , J and the coarsest approximate image
AJ F .

To construct a WBN, we first group subbands with the
same orientation together to obtain a horizontal-group, a
vertical-group, and a diagonal-group of wavelet coefficients.
Then, we construct a Bayesian network B for each group.
Let Bh = (V h, Eh, Ph ), Bv = (V v , Ev , Pv ), and Bh =
(V d , Ed , Pd ) denote the Bayesian networks constructed from
the horizontal-group, vertical-group, and diagonal-group of
wavelet coefficients respectively. The WBN B = (V , E, P)
is derived from Bh , Bv , and Bd by

V = V h ∪ V v ∪ V d (4)

E = Eh ∪ Ev ∪ Ed and (5)

P = Ph ∪ Pv ∪ Pd . (6)

Next, we explain how to construct the Bayesian network
Bu(V u, Eu, Pu) that corresponds to the u-orientation, where
u ∈ {h, v, d}.

A. Vertex Set V u

Let the size of the input image F be N × N . If J wavelet
decompositions are applied to F , there will be J subbands of
size N × N in each orientation. Let a wavelet patch (matrix
of random variable) be of size m × m. For each subband, a
graph of m2 variable nodes are formed. We then associate
each random variable in the wavelet patch to a variable node
in the graph. Without loss of generality, we assume that m
divides N . Each subband can then be partitioned into ( N

m )2

blocks, each of size m × m. Then, ( N
m )2 wavelet coefficients

sampled from the subband are assigned to each variable node.
Let xh

j (i, k), with j = 1, . . . , J and i, k = 0, . . . , m − 1,
denote the (i, k) variable node in the j -th subband. In our
construction, the ( N

m )2 wavelet coefficients assigned to node
xu

j (i, k) are sampled from Wu
j F(i + mp, k + mq) with p, q =

0, . . . , N
m − 1. If we represent each node as a vertex in the

Bayesian network Bu , then the vertex set of Bu will be

V u = {xu
j (i, k)|i, k = 0, · · · , m − 1; j = 1, · · · , J } (7)
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and the ( N
m )2 wavelet coefficients can be regarded as sampled

from some (unknown) distribution of a random variable.
Figs. 1(a), (b), and (c) show the procedure used to construct
the vertex set for a subband of 4 × 4 coefficients.

B. Edge Set Eu

The arcs (directed edges) in Bu can be divided into two
disjoint sets, Eu

o and Eu
i , where Eu

o comprises the (inter-scale)
edges incident to vertices at different scales, and Eu

i comprises
the (intra-scale) edges incident to vertices at the same scale.
The persistence property of the wavelet transforms indicates
that large/small values of wavelet coefficients tend to occur
at the same spatial locations in subbands at adjacent scales.
The property can be used to construct arcs in Eu

o by linking
a vertex at the coarser scale j + 1 to the vertex of the same
index at the finer scale j ; that is,

Eu
o = {xu

j+1(i, k) → xu
j (i, k)| i, k = 0, . . . , m − 1

and j = 1, · · · , J − 1}. (8)

The edges in Eu
i represent the connections between vertices

at the same scale and orientation. Constructing the edges corre-
sponds to deriving the Bayesian network on the nodes xu

j (i, k)
that best represent the joint probability of the nodes at the same
scale j and orientation u. However, as discussed in Section II,
BP inference is computationally intractable if the Bayesian
network is a general graph. Thus, we limit the solution space
to spanning trees so that we can derive an efficient solution
by using the maximal weighted spanning tree (MWST)
algorithm [33]–[36]. A maximal weighted spanning tree is
a spanning tree whose weight is greater than or equal to
the total weight of every other spanning tree. The optimum
weighted spanning tree can be derived by minimizing the
relative entropy (Kullback-Leibler distance) D(p||q) between
the probability functions p and q .

In the following, we show how the spanning tree that
minimizes D(p||q) is equivalent to the tree that maximizes
the weighted summation of conditional mutual information on
all the edges of the tree. Let x be the vector of variables
x1, . . ., xn; let p(i) and b(i) denote the indices of the parent
nodes and the sibling nodes of xi respectively; and let q
be the induced probability of the spanning tree. Then, we
have

q(x) =
n∏

j=1

p(x j | x p( j ), xb( j )). (9)

Note that nodes at the coarsest scale do not have parent
nodes. To find the optimal spanning tree, we minimize the
relative entropy between q(x) and the joint probability p(x) as
follows:

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

=
∑

x

p(x) log p(x) −
∑

x

p(x) log q(x). (10)

Since minimizing D(p||q) is equivalent to maximizing∑
x p(x) log q(x), we can derive the following:

∑

x

p(x) log q(x)

=
∑

x

p(x) log
∏

j

p(x j | x p( j ), xb( j )) (11)

=
∑

x

∑

j,b( j )=∅
p(x) log

p(x j , x p( j ))

p(x p( j ))

+
∑

x

∑

j,b( j ) �=∅
p(x) log

p(x j , x p( j ), xb( j ))

p(x p( j ), xb( j ))

=
∑

x, j

p(x) log
p(x j , x p( j ))

p(x p( j ))

+
∑

x, j, j b �=∅
p(x)

[

log
p(x j , x p( j ), xb( j ))

p(x p( j ), xb( j ))
− log

p(x j , x p( j ))

p(x p( j ))

]

.

The second term in the last line of the above equation can be
re-written as follows:
∑

x

∑

j,b( j ) �=∅
p(x) log

p(x j , x p( j ), xb( j )) · p(x p( j ))

p(x p( j ), xb( j )) · p(x j , x p( j ))

=
∑

x

∑

j,b( j ) �=∅
p(x) log

p(x j , xb( j ) | x p( j ))

p(xb( j ) | x p( j )) · p(x j | x p( j ))

=
∑

j,b( j ) �=∅

[ ∑

x j ,xb( j),x p( j)

p(x j , xb( j ), x p( j ))

log
p(x j , xb( j ) | x p( j ))

p(xb( j ) | x j p) · p(x j | x p( j ))

]

=
∑

j,b( j ) �=∅

∑

x p( j)

p(x p( j ))
∑

x j ,xb( j)

p(x j , xb( j ) | x p( j ))

log
p(x j , xb( j ) | x p( j ))

p(xb( j ) | x p( j )) · p(x j | x p( j ))

=
∑

j,b( j ) �=∅

∑

x p( j)

p(x p( j )) · I (x j , xb( j ) | x p( j )). (12)

From the results of Equations (11) and (12), we conclude
that minimizing D(p||q) over q is equivalent to maximizing
the weighted summation of conditional mutual information∑

j,b( j ) �=∅
∑

p( j ) p(x p( j )) · I (x j , xb( j ) | x p( j )), where the
weight of the arc xi → x j is defined as

p(x p(i))I (xi , x j |x p(i)). (13)

To find a tree with the maximum total arc weight of m2 nodes,
we use Kruskal’s algorithm [41]. The steps are as follows.

The complexity of the algorithm is O(m2 × m2 log2(m
2

× m2)). To calculate the mutual information I (xi , x j ) of
variables xi and x j , we need to estimate the probability distri-
bution functions of p(xi , x j ), p(xi), and p j (x j ). Recall that
each variable comprises ( N

m )2 sampled wavelet coefficients.
Let ñ(xi = u, x j = v) denote the number of samples such
that xi and x j assume the values of u and v respectively. The
sample joint frequencies f (xi = u, x j = v) are computed as
follows:

f (xi = u, x j = v) = ñ(xi = u, x j = v)
∑

a
∑

b ñ(xi = a, x j = b)
; (14)
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Algorithm 1 Kruskal’s Algorithm

1) Calculate the m2 × m2 weights of the arcs between any
two nodes. Note that the weight of arc x → y may be
different from that of arc y → x .

2) Sort the weights of the m2 × m2 arcs and compile a list
in non-increasing order so that the weight wi is not less
than the weight w j with i < j .

3) Assume that the initial spanning tree is empty and add
the arc of weight w1 to the empty tree.

4) Do until the tree is a spanning tree:

a) Let wi be the next weight on the list.
b) Check if adding the arc of weight wi to the tree

creates a cycle.

5) End

and the sample probabilities are calculated as follows:

f (xi = u) =
∑

b

f (xi = u, x j = b)

f (x j = v) =
∑

a

f (xi = a, x j = v). (15)

It is well-known that the joint frequencies f (xi = u, x j = v),
f (xi = u), and f (x j = v) are maximum-likelihood estimators
for the probabilities p(xi = u, x j = v), p(xi = u),
and p(x j = v) respectively. Therefore, the sample mutual
information can be computed as

Î (xi , x j ) =
∑

u,v

f (xi = u, x j = v) log
f (xi = u, x j = v)

f (xi = u) f (x j = v)
.

(16)

Then, we use Î (xi , x j ) instead of I (xi , x j ) when calcu-
lating the weights in the above algorithm. For each scale
j ∈ {1, . . . , J }, we execute Kruskal’s algorithm to obtain a
spanning tree. The edge set Eu

i contains all the edges in all
the spanning trees.

Figure 1(d) shows an example of a network with intra-
scale edges derived by the MWST algorithm from the four
nodes in Fig. 1(c); and Fig. 2(c) shows an example of a multi-
layer network where the inter-scale and intra-scale edges are
constructed from the nodes in Fig. 2(b). The WBN B in Fig. 4
is comprised of three oriented Bayesian networks, Bh , Bv ,
and Bd .

C. Probability Model Pu

There are two types of arcs in a Bayesian network Bu: 1) the
inter-scale parent-child arc, which connects a node with its
coarser-scale parent; and 2) the intra-scale sibling arc, which
connects two nodes of the same scale. To obtain the probability
inference, we need to model the probability function on each
arc.

Simoncelli [22] exploited the persistence property of
wavelet transforms and proposed a joint statistical model of
a “child” coefficient conditioned on the coarse-scale “parent”
coefficients at the same spatial locations in all orientations.

Fig. 4. WBN B has three components, Bh , Bv , and Bd , derived from the
horizontal, vertical, and diagonal orientation wavelet coefficients, respectively,
as shown from top to bottom. F and L L are, respectively, the input and the
coarsest approximation of F . k is the scale index.

Let {x pk } comprise the parent coefficients of the child coef-
ficient x . Then, the probability function of x conditioned on
{x pk } is defined as the following Markov model:

p(x |{x pk}) = N (0;
∑

k

2wk x2
pk

+ α2) (17)

which is a conditional Gaussian density function whose vari-
ance is a linear function of the squared coefficients in {x pk }
with weights {wk}, and α is the bias of the variance. We
simplify Simoncelli’s joint probability model to represent the
pdf of a parent-child arc in Eu

o . Specifically, we remove the
dependency of the coarse-scale parents’ coefficients in all
orientations except that of the child coefficient and set the bias
of variance α to zero. Thus, there is only one parent coefficient
x p for x . Then, the joint probability of the parent-child arc in
Eu

o is modeled as

f u
o (x |x p) = N (0; 2wx2

p) (18)

where w is a chosen parameter.
Other researchers have observed that large/small wavelet

coefficients of the same sign tend to occur near each other in
a subband. The observations are summarized as the clustering
property of the wavelet transform. The property means that,
in a subband, there is a strong positive correlation between
wavelet coefficients that are in close proximity and dependent
on each other. The ROF approach [28] exploits the clustering
property between neighboring pixels by using TV norms,
which are essentially L1 norms of the derivative of the values
of two neighboring coefficients, to estimate the discontinu-
ities in an image. Equivalently, the joint probability function
between two coefficients in close proximity is modeled as
the Laplacian distribution of the absolute of the difference of
two wavelet coefficients [42]. In the construction of intra-scale
edges, Kruskal’s algorithm selects the arc x → z ∈ Eu

i , where
the mutual information between x and z is high; that is, x and
z are highly correlated. Thus, we utilize a similar concept to
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model the probability of z conditioned on x as the following
Laplacian distribution function:

f u
i (z|x) ∝ λ exp(−λ|x − z|) (19)

where λ is the scale parameter of the Laplacian distribution,
and λ|x − z| is the potential function of the local 1 ×1 clique.

IV. WAVELET BAYESIAN NETWORKS FOR DENOISING

In this section, we consider using the wavelet Bayesian
network to model the prior probability of the original image
for the image denoising problem, which involves removing
white and homogenous Gaussian noise with zero mean and
known variance from an image.

To infer the probability for denoising, we associate each
variable node x in Bayesian network B with an observation
node y and create the arc y → x . The probability function of
x conditioned on the observed value of y is modeled as

fn(x |y) ∝ 1

σn
exp(− (x − y)2

2σ 2
n ρ

) (20)

where σ 2
n is the variance of the zero mean Gaussian white

noise and ρ depends on the scale and wavelets.
Recall that the variable nodes in the Bayesian network B

are represented by {xu
j (i, k)|u ∈ {h, v, d}; j = 1, . . . , J ; i, k =

0, . . . , m − 1} (Equation (7)). Let yu
j (i, k) denote the obser-

vation node corresponding to xu
j (i, k); and let Y , En , and

Pn denote the collections of {yu
j (i, k)}, the arcs {yu

j (i, k) →
xu

j (i, k)}, and the probability functions { fn(xu
j (i, k)|yu

j (i, k))}
respectively. The WBN Bn for image denoising is constructed
and represented as Bn = (V ∪ Y, E ∪ En, P ∪ Pn).

Let a noisy image Z = F + N , where F is the original
image and N is zero-mean white Gaussian noise. As shown
by the simple example in Fig. 3(d), each wavelet coefficient
of Z is assigned to one observation node in Bn . That is, the
coefficient Wu

j Z(i + mp, k + mq) is assigned to observation
node yu

j (i, k), where p, q = 0, · · · N
m − 1; thus, each obser-

vation node has ( N
m )2 observation values and realizations. If

we take one wavelet coefficient from each observation node,
we can obtain ( N

m )2 realizations of Bn , denoted as (p, q) with
p, q = 0, · · · N

m − 1. Note that, similar to the example shown
in Fig. 3(d), the wavelet coefficients assigned to the (p, q)-
th realization are taken locally from the (i, k)-blocks of all
subbands at scale 2 j and orientation u.

We use the message passing algorithm to obtain the
estimated wavelet coefficients of each realization. First, we
convert WBN Bn to a factor graph Fn , and then use the max-
product algorithm to derive the estimated wavelet coefficients.
The conversion of Bn to Fn and the max-product message
passing schemes are standard techniques. For completeness,
we provide them in Appendix A. The last step of the max
product algorithm calculates the marginal probability of each
variable node V in Fn . Let N (x) represent the neighboring
factor nodes of variable node x in Fn . In addition, let x p

and xc denote, respectively, the parent variable node and child
variable node of x in Bn; and let {x j } denote the sibling
variable nodes of x in Bn . The value of x̂ can be estimated
based on whether x has a child node.

Case 1: x has a child node xc.

x̂ = arg max
x

∏

D∈N (x)

μD→x(x)

= arg max
x

(
1

x
exp

[ − Jc(x)
]
)

(21)

where

Jc(x)=
[
(x −y)2

2σ 2
y

+ x2

2ωx p
2 + xc

2

2ωx2 +λ
∑

j

|x −x j |+�

]

. (22)

In Equation (22), � = �(y, x p, xc, {x j }) is independent of x ,
and σ 2

y is the variance of the wavelet coefficients associated
with observation node y. The variance σ 2

y can be written
as σ 2

n ρ, where ρ depends on the scale and the wavelets.
In Appendix B, we show that ρ = 1 if the wavelets are
orthogonal. Let

K (x) = 1

x
exp

[ − Jc(x)
]; (23)

then
d

dx
log K (x) = d

dx

[
log

1

x
− Jc(x)

] = − 1

x
− J ′

c(x). (24)

According to Equation (22)

J ′
c(x) = x − y

σ 2
y

+ x

ωx p
2 − xc

2

ωx3 + λ
∑

j

sign(x − x j ) (25)

where sign(x) returns the sign of x if x �= 0; otherwise, it
returns 0. Hence

1

x
+ J ′

c(x) = x − y

σ 2
y

+ 1

ωx

[ x2

x p
2 − xc

2

x2 + ω
]

+λ
∑

j

sign(x − x j ). (26)

We use the following algorithm to estimate the root x̂ of
K ′(x) = 0 iteratively. Substituting xt−1 (the estimated value
after the (t − 1)-th iteration) into x2

x p2 − xc
2

x2 + ω and λ
∑

j

sign(x − x j ) in Equation (26), we can re-write Equation (26)
as a quadratic equation of x with two roots at

[

y − λσ 2
y

∑

j

sign(xt−1 − x j )

]

± sqr t

(
[
y − λσ 2

y

∑

j

sign(xt−1 − x j )
]2

− 4σ 2
y

ω

[
xt−1

2

x p
2 − xc

2

xt−1
2 + ω

])

. (27)

The root that is closer to xt−1 is chosen as xt .
Case 2: x does not have a child node (x is a node at the

finest wavelet scale). We can set xc = 0 in Equation (22) and
obtain

J (x) = (x − y)2

2σ 2
y

+ x2

2ωx p
2 + λ

∑

j

|x − x j |; (28)

and then

J ′(x) = (x − y)

σ 2
y

+ x

ωx p
2 + λ

∑

j

sign(x − x j ). (29)
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Algorithm 2 WBN Denoising Algorithm
1) Wavelet representation: calculate the undecimated DWT

of an N × N noisy image Z to obtain the horizontal,
vertical, and diagonal subbands {Wu

j Z | j = 1, . . . , J },
{Wv

j Z | j = 1, . . . , J }, and {Wd
j Z | j = 1, . . . , J },

respectively, as well as the coarsest approximate image
AJ Z .

2) Create a vertex set (V u): let the parameter m divide
N . For each subband Wu

j Ẑ , create m2 variable nodes

{xu
j (i, k)| i, k = 0, . . . m − 1}; then assign ( N

m )2 wavelet

coefficients {Wu
j Ẑ(i+mp, k+mq)|p, q = 0, . . . , N

m −1}
as samples for variable node xu

j (i, k).
3) Create sibling edges (Eu

i ) for nodes at the same scale
and orientation: derive the empirical probability of each
variable from the frequency counts of ( N

m )2 wavelet
coefficients assigned to the node; then, use Kruskal’s
algorithm to derive the maximal weighted spanning tree
from the m2 nodes in each subband.

4) Create coarse-to-fine inter-scale edges (Eu
o ) at each

orientation: xu
j+1(i, k) → xu

j (i, k) for j = 1, . . . , J − 1.
The probability functions Pu

o and Pu
i associated with

edges in Eu
o and Eu

i are modeled according to (18) and
(19), respectively. Let Pu = Pu

o ∪ Pu
i .

5) Create WBN B: let Bu(V u, Eu = Eu
o ∪ Eu, Pu = Pu

o ∪
Pu

i ) be the WBN of orientation u. Then, WBN is defined
as B(V = V h ∪ V v ∪ V d , E = Eh ∪ Ev ∪ Ed , P =
Ph ∪ Pv ∪ Pd ).

6) Create observation nodes (Y ) and arcs (En): create
observation node yu

j (i, k) ∈ Y for variable node xu
j (i, k)

and an arc yu
j (i, k) → xu

j (i, k) ∈ En .
7) Derive the conditional probability of noisy observation

(Pn): associate the probability functions defined in (20)
with the arcs linking the observation nodes to the vari-
able nodes. Let Pn denote the collection of probability
functions.

8) Create WBN Bn(V ∪Y, E∪En , P∪Pn) and associate the
( N

m )2 wavelet coefficients {Wu
j Z(i +mp, k+mq)|p, q =

0, . . . N
m − 1} with observation node yu

j (i, k). Then,
convert WBN Bn to a factor graph Fn , as described in
Appendix A.

9) Estimate the wavelet coefficients in each realization
(p, q) of Bn , as described in (27) and (30).

10) Reconstruct the denoised image F̂ from the wavelet
coefficients obtained in Step (9) and the coarsest
approximating image A j Z .

The root of J ′(x) = 0 can be derived by the following fixed
point algorithm. Let xt be the estimated value after the t-th
iteration. Then, xt can be derived from xt−1 as follows:

xt = (
1 + σ 2

y

ωx p
2

)−1(
y − σ 2

y λ
∑

j

sign(xt−1 − x j )
)
. (30)

The iterative estimation stops when the difference between
the values xt−1 and xt is smaller than some given
threshold.

V. DENOISING ALGORITHM AND

EXPERIMENTAL RESULTS

In this section, we present our denoising algorithm, explain
its implementation, and compare its performance with that
of other methods. The proposed algorithm is summarized in
Algorithm 1. The steps are as follows: Step (1) calculates
the undecimated DWT of the input image; Steps (2) to (5)
construct the WBN B; and Steps (6) to (8) create the WBN Bn

used for denoising purposes; In Step (9), the wavelet coef-
ficients are estimated from Bn by applying the max-product
algorithm to the factor graph Fn for each realization of Bn . We
use CDF 9/7 filters to process the undecimated DWT. Because
CDF 9/7 filters are close to orthogonal wavelet filters, the noise
variance of subbands at all scales can be set at σ 2

n , which is
the image noise variance (see Appendix B). The variance σ 2

n
is used in the Wiener filtering in Step (2) as well as in deriving
the MAP estimation of the wavelet coefficients in Step (9). The
frequency count in Step (4) indicates the number of wavelet
coefficients in a quantization bin. The size of a subband’s
quantization bin is set at 1

4 of the standard deviation, measured
from the wavelet coefficients in the subband.

We conduct experiments on two sets of images. Set I
contains nine gray scale images (size 512×512 or 256×256)
downloaded from the USC-SIPI image database [43]; and
Set II (shown in Fig. 6) contains nine gray scale textures,
some of which are from the Brodatz texture set. The parameter
settings of the WBN denoising algorithm evaluated in the
experiments are: J = 4 (the number of wavelet decompo-
sitions), ω = 0.64 (Equation (18)), λ = 0.45 (Equation
(19)), and the parameter m = 4 in Step (3). Each subband
represents a 512 × 512 image and contains 4 × 4 nodes. The
WBN B has 16 × 4 × 3 variable nodes because there are four
subbands in each of the three orientations. Hence, WBN Bn

has 2×16×4×3 nodes, half of which are variable nodes and
the rest are observation nodes. For each observation node in
Bn , we assign 128 × 128 wavelet coefficients. Note that this
number is large enough to derive the empirical probability in
Step (4) of the WBN algorithm. There are also 128 × 128
realizations of Bn .

Next, we present the experimental results derived by our
algorithm and compare its performance with that of two state-
of-the-art algorithms: the BM3D algorithm [13] and the BLS-
GSM algorithm [23]. The source codes for the BLS-GSM
and BM3D methods are available from the websites of the
respective authors. Our algorithm is executed on an Intel
Core2Quad Q9300 CPU, with Windows XP and Matlab2007a.
Tables I and II list the averages of five denoised PSNR results
of the three compared methods for the images in Sets I and II
respectively; white noise was added with σ 2

n = 10, 15, . . . , 35.
In the tables, we divide the images into two groups and
compare the average PSNR gain of our method over the other
methods on the images in each group. Table III summarizes
the results in Tables I and II. Note that the Figureprint and
Baboon images are regarded as texture images because they
are dominated by texture information. Interestingly, the PSNR
gain of our method over BM3D is 0.1 dB for texture images
(Group 2), but only 0.02 dB for the other images (Group 1).
Moreover, from Table III, we observe that the gain of BM3D
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TABLE I

AVERAGE PSNR RESULTS FOR IMAGE SET I

Image
Noise PSNR
Level BL S− G SM B M3D Our

Einstein σn = 10 34.1406 34.4392 34.4837
512 × 512 σn = 15 32.6818 33.0331 33.0874

σn = 20 31.7412 32.1694 32.2287
σn = 25 31.0201 31.4186 31.4682
σn = 30 30.4306 30.8709 30.9175
σn = 35 29.9372 30.3777 30.4116

Boat σn = 10 33.5080 33.8883 33.9127
512 × 512 σn = 15 31.6452 32.1067 32.1375

σn = 20 30.3194 30.8554 30.8872
σn = 25 29.2846 29.8356 29.8612
σn = 30 28.4395 29.0954 29.1247
σn = 35 27.7301 28.2992 28.3286

Barbara σn = 10 33.1518 34.9567 34.9654
512 × 512 σn = 15 30.7724 33.0666 33.0735

σn = 20 29.0984 31.7376 31.7546
σn = 25 27.8214 30.7176 30.7354
σn = 30 26.7998 29.7049 29.7116
σn = 35 25.9775 28.8879 28.6753

Lena σn = 10 35.9226 36.6367 36.6375
512 × 512 σn = 15 34.1105 34.8782 34.8886

σn = 20 32.8047 33.0567 33.1246
σn = 25 31.7891 32.5501 32.4874
σn = 30 30.9633 31.6531 31.5637
σn = 35 30.2780 31.0301 30.9353

Cameraman σn = 10 33.3739 34.1355 34.1624
256 × 256 σn = 15 31.0334 31.8449 31.8702

σn = 20 29.5762 30.3797 30.4054
σn = 25 28.5242 29.4118 29.4837
σn = 30 27.6872 28.5516 28.6476
σn = 35 26.9689 27.8758 27.9645

House σn = 10 35.3223 36.6638 36.7135
256 × 256 σn = 15 33.7257 34.9028 34.9476

σn = 20 32.5237 33.7349 33.7782
σn = 25 31.5753 32.9084 32.9406
σn = 30 30.7650 32.1240 32.1574
σn = 35 30.0579 31.5103 31.5385

Pepper σn = 10 34.0542 34.6889 34.7184
256 × 256 σn = 15 32.0136 32.7290 32.7602

σn = 20 30.5676 31.2671 31.2957
σn = 25 29.4553 30.2223 30.2607
σn = 30 28.5640 29.3090 29.3276
σn = 35 27.8161 28.5795 28.6014

Fingerprint σn = 10 32.1994 32.4628 32.7284
512 × 512 σn = 15 29.9283 30.2822 30.5975

σn = 20 28.3391 28.8085 29.0732
σn = 25 27.0946 27.7112 28.0364
σn = 30 26.0682 26.8245 27.1262
σn = 35 25.1981 26.0995 26.4075

Baboon σn = 10 30.3735 30.5798 30.6623
512 × 512 σn = 15 27.8549 28.1390 28.2505

σn = 20 26.1750 26.5307 26.6275
σn = 25 24.9483 25.3495 25.4374
σn = 30 24.0063 24.4407 24.5238
σn = 35 23.2643 23.6554 23.7522

over BLS-GSM is smaller on texture images (0.06 dB) than
on the other images (1.0 dB). Texture images contain rich
across-scales information. Since both BLS-GSM and our
method exploit inter-scale coefficients for data estimation,
they are more adaptive to texture images than non-texture
images.

TABLE II

AVERAGE PSNR RESULTS FOR IMAGE SET II

Image
Noise PSNR
Level BL S− G SM B M3D Our

F0 σn = 10 31.6031 32.52 32.6212
512 × 512 σn = 15 29.6083 30.3213 30.4143

σn = 20 28.2910 28.8595 28.9314
σn = 25 27.2514 27.7279 27.8087
σn = 30 26.3668 26.7751 26.8644
σn = 35 25.6029 25.9243 26.0136

F7 σn = 10 29.9444 29.8987 30.1253
512 × 512 σn = 15 27.2804 27.3043 27.3765

σn = 20 25.5299 25.6216 25.6782
σn = 25 24.2851 24.3522 24.4186
σn = 30 23.3451 23.401 23.4862
σn = 35 22.602 22.5878 22.6574

p3 σn = 10 31.1789 31.3155 31.3385
512 × 512 σn = 15 28.8139 29.0087 29.0274

σn = 20 27.2571 27.4678 27.4936
σn = 25 26.1114 26.3278 26.3414
σn = 30 25.2116 25.4362 25.4535
σn = 35 24.4756 24.7034 24.7153

F3 σn = 10 29.2042 29.3575 29.5361
512 × 512 σn = 15 26.3055 26.3832 26.5738

σn = 20 24.3449 24.354 24.5363
σn = 25 22.8854 22.8154 23.0236
σn = 30 21.7442 21.6195 21.8514
σn = 35 20.8213 20.6102 20.9144

w2 σn = 10 29.0994 29.4042 29.496
512 × 512 σn = 15 26.499 26.798 26.8816

σn = 20 24.8784 25.1843 25.1547
σn = 25 23.7188 24.0512 24.1376
σn = 30 22.8012 23.1637 23.2473
σn = 35 22.0279 22.3965 22.5062

w6 σn = 10 29.6007 30.0207 30.1433
512 × 512 σn = 15 27.1382 27.5495 27.6887

σn = 20 25.5041 25.964 26.1186
σn = 25 24.2672 24.8184 24.9782
σn = 30 23.2643 23.9149 24.1045
σn = 35 22.4208 23.1486 23.3228

F6 σn = 10 28.5821 28.5956 28.7025
512 × 512 σn = 15 25.4728 25.5213 25.6175

σn = 20 23.3581 23.4603 23.563
σn = 25 21.7955 21.9042 22.0154
σn = 30 20.6055 20.6784 20.8706
σn = 35 19.6868 19.6259 19.8154

F8 σn = 10 29.0382 28.9781 29.1012
512 × 512 σn = 15 26.1317 26.1037 26.2387

σn = 20 24.2006 24.2121 24.3382
σn = 25 22.7888 22.8208 22.9647
σn = 30 21.7053 21.734 21.883
σn = 35 20.8487 20.8181 21.0225

S2 σn = 10 29.3274 29.3933 29.4072
512 × 512 σn = 15 26.5777 26.5264 26.5942

σn = 20 24.895 24.6771 24.9125
σn = 25 23.8043 23.4976 23.8315
σn = 30 23.059 22.7346 23.0627
σn = 35 22.523 22.2268 22.5434

In Figures 5, 6, and 7, we perceptually compare some
images that were denoised by the three methods. The percep-
tual quality of the images denoised by BM3D and our method
is better than that of the BLS-GSM images. The highlighted
regions in the figures compare certain details of the denoised
images derived by all three methods with the corresponding
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TABLE III

SUMMARY OF OUR PSNR GAIN

Image Group Averge PSNR Gain

versus
BLS-GSM

versus
BM3D

Group 1 (First seven images in Table I) 1.0239 0.0207

Group 2 (Fingerprint + Baboon + Images in
Table II)

0.2922 0.1268

All Images in Tables I and II 0.9403 0.0594

(a)

(b)

(c)

(d)

Fig. 5. Comparison of the denoised images derived by BLS-GSM, BM3D,
and our algorithm. The noise standard deviation is σn = 25. (a) Original Lena
image. (b) Denoised result of the BLS-GSM algorithm. (c) Denoised result
of the BM3D algorithm. (d) Denoised result of our algorithm.

regions in the original images. We observe that BM3D tends
to over-smooth textured regions, whereas the proposed method
preserves more image details, as shown in the highlighted

(a)

(b)

(c)

(d)

Fig. 6. Comparison of the denoised images derived by BLS-GSM, BM3D,
and our algorithm. The noise standard deviation is σn = 25. (a) Original
House image. (b) Denoised result of the BLS-GSM algorithm. (c) Denoised
result of the BM3D algorithm. (d) Denoised result of our algorithm.

regions. Note that our method recovers the brick textures of the
House image quite well, but the images recovered by BM3D
and BLS-GSM are over-smooth. However, in some smooth
regions, such as the sky regions of the House image, where
the pixels are highly correlated with each other, our method’s
spanning tree structure does not impose sufficient constraints
on the pair of pixels; thus, the visual quality of our method is
more noisy than that of BM3D and BLS-GSM. Comparison of
the denoised results of the F0 image shows that a lot of details
are removed by the BM3D method, but they are retained by
our method, which carries information from the coarse scale
to the fine scale and vice versa during the data estimation
process.
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(a)

(b)

(c)

(d)

Fig. 7. Comparison of the denoised images derived by BLS-GSM, BM3D,
and the proposed algorithm. The standard deviation of the noise is σn = 25.
(a) Top-left-corner of the original F0 image. (b) Denoised image derived by
the BLS-GSM algorithm. (c) Denoised image derived by the BM3D algorithm.
(d) Denoised image derived by our algorithm.

The computational cost of our method is comprised of the
cost of constructing a WBN and that of BP inference on the
WBN. Let k be the number of labels for a wavelet coefficient;
let an image be of size N × N ; and let J be the number
of scales. The computational cost of constructing a WBN
is O(3J (m4 log2 m4 + km4 + N2)), where m4 log2 m4 is the
complexity of Kruskal’s algorithm for deriving an MWST
on a wavelet patch, km4 is the complexity of computing the
conditional mutual information, and N2 is the complexity of
deriving the histogram. As mentioned in Section II, the average
cost of the BP inference on a WBN is O(3J N2k). The running

times for our current unoptimized Matlab implementation,
with m = 4, J = 4, and k = 300, on a Windows XP PC with
Intel Core2Quad Q9300 CPU, is approximately 2500 seconds
for 512 × 512 images.

VI. CONCLUSION

The Bayesian formula indicates that the denoising problem
is essentially a prior probability modeling and estimation
task. In this paper, we present a constructive data-adaptive
procedure that derives a hidden graph structure from the
wavelet coefficients. The graph is then used to model the
prior probability of the original image for denoising purposes.
Moreover, we show that if the network is a spanning tree,
the standard BP algorithm can estimate MAP efficiently.
We compare our denoised results with those derived by
other approaches, including BM3D, and demonstrate that our
method yields a better PSNR and better perceptual quality
on the textured areas of an image. Extending our method
to content sensitive wavelet patches is an issue that merits
future study. We will also investigate ways to speed up our
algorithm’s execution time.

APPENDIX A

CONVERSION OF A WBN TO A FACTOR GRAPH AND THE

USE OF THE MAX-PRODUCT ALGORITHM

Bayesian networks and factor graphs are closely
connected because one representation can always be
converted into the equivalent form of the other representation
[37]–[40].

Next, we describe the conversion of a network Bn to a
factor graph Fn and explain the max-product message passing
algorithm. Let Bn = (V ∪ Y, E ∪ En, P ∪ Pn) be a WBN
constructed according to the description in Sections III and
IV. In addition, let x → z be an arc in E ∪ En such that x is
the source node and z is the sink node of the arc. We associate
each variable node z ∈ V with a factor node Dz . The vertices
of the factor graph Fn consist of variable nodes V ∪ Y and
factor nodes D = {Dz |z ∈ V }. The (undirected) edges in the
factor graph Fn are constructed from Bn as follows. For each
source node u of u → x , there is an edge (u, Dx ) between
the variable node u and the factor node Dx ; and for each sink
node v of x → v, there is an edge (x, Dv ) between variable
node x and factor node Dv . There are three types of arcs in
Bn: 1) arcs from observation nodes to hidden variable nodes;
2) parent-child (inter-scale) arcs; and 3) (intra-scale) sibling
arcs. In the following, we explain how to convert each type
of arc in Bn to a factor graph Fn .

Type 1: y → x , where y is an observation node and x is a
variable node in Bn . The arc is converted to two
(undirected) edges (y, Dx ) and (x, Dx).

Type 2: x p → x , where x p is a parent variable node at a
coarser scale and x is the child variable node at
a finer scale. The parent-child arc is converted to
two edges (x p, Dx ) and (x, Dx ).

Type 3: sibling arc xb → x , where xb is the variable node
at the same scale and orientation as the variable
node x . The sibling arc is converted to two edges
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F0 F7 p3

F3 w2 w6

F6 F8 S2

Fig. 8. Nine textures from image set II.

(xb, Dx ) and (x, Dx). Figs. 8(a) and 8(b) illustrate
the conversion of a small Bayesian network Bn to
an equivalent factor graph Fn .

The probability inference of a factor graph is derived
through forward and backward message passing. To facilitate
message passing, the factor graph Fn is arranged as a spanning
tree with an arbitrarily chosen variable node in V as its root.
As shown in Fig. 8(c), a tree is obtained by choosing x1 as the
root vertex for the factor graph in Fig. 8(b). The variable nodes
and factor nodes in Fn are organized as alternating levels of
the tree as follows: level 0 is the root of the tree; the nodes at
level 1 are factor nodes, and the nodes at level 2 are variable
nodes and so on. Note that all the variable nodes in Y are at the
leaf level of the tree. Forward message passing begins with all
nodes at the leaf level; then, messages are forwarded level by
level to the root. Each vertex stores received messages for later
use. Then, backward message passing commences at the root
level and messages progress level by level to the leaf level.
Thus, each edge in Fn passes messages in both directions [26].

APPENDIX B

NOISE VARIANCE IN EACH SUBBAND

The coefficients obtained by applying the j -th wavelet’s
decomposition to an m × m image Ñ of Gaussian white noise
of variance σ 2

n can be written as
[

H0, j

H1, j

]

Ñ
[

H T
0, j H T

1, j ,
]

(31)

where H0, j and H1, j are, respectively, the scaling filter and
wavelet filter at scale 2 j . If undecimated wavelet decomposi-
tion is applied, the dimensions of matrices H0, j and H1, j will
be the same as that of image Ñ .

Applying the vec operation to Equation (31), we obtain

vec

([
H0, j

H1, j

]

Ñ
[

H T
0, j H T

1, j

])

=
([

H0, j

H1, j

]

⊗
[

H0, j

H1, j

])

vec(Ñ) = Ã vec(Ñ). (32)

Because E{vec(Ñ)vec(Ñ)T } = σ 2
n I , where I is the identity

matrix, we have

tr(E{ Ã ÃT })
= σ 2

n · tr

(( [
H0, j

H1, j

]

⊗
[

H0, j

H1, j

])

( [
H T

0, j H T
1, j

]
⊗

[
H T

0, j H T
1, j

] ))

= σ 2
n · tr

(( [
H0, j

H1, j

] [
H T

0, j H T
1, j

])

⊗
( [

H0, j

H1, j

] [
H T

0, j H T
1, j

]))

= σ 2
n · tr

([
H0, j

H1, j

] [
H T

0, j H T
1, j

])2

= σ 2
n · (tr(H0, j H T

0, j ) + tr(H1, j H T
1, j))

2. (33)

The noise variances in subbands LL, LH, HL, and HH are

σ 2
n

(tr(H0, j H T
0, j))

2

m2 = σ 2
n ρ j,L L, (34)

σ 2
n

(tr(H0, j H T
0, j)tr(H1, j H T

1, j))

m2 = σ 2
n ρ j,H L

= σ 2
n ρ j,L H (35)

σ 2
n

(tr(H1, j H T
1, j))

2

m2 = σ 2
n ρ j,H H . (36)

respectively. If orthogonal wavelets are used, then the value
of ρ is equal to 1 for all subbands.
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