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Analysis on Multiresolution Mosaic Images
Ming-Shing Su, Wen-Liang Hwang, and Kuo-Young Cheng

Abstract—Image mosaicing is the act of combining two or
more images and is used in many applications in computer vision,
image processing, and computer graphics. It aims to combine
images such that no obstructive boundaries exist around over-
lapped regions and to create a mosaic image that exhibits as little
distortion as possible from the original images. In the proposed
technique, the to-be-combined images are first projected into
wavelet subspaces. The images projected into the same wavelet
space are then blended. Our blending function is derived from
an energy minimization model which balances the smoothness
around the overlapped region and the fidelity of the blended
image to the original images. Experiment results and subjective
comparison with other methods are given.

I. INTRODUCTION

WHEN TWO or more images are overlapped to form a
single mixed image, finding an ideal image combination

can be difficult. An image mosaic processing technique can be
applied to greatly reduce this difficulty. To mosaic an image is to
combine overlapped images so that the mixed image contains no
obstructive boundaries in the transition region while preserving
the general appearance of the original images. An image mosaic
is typically completed in two stages. In the first stage, the corre-
sponding points in the two to-be-combined images are identified
and registered. This stage is usually referred to as image regis-
tration [1]. In the second stage, the intensities of the images are
blended after the corresponding points have been registered. Not
all applications of image mosaicing require registration, such as
in movie special effects. In these cases, unrelated pictures are
blended to produce visual effects. In this paper, we assume that
the to-be-combined images have either been well registered or
require no registration. In other words, we focus on blending
image intensities of arbitrary images.

Image combination problems can be found in many fields.
Typical examples include photogrammetry, computer vision,
image processing, image synthesis, and computer graphics [7],
[11], [16]. One significant application of image mosaicing is in
the generation of panoramic views from a series of overlapped
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snapshot images, such as pictures taken by the Explorer satellite
[19]. Another application of image mosaicing in the area of
computer graphics is the generation of three-dimensional (3-D)
texture mappings. Our study was motivated by the current need
for a 3-D model of person’s head generated from two-dimen-
sional (2-D) orthogonal views. This works by mapping 2-D
snapshot views onto a conformal mapped 3-D head model.
Understanding the characteristics of image mosaicing itself is
important, and a deep exploration of the underlying theoretical
foundation supporting each image mosaicing technique is
necessary. Our study on mosaic image analysis aims to develop
a theory that supports different image mosaicing techniques
and to develop new image mosaic processing techniques based
upon the results.

It is justifiable to adopt a weighted average to blend two over-
lapping images so that the values of pixels within a transition
zone are evaluated by a weighted average of the corresponding
pixel values in each image. In order to properly blend image
features at different resolutions, multiresolution analysis is in-
troduced. In the multiresolution approach, the to-be-combined
images are then decomposed into different resolution levels so
that they can be blended at each resolution level. Theoretically,
in the multiresolution representation of the to-be-combined im-
ages, detailed features (such as wrinkles) and large area features
(such as skin color) are separated into different resolution levels.
Different weighted average functions can be applied to the
different resolution levels without interfering with each other.
Hence, in a multiresolution image mosaic approach, two main
issues are of concern: effectively decomposing images into
multiresolution levels and smoothly blending images at each
multiresolution level.

Of previous works on multiresolution image mosaicing, the
method proposed by Burt and Adelson [2], [3] is the most pop-
ular. Their method uses spline functions for blending subband
coefficients based on multiresolution pyramidal representation.
Their method consists of two major steps. First, two to-be-com-
bined images are decomposed into subband coefficients by
means of pyramidal Laplacian operators. Next, spline functions
are applied to blend the images at overlap regions where the
subband coefficients will be combined. The advantage of this
method is that it is easily computed and, in most cases, yields a
satisfactory result in terms of human perception. However, no
objective measure is mentioned in either of their papers, and,
thus, there is no way to determine how effective the method is.

Image blending based on multiresolution pyramidal repre-
sentation leads to the possibility of using a wavelet transform to
combine images in wavelet subspaces. However, direct appli-
cation of the wavelet approach using the same multiresolution
pyramidal concept is problematic in that, if image combi-
nation is done by blending wavelet coefficients, the mosaic
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image will inevitably be effected by the synthesis filter in
the inverse wavelet transform. One typical example is found
in the wavelet-based image mosaicing method proposed by
Hsu and Wu [10]. Their approach is conceptually similar to
the multiresolution pyramidal approach proposed by Burt and
Adelson; however, the multiresolution Laplacian operators are
replaced by wavelet analysis filters.

During our study, we observed that recognition of the quality
of a mosaic image is subjective. We generally expect a smooth
transition when combining two images of the sky. In some ap-
plications, such as combining IC layout images which contain
several boxes, we prefer not to over-smooth the sharp edges that
exist in the original images. Hence, it is important to build a
model for mosaic images that has an objective measure that in-
corporates certain user parameters so that users can control or
improve the behavior of the resultant images.

Energy minimization models have been widely used in com-
bining low-level image properties with higher-level knowledge
[12]. We use the minimization of a blending energy function
as our model. Within our blending energy function, two varia-
tion terms, image value variation and first derivative variation,
are measured and minimized. Image value variation measures
the difference between corresponding pixel values of the mo-
saic image and the to-be-combined image. First derivative vari-
ation measures the difference between the first derivative values
of the mosaic image and the blended values of each respective
first derivative. Our mosaic image can be effectively obtained
by minimizing the blending energy function. The quality of the
resultant image can be controlled and improved with an addi-
tional parameter that balances the two variation terms of the
blending energy function. This model can be extended to other
customized measurements. For example, perceptual measure-
ment could have been included to measure mosaic images. How-
ever, proposing such a perceptual measurement is difficult due
to its subjectivity. Therefore, the blending energy function in
the following discussion is restricted to the image value varia-
tion and the first derivative variation.

II. MULTIRESOLUTION IMAGE MOSAICS

A 2-D biorthogonal multiresolution analysis can be obtained
by means of a tensor product, from two one-dimensional
(1-D) biorthogonal multiresolution analyses, which obtains the
scaling functions and and the wavelet
functions and with ,
respectively, where

and

Based on wavelet theory [6], an image in the th mul-
tiresolution analysis space can be projected into subspace im-
ages, shown in (1) at the bottom of the page, where

and

with . The original image can then be recon-
structed by summing all of the subspace images, i.e.

(2)

Let and be the left and right images to be
combined along a seam line and be the resultant
mosaic image. For simplicity, we assume that is
in the following discussion. Let and be the
images obtained by projecting and into the
wavelet subspace at scale according to (1). The notation

indicates that the subspace
image is obtained by blending the left part of
and the right part of from seam line . indicates
the blending procedure. The parameter indicates that the
overlapped region of and is within a distance
of from the seam line . Note that, instead of being blended
in subband coefficients, images are combined in their wavelet
subspaces. As a result, can be obtained by directly
summing the blended subspace image by (2) without
being affected by the synthesis filters.

In this paper, we assume that the blending operator can
be expressed as the following polynomial weighting formula to
merge the corresponding points in each image:

(3)

(1)
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where is a weighting coefficient function for each
term. In special cases when and are identical,
i.e., , then the resultant subspace
image should be identical to the input subspace image

after applying to input subspace images. That is

(4)

Because (4) must hold for any arbitrary input image , it
is necessary that

Now, letting , operator becomes

(5)

In the following discussion, we derive an optimal from an
energy minimization model in each wavelet subspace . The
final mosaic image is obtained from

(6)

III. BLENDING MODEL

We propose to build a blending model for mosaic images
that has an objective measure which incorporates certain user
intervention parameters which control the behavior of resultant
images according to user requirements. Using an energy func-
tion to solve a low-level image processing problem through
user intervention was first proposed in [12]. Our blending
model which derives the operator is based upon the min-
imization of an energy function which measures the variation
between the mosaic image and the to-be-combined images.
Image intensity and its derivatives are key low-level features.
To minimize the image value variation, we impose a con-
straint that allows the pixel values of a blended image to be
as close as possible to the corresponding pixel values of the
to-be-combined images. To minimize the first derivative vari-
ation we impose the constraint that requires the first derivative
of the mosaic images to consistently agree with that of the
to-be-combined image.

We formulate our energy functional at scale as

(7)

where parameter indicates that the effective overlapped re-
gion of and is within a distance from the

seam line . is the image value variation, is the
first derivative variation, and balances these two variation
terms at scale . In practice, we let and ,
where and are chosen parameters. A larger means that a
larger area of one image is influenced by the other image in the
blending processing.

In general, the left side of a mosaic image should be similar
to the left to-be-combined image, and the right side to the right
to-be-combined image. A left cutoff operation for the left
image at scale , , is defined as

if
if
if

(8)

where is a left-to-right monotonically decreasing func-
tion satisfying . After applying a left
cutoff operation to the variation, the right part is cut off and the
left part is preserved. The right cutoff operation is defined
similarly which takes the right side of the right image
at scale as

if
if
if .

(9)
Then, we can write the term of the image value variation as

(10)

The minimization of the first derivative variation tends
to preserve the consistency of the first derivative between the
blended image and the to-be-combined images. Two derivative
maps are considered, one being the first derivative values of
the blended image and the other being the map obtained from
blending the first derivative values of the two to-be-combined
images. Then, the first derivative variation is defined so as to
measure the difference between these two maps, i.e., is

(11)

From (7), (10), and (11), we get the blending energy func-
tion of the blended image at scale [shown in (12),
at the bottom of the next page] where , , , and are
abbreviations for , , , and , re-
spectively. The blending operator is found by minimizing

in (12) for images and . In summary,
the blending problem becomes an optimization problem in our
blending model.

IV. MINIMIZING THE BLENDING ENERGY FUNCTION

The objective energy function of the above (12) must deter-
mine functions and . The cutoff function divides the
mosaic image to left and right sections in order to compare these
overlapped sections with the two original images at scale .
The weighting function determines how the left and right
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Fig. 1. (a) Scan line of 1024 points from a row in the left image. (b) Scan-line from the same row of the right image. (c) Resultant mosaic signal with � = 1:0

point width, � = 0:5, and N = 7 levels.

sections are blended. These two functions are dependent on ea-
chother and on the images. The objective function can be mini-
mized by a variational calculus approach. However, finding the
optimal solution of the objective function by variational calculus
is time- consuming because a partial differential equation with
two boundary constraints must be solved. We apply the finite
element method [15] to find the solution in a more effective
way. With the finite element method, an unknown function is
expressed as a linear combination of selected basis functions
called finite elements. An optimal solution can be obtained by
solving a set of linear equations.

According to the finite element method, we first choose a set
of B-spline basis functions
called the finite elements [8]. We restrict and
to lie within the spaces spanned by a linear combination of these
finite elements

and

(13)

where and .

TABLE I
AVERAGE SCORE OF OUR SUBJECTIVE TEST FOR IMAGE MOSAICS

Our intention is to find and that together
minimize (12) using the following boundary conditions:

(14)

At the middle of the overlapped region ( ), we give equal
weights to both left and right to-be-combined images. The con-
dition at indicates the diminishing influence of the left
image on the right section of the mosaic image at scale . We
first substitute (13) into the linear constraints given in (14) and
obtain

(15)

(12)
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Fig. 2. Images (a) and (b) are the original tower images. (c) shows the seam line along which images (a) and (b) were blended. (d) is our mosaic image obtained
with � = 1:0, which produced the image that the subjects preferred. (e) is our mosaic image obtained with � = 0:2. (f) and (g) are the mosaic images obtained
respectively by Burt’s method and Hsu’s method.

Equation (13) is then substituted into (12), and the resulting
equation is then solved by alternating between finding the op-
timal alpha vector for and finding the optimal beta vector
for , where depends only on the alpha vector, and
depends only on the beta vector. The functions and are
given as

and (16)

(17)

where the Hessian matrices , , , , , and are

and
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Fig. 3. Left: mosaic images of butterfly, landscape, and arena obtained through direct combination along the mid-line. One can clearly see the discontinuity in
intensity along the mid-line. Right: mosaic images obtained using our algorithm where � = 1:0 and � = 0:1, 0.5 and 0.5, respectively, for butterfly, landscape,
and arena. The �s are given according to the best results of a subjective test. The discontinuity along the mid-line no longer exists.

The minimization of and is
quadratic programming with linear constraints. Lagrange multi-
pliers can be used to obtain optimal solutions by solving a linear
system. This alternative minimization method is stable and fast
[4]. Once the alpha and beta vectors are obtained, we use (13)
to find the corresponding functions and . In
our experiments, and converged on average
in four iterations. An example demonstrating our blending al-
gorithm on 1-D signals is given in Fig. 1.

V. EXPERIMENTAL RESULTS

Because human recognition of a mosaic image tends to be
subjective, an ideal mosaic image is unknowable. Thus, a quan-
titative comparison of mosaic images obtained using various
methods is impossible. Instead, a simple subjective test was de-
signed in which ten subjects were asked to grade images by their
perception of image quality. The to-be-combined images were
first shown to each subject, and then a sequence of mosaic im-
ages was displayed in random order. Subjects were instructed to

assign a score to each image from five, representing the range
from excellent quality, to one, representing poor quality. As
shown in Table I, an averaged score was given to each image. In
this test, has values 0.1, 0.2, 0.5, and 1.0. The finite element
basis function is B spline with in (13) in our algorithm. In
Burt and Adelson’s method, we use their suggested weighting
function using . This value is chosen according to the
appearance of the resultant images by performing experiments
over a range of . In Hsu’s method, we use eight
levels of wavelet decomposition with the 9–7 wavelet [17].

Fig. 2 shows the tower image. Fig. 2(a) and (b) show the orig-
inal to-be-combined images on the left and right, respectively.
In Fig. 2(c), the seam line where the images were combined is
shown, and Fig. 2(d) shows the mosaic image with
along the seam line shown in Fig. 2(c). The black region of
Fig. 2(c) was taken from Fig. 2(a) and the white region was taken
from Fig. 2(b). The images butterfly, landscape, and arena are
shown in Fig. 3. The bold numbers given in Table I show that
our algorithm, with different values of , yields the best per-
ceptual quality for each image. The advantage of the proposed
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Fig. 4. Image mosaic created with a curved boundary. (a) and (c) are the to-be-combined images. (b) is the curved boundary where (a) and (c) will be combined.
(d) is the mosaic image created through direct combination. (e) is our mosaic image created with � = 1:0.

algorithm lies in the fact that the user can obtain his or her de-
sired image by tuning . For example, our mosaic image with

scored best for the tower image, and with , it
scored best for the butterfly image. This flexibility can be useful
when a specific level of image quality is required in custom de-
sign work.

VI. BLENDING ALONG A CIRCULAR BOUNDARY

So far, we have only discussed image blending along a
straight line. Extending the proposed method to a curved
boundary can be achieved by approximating the curve using
segments of circles with varying curvature. This idea is illus-
trated with a simple example of image blending along a circular
boundary .

An image pixel at can be represented in polar coordi-
nates by

Let a circle be centered at (0,0) with radius . The circle
will become a line at with the coordinate . The im-
ages in each subspace can be blended by first representing them
as and then blending along the seam line with
using the previously mentioned algorithm. Finally, the blended
image can be transformed back to the Cartesian coordinates

. Fig. 4 shows an example in which Fig. 4(e) is the mosaic
image obtained by combining Fig. 4(a) and (c) using a circular
boundary enclosing the mask shown in Fig. 4(b). The result of
direct image combination is shown in Fig. 4(d).

VII. CONCLUSION

Subjective comparison has shown that the subjective image
quality achieved by the proposed method is better than that
achieved by other methods. However, it has a longer computing
time than other methods (it is about six to eight times slower than
the Burt and Adelson method in Matlab [14]). Our model can
be extended by adding some higher-order derivative variations.
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However, experiments show that the perception difference be-
tween the mosaic images obtained by the proposed method and
those obtained by a higher-order derivative variation method
(with a second derivative variation) is not easily distinguished.

Humans recognize a mosaic image subjectively while com-
puter vision algorithms measure a mosaic image objectively.
Therefore, we do not try to find an ideal mosaic image. Instead,
we obtain an objectively optimal mosaic image by minimizing
the blending energy function that measures two variation terms:
image pixel variation and first derivative variation. The two
variation terms are balanced by an additional parameter .
By adjusting this parameter, we can improve the subjective
quality of the mosaic image. Although image intensity and its
derivatives are important low-level features; however, the two
variation terms in our energy function do not include perceptual
measurement of the mosaic image. A criterion that measures
the appropriate perceptual quality can be incorporated in the
model in future works.
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