
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006 331

Multiple Blocks Matching Pursuit Update Algorithm
for Low Bit Rate Video Coding
Jian-Liang Lin, Wen-Liang Hwang, and Soo-Chang Pei, Fellow, IEEE

Abstract—Matching pursuit (MP) is a greedy algorithm that de-
composes a signal into a linear combination of bases within an over-
complete dictionary. The MP algorithm is usually only approxi-
mated due to its massive computational complexity. By approxi-
mating a residual in a subspace, we propose a multiple blocks MP
update algorithm for video coding that achieves a faster and better
MP approximation than traditional algorithms. As the subspace
is dependent on a residual, our algorithm is content-dependent.
We evaluate the coding performance, including the peak signal-to-
noise ratio, runtime, and subjective quality, of our algorithm and
compare it with traditional MP algorithms.

Index Terms—Content based video coding, fast algorithm,
matching pursuit (MP), video coding.

I. INTRODUCTION

MATCHING PURSUIT (MP), which is a frame-based al-
gorithm, is a promising method for low bit rate video

coding [11], [15]. An MP-based codec yields a better PSNR and
perceptual quality than a transform-based codec, and its decoder
is simpler [12]. However, it cannot be used in applications that
require real time bidirectional communications, because the en-
coder consumes a massive amount of computational time. An
MP encoder does not obtain all the coefficients in one step, but
iteratively finds the frame coefficient that has the largest abso-
lute inner product value between a residual and all the bases.
The inner product value and the base from which the value is
obtained are called an atom. Many approaches have been pro-
posed to simplify the complex encoding stage. One approach
approximates the codewords of a dictionary with a linear com-
bination of simpler codewords so that the computation is easier
[3], [4], [13], [14], [16]. This approach can be further developed
by combining the inner product calculation and the atom finding
components [9].

Another method precalculates and stores all the inner prod-
ucts between bases so that the encoder can update the inner
products with the precalculated values of the bases, instead of
recalculating the inner products between a residual and the bases
at each iteration [10]. This is an efficient way to decompose
a one-dimensional signal. However, it is totally unsuitable for
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video coding, because there are too many inner products be-
tween the bases. In the popular Gabor dictionary used in MP
video encoding, there are 400 codewords, each of which is at
most 35 35 pixels. Consequently, the inner products between
bases need at least a 30-Gb memory (assuming four bytes for a
real value).

This difficulty prevents the MP algorithm achieving its best
performance. The most popular approach for finding an atom
is that proposed by Neff and Zakhor [11], whereby a residual
frame is divided into blocks and, at each iteration, an atom is
found within the block with the highest energy. This approach
is modified in [1], which gives an energy weight to each block so
that the more atoms chosen from a block, the smaller the energy
weight of that block will be. Therefore, the block is less likely
to be chosen in later iterations. The energy-weight approach
reduces the likelihood that the majority of atoms will be se-
lected from a few blocks, and improves the peak signal-to-noise
(PSNR) performance of Neff and Zakhor’s algorithm.

As the above algorithms find an atom from the largest
(weighted) energy block, we call them one-block algorithms.
These approaches are simple and efficient, but their coding
performance may be unsatisfactory. Although the performance
can be improved by finding an atom from more than one block,
there is still the issue of the massive number of inner products
between a residual and the bases in the blocks. To solve this
problem, we approximate a residual in a subspace, spanned by
a small number of bases within a few blocks. The bases and
the blocks are selected according to the content of the residual,
while the coding performance and efficiency are determined
by the number of bases and the number of blocks. Simulations
show that our algorithm achieves better subjective and objec-
tive performances and requires less runtime than one-block
algorithms for various sequences at low bit rates.

The remainder of the paper is set out as follows. In Section II,
we review the MP update algorithm. In Section III, we propose
our approach. In Section IV, the performance evaluation and
comparisons are given. Finally, in Section V, we present our
conclusions.

Definition: (1) A codeword is an element in a dictionary. (2)
A codeword centered in a position forms a base. (3) An atom is
composed of a base and its corresponding inner product value.

II. MP UPDATE ALGORITHM AND ATOM EXTRACTION

MP is a frame-based algorithm that represents a signal by a
succession of greedy steps [10]. At each iteration, the signal is
projected onto the base that approximates the signal most effi-
ciently. Let . Instead of recalculating the inner

1051-8215/$20.00 © 2006 IEEE
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products at each iteration, Mallat and Zhang [10] developed the
MP update algorithm. At the th iteration, let

be the base of the largest absolute inner product value. The new
residual signal is

The inner products between and the bases can be
represented by

(1)

Because and were calculated in the pre-
vious iteration, and if is precalculated, this update op-
eration only needs one addition and one multiplication. How-
ever, the algorithm needs a huge amount of space to store all
nonzero in an image and is only practical for one-di-
mensional signal decomposition. Thus, the MP update algo-
rithm cannot be used in video encoding. Instead, the proposed
approach in [1] and [11] divides a residual into blocks and, at
each iteration, the MP algorithm is applied to the block with the
highest energy. This approach is both simple and efficient, and
has been implemented in many MP-based video codecs.

III. MULTIPLE BLOCKS APPROXIMATION

The approach in [1] and [11] assumes there is a high proba-
bility that the current largest energy block contains the maximum
atom (i.e., the atom with the largest absolute inner product of the
current residual frame). This assumption can be developed fur-
ther by measuring the probability that the maximum atom can be
found within blocks with different normalized energy, as shown
by the Akiyo sequence in Fig. 1. We observe from the figure
that most maximum atoms are found in higher energy blocks.
Thus, a fast algorithm that includes the blocks with higher en-
ergy when searching for atoms probably yields an efficient ap-
proximation of the MP algorithm.

A. Block Selection

Finding an atom from the block with the highest energy is
generalized so that an atom can be found in multiple blocks of
relatively high energy. Before we propose our multiple block
selection algorithm, we present a condition for the optimal set
of blocks for atom selection and highlight the difficulties in ob-
taining the optimal set in practice.

Let be the set of blocks in which we search for atoms. For
a block , let be the probability that the maximum atom
is not within , and let be the probability that contains
the maximum atom. Hence, . The miss prob-
ability means that the block containing the maximum atom
is excluded when searching for the maximum atom

(2)

Fig. 1. Probability that the maximum atom can be found in blocks with
different normalized energy. The blocks’ energies are normalized so that the
largest energy is equal to 1. The correlation between a block’s energy and the
block containing the maximum atom is high. This distribution was obtained
from the Akiyo sequence encoded at 24 kbps with a frame-rate of 10 frames/s.

The false alarm probability means that an atom is found in
a block that does not contain the maximum atom

(3)

We define the average performance loss of selecting an atom
incurred by as

where the nonnegative numbers and represent the
respective average conditional performance loss when a false
alarm or a miss occurs. Because

(4)

from (2)–(4), we can derive

(5)

where is the size of . Let the optimal set be the block
set that minimizes the above equation. A necessary condition for
a block in is that . Otherwise,
one can remove from and obtain a new optimal block set

. For this block set, we have ,
which contradicts the assumption that is the minimum
value.
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Fig. 2. Dotted line represents the chosen �. We assume that is the set of
blocks with normalized energy greater than �.

Let be the set of blocks that satisfies

(6)

Because any block in must be in , we have

(7)

Using , (6) can be rewritten as

(8)

where . For a block to be included in the
optimal block set , must be greater than the threshold

. In practice, the optimal threshold is difficult to determine,
so is the optimal set . However, a good ad-hoc procedure is to
include those blocks whose is high enough to find atoms, as
shown by the blocks with higher energy in Fig. 2. Thus, at each
iteration of the MP algorithm, the blocks’ energies are normal-
ized so that the highest energy is equal to 1. A block is assigned
to according to its normalized energy

where is a threshold. An atom is then chosen from
the blocks in .

If the MP were applied directly to the blocks in , as in a
one-block algorithm, the complexity would increase by a factor
of . The increase in complexity is an issue that needs to be
addressed further.

B. Block Content Approximation

In low bit rate coding, which allocates a limited bit budget to
each residual, we can use the MP algorithm to encode an approx-
imation of a residual, instead of the residual itself. The approx-
imated residual, , is assumed to be in the subspace spanned by
the union of the bases of each block in . Since the MP algo-
rithm is an efficient representation of a residual, the bases of
a block can be obtained by selecting the bases with the largest
absolute inner products in the block. Let

Fig. 3. After the base corresponding to the black hexagon at the center of the
gray area has been selected, the inner products with the bases covered in the
gray area are updated. The black dots are bases. In this example, L = 2 and
j j = 10.

be the bases that have the largest absolute inner products in the
block .

Our approach encodes , instead of the original residual .
Fig. 3 shows an example in which and . If a
block has pixels, and is the size of the dictionary ,
then the total number of bases in a block is . Because

, the number of approximating bases, is much smaller than
, the efficient MP update algorithm can be used to en-

code the approximating residual . Our approach is explained
by the following algorithm.

Multiple Blocks Update Algorithm:

Step 1) Initialization : The residual is first di-
vided into blocks, and the blocks’ energies are nor-
malized so that the highest energy is equal to 1. A
block whose normalized energy is greater than is
assigned to , and the inner products between the
residual and the bases of the block are calculated.
We then record the bases that have the largest ab-
solute inner products and assign them to . We also
obtain an approximated residual .

Step 2) Apply MP Update (at th iteration): Find the base
in that yields the largest absolute inner product
value in , and extract the atom to obtain .
We then update the inner products according to the
selected base and (1).

Step 3) Update : For a block that is not in , if its nor-
malized energy is larger than , we include it in .
We then calculate the inner products between
and the bases within this block, and record the best

bases in , as in Step 1.
Step 4) Next iteration: . If , go to Step 2.
Step 1 uses all the bases to compute the inner products for

each block in . From each block in , we then select the
bases that produce the largest absolute values. Let be the
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union of the bases of all blocks. Because we assume that the
approximating residual is in the subspace spanned by , Step 2
applies the MP update algorithm to the bases in to obtain
new inner products. After an atom has been extracted from a
block in Step 2, the energy of some blocks changes. Thus, new
blocks are added to in Step 3, and more new bases are obtained
from those blocks. Because is dependent on a residual, this
algorithm is content-dependent. Also, and may grow as
the number of iterations increases.

Step 1 calculates inner product values for each block
in . After the inner products have been obtained, the com-
plexity of for each block is required to extract the
bases with the largest absolute inner products from them [2].
Although the complexities of calculating and sorting the inner
products are of the same order, inner product calculations are
more expensive than sorting inner product values. Thus, in the
analysis below, we omit the complexity of sorting inner product
values. Since Step 1 applies MP to blocks, it requires to-
tally inner products. In Step 2, after the atom with
maximum inner product has been selected, the inner products
between the new residual and the bases in must be updated.
Since selecting the atom only affects part of the residual, ac-
cording to (1), Step 2 only needs to update the inner products
of the bases that have nonzero inner products with the newly
selected atom. Fig. 3 shows an example where the number of
inner products to be updated is 4.

As Step 3 may add new high energy blocks to , the bases
in the blocks are selected and assigned to . For each newly
added block, the computation cost will be the same as Step 1.
Let be the average number of bases that must be updated at
each iteration. If a residual performs iterations on average, we
require

(9)

complexity to approximate a residual, where and , re-
spectively, are the average complexity for calculating an inner
product and performing an MP update operation. The first term
in (9) is the sum of the costs of Steps 1 and 3, while the second
term is the cost of applying times Step 2.

To achieve better efficiency than the one-block algorithm, we
require that, after iterations

(10)

where the term is the total number of inner products
needed to find atoms using the one-block algorithm. Equation
(10) can be coarsely approximated by and
to yield

(11)

Equation (11) stipulates the condition that makes our ap-
proach more efficient than traditional approaches. For a low
bit rate (24 kb) QCIF video, a typical is 200 and is at
most 99, if the block size is 16 16. Thus, the condition is
usually satisfied and leads to an increase in the computation
speed of our algorithm. In theory, satisfying the condition does
not necessarily yield a better PSNR than one-block algorithms
because each block is approximated. However, in practice, our

TABLE I
RUNTIME FOR ENCODING THE AKIYO SEQUENCE BY DIFFERENT METHODS AT

24 kbps, 10 FRAMES/S FOR 3.3 S IN QCIF FORMAT. KEY: TOTAL TIME IS THE

TIME REQUIRED TO OBTAIN MOTION VECTORS AND ENCODE RESIDUALS.
NEFF IS THE ALGORITHM IN [11], AND OSAMA IS THE ALGORITHM IN [1]. OUR

ALGORITHMS ARE IN THE THIRD AND THE FOURTH COLUMNS WITH L = 100

AND L = 400, RESPECTIVELY. T IS THE RUN-TIME FOR INNER PRODUCT

COMPUTATION; T IS THE RUNTIME FOR FINDING AN ATOM IN THE FIRST

TWO COLUMNS, OR L LARGEST INNER PRODUCT VALUES IN THE LAST

TWO COLUMNS. AND T IS THE RUNTIME SPENT UPDATING INNER

PRODUCT VALUES. NOTE THAT THE NEFF AND OSAMA ALGORITHMS DO

NOT USE AN MP UPDATE ALGORITHM

simulation results indicate that the PSNRs of our algorithm for
all the test sequences are better than those of the one-block al-
gorithms. Next, we evaluate the performance of our algorithm.

IV. PERFORMANCE EVALUATIONS AND COMPARISONS

To evaluate the performance of our algorithm, we compared
it with the popular algorithms in [1] and [11] that search for
an atom in the block with the highest energy. The index of a
codeword is encoded by an adaptive arithmetic code. We set

in all our experiments. The inner product value is en-
coded by a bit plane-based approach and the position of a base
is located by a quadtree and quadtree representation [8]. Other
MP atom encoding methods can be used, but they change the
average number of bits needed to encode an atom. For motion
estimations, the basic mode in the standard H.263 [5], [6] is used
to obtain motion vectors. The first frame of a video sequence is
an intra-frame (I-frame) encoded by DCT; all other frames are
inter-frames (P-frames) encoded by MP.

Table I shows the total runtime taken by various search algo-
rithms to encode the Akiyo sequence. In our test platform, the
CPU speed was 2.4 GHz/s. The total time is the overall runtime
needed to encode the sequence for 3.3 s, and includes motion
vector estimation and motion residual encoding. Our algorithm
comprises three operations: computing the inner products be-
tween a residual and bases ; sorting the largest bases for
each block ; and updating the inner products of atom can-
didates . The runtime of each operation is also shown in
Table I. Our algorithm computes the inner products at the first
iteration, and updates them in the following iterations. Because
updating the inner products is relatively faster than computing
new inner products, the overall runtime of our algorithm is con-
strained by .

Figs. 4 and 5 are the plots of the average runtime versus the
PSNR of various sequences at different bit rates. Our sequences
include the following slow-motion sequences: Akiyo, Sean,
Miss America, Container, Mother and Daughter, Salesman; and
the fast-motion sequences: Carphone, Foreman, and Stefan.
The PSNR of our method improves as increases. This implies
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Fig. 4. Plot of the average runtime versus the PSNR of various methods for
the following sequences: Akiyo, Sean, Container, Miss America, Mother and
Daughter, Salesman, Carphone, Foreman, and Stefan. They were all run at 24
kbps, 10 frames/s for 3.3 s in QCIF format. In the legend, the last two items are
our algorithms with different Ls.

Fig. 5. Plot of the average runtime versus the PSNR of various methods for
the following sequences: Akiyo, Sean, Container, Miss America, Mother and
Daughter, Salesman, Carphone, Foreman, and Stefan. They were all run at 44
kbps, 10 frames/s for 3.3 s in QCIF format. In the legend, the last four items are
our algorithms with different Ls.

Fig. 6. Presentation structure of test sequences.

that using more bases to approximate a residual yields a better
PSNR; however, the overall runtime also increases. The data
in Fig. 4 shows that our approach with achieves the
best average PSNR performance of all methods at 24 kbps,

Fig. 7. Perceptual comparison of Neff’s algorithm and our algorithm withL =

400 encoded at 24 kb/s for the following sequences: (A) Akiyo, (B) Carphone,
(C) Mother and Daughter, (D) News, (E) Claire, (F) Foreman, (G) Hall monitor,
(H) Salesman, (I) Sean, (J) Coast guard, (K) Container, (L) Miss America, and
(M) Stefan.

Fig. 8. Perceptual comparison of Neff’s algorithm and our algorithm withL =

800 encoded at 44 kb/sec for the following sequences: (A) Akiyo, (B) Carphone,
(C) Mother and Daughter, (D) News, (E) Claire, (F) Foreman, (G) Hall monitor,
(H) Salesman, (I) Sean, (J) Coast guard, (K) Container, (L) Miss America, and
(M) Stefan.

and requires less runtime than both one-block algorithms. The
PSNR improvement derived by this parameter over
Neff and Zakhor’s one-block algorithm is, on average, 0.3–0.4
dB. We normalized the runtime of Neff and Zakhor’s algorithm
to 1, so that the comparison was not affected by the speed of
the CPU. The runtime of our algorithm with is 0.8
that of the one-block algorithms. Fig. 5 shows that the overall
runtime increases linearly as a function of . For between
800 and 1200, our method achieves a PSNR gain of 0.4–0.5 dB
over Neff and Zakhor’s one-block algorithm at 44 kbps.

We evaluated and compared the subjective performance of
our method to that of Neff’s one-block algorithm, using the
methodology for subjective assessment in [7]. We adopted the
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Fig. 9. Perceptual quality for Frame 81 of the QCIF Stefan sequence encoded at 44 Kbit/sec, 10 frames/sec. (a) Original frame. (b) Neff’s algorithm. (c) Osama’s
algorithm. (d) Our algorithm with L = 400. (e) Our algorithm with L = 800.

double-stimulus impairment scale (DSIS) to evaluate the sub-
jective quality. In this test procedure, participants were shown
multiple sequence pairs consisting of an original and a com-
pressed sequence, both of which were rather short. The original
sequence was presented first, followed by a gray period, then
the compressed sequence was presented. Both sequences were
presented twice, as shown in Fig. 6. The participants were re-
quired to vote using a five-grade impairment scale: impercep-
tible (5), perceptible, but not annoying (4), slightly annoying
(3), annoying (2), and very annoying (1). The subjective evalua-
tion results of our update algorithm and one-block algorithm for
thirteen test sequences encoded at various bit rates are shown in
Figs. 7 and 8. The DSIS grading scores of 40 participants were
averaged. The evaluation results show that our proposed update
algorithm not only achieves a superior PSNR performance and
runtime, but also has better perceptual quality. The snapshots
of video sequences encoded by different methods at various bit
rates are shown in Fig. 9. Clearly, our algorithms yield a better
perceptual quality in encoding the feet and border lines below
the feet.

V. CONCLUSION

In contrast to traditional video encoding approaches, in which
an atom is chosen from the block with the highest (weighted) en-
ergy, we approximate a residual in a subspace spanned by a few
MP bases in multiple blocks. From this approximation, we ob-
tain a new MP atom finding algorithm that uses multiple blocks
for atom searching, and the MP update algorithm to update the
inner product values. The analysis and simulations show that our
proposed algorithm outperforms one-block algorithms in terms
of PSNR, runtime, and perceptual quality. The performance of
our method depends on two parameters: the number of blocks
and the number of bases in each block. Adaptation of the pa-
rameters for different video sequences to achieve the best per-
formance is an issue worthy of further study.
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