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Planar-Shape Prototype Generation Using a
Tree-Based Random Greedy Algorithm

Wen-Yao Chen, Student Member, IEEE, Wen-Liang Hwang, Senior Member, IEEE, and Tien-Ching Lin

Abstract—A prototype is representative of a set of similar
objects. This paper proposes an approach that formulates the
problem of prototype generation as finding the mean from a given
set of objects, where the prototype solution must satisfy certain
constraints. These constraints describe the important perceptual
features of the sample shapes that the proposed prototype must re-
tain. The contour prototype generated from a set of planar objects
was used as an example of the approach, and the corners were
used as the perceptual features to be preserved in the proposed
prototype shape. However, finding a prototype solution for more
than two contours is computationally intractable. A tree-based ap-
proach is therefore proposed in which an efficient greedy random
algorithm is used to obtain a good approximation of the proposed
prototype and analyze the expected complexity of the algorithm.
The proposed prototype-generation process for hand-drawn
patterns is described and discussed in this paper.

Index Terms—Pattern recognition, prototype generation, ran-
dom algorithm.

I. INTRODUCTION

VARIOUS techniques have been developed for generating
the mean shape of a class of objects. Among them,

morphing produces the mean shape of perceptually different
shapes. Prototype-shape generation, on the other hand, is a
technique that generates a prototype shape from the shapes of
similar objects. It has already found many applications in in-
dustrial design, medical imaging, computer animation, machine
vision, and pattern recognition [3], [11], [16]. The technique is
comprised of two components: the dissimilarity measurement
between sample objects, and the methodology for finding the
prototype. Many approaches have been proposed for generating
a prototype shape. In [4], [10], and [19], a structured description
created by the symbolic representations of sample shapes is
proposed. Other approaches include using deformable models
[5], [20], and graph models [7].

Our prototype shape is defined as the mean of a given set
of sample shapes. This mean is constrained by certain salient
perceptual features within the sample shapes that must be
preserved in the prototype. The prototype definition does not
necessarily yield a prototype that matches the perceptual quality
of a prototype. However, with the definition, we can analyze
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the prototype-generation process and generate a prototype with
some properties that are required by all the objects. Our defi-
nition of a prototype is a combination of the proposed model
in [15], in which a prototype is defined as the mean shape of
the sample shapes, and the proposed model in [19] in which
a prototype must retain many common visual properties within
the sample shapes. For example, let X be the random variable
that produces pentagons and {Ci|i = 1, . . . , n} be n realiza-
tions thereof. If the contour of each Ci contains five sides and
five angles, then our prototype pentagon must have five sides
and five angles and is the mean shape of the samples after the
angles of the sample polygons have been aligned.

Let C be a set of shapes that preserves the common salient
features of sample shapes {Ci|i = 1, . . . , n}. The proposed
prototype can be defined as the mean shape that produces the
minimum of some types of distortion if it is used to approximate
all the sample shapes. We assume that the prototype X̄ is found
in C so that the distortion D is

X̄ = arg min
C∈C

1
K

n∑
i=1

D(C,Ci) (1)

where K is n if C is not one of the sample shapes; otherwise,
K is n− 1. Since finding the solution of our mean shape
is a minimization problem that is constrained by preserv-
ing the salient perceptual features within the sample shapes,
the proposed prototype-generation problem is a constrained-
optimization problem. Generally, the problem can be solved
by using a technique from mathematical programming or vari-
ational calculus. However, for our problem, which finds the
prototype from a set of discrete planar contours, the common
features in different contours must be aligned. Thus, we are
unable to solve the proposed problem by applying mathe-
matical programming or variational calculus directly. Let Ci

be a realization of a planar shape, where the contour of Ci

contains mi salient features (corners). Before we can find the
prototype of n realizations, we need to find the common salient
features of {Ci}, because our prototype must be in space C,
where any instance preserves the common salient features of
the realizations. Thus, the corresponding corners of all shapes
must be identified and labeled first. The optimal algorithm that
yields the minimal cost of aligning the corners between Ci and
Cj has a complexity of at least Ω(mimj), because the cost of
any corner pair of Ci and Cj must be calculated at least once
in the optimal algorithm. Following the same reasoning as that
used for aligning two contours, finding the optimal alignment of
{Ci|i = 1, . . . , n} is at least Ω(

∏n
i=1mi). The complexity of

aligning the common salient features of multiple shapes grows
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exponentially as the number of realizations increases; thus, it is
infeasible for practical applications. Instead, we use a balanced-
binary-tree approach, where a sequence of prototypes for two
shapes is organized as a balanced binary tree. Each node is
associated with a contour, and the contour of an internal node
is the result of aligning the contours of its children. Although
this approach avoids the high computational cost of finding the
optimal salient features corresponding to more than two shapes
simultaneously, it restricts our prototype to a suboptimal and
tree-dependent solution.

Because there are n! combinations of possible balanced
binary trees for n samples, an exhaustive search of all possible
balanced binary trees for the optimum prototype is impossible.
Therefore, to find a balanced tree that yields a good solution, we
use a greedy iterative random algorithm, because it is simple to
implement and yields a satisfactory result. At each iteration, a
pair of shapes at any leaf nodes in the current balanced tree
is chosen at random. The shapes’ positions are then swapped
to obtain a new balanced tree. If this tree is of smaller dis-
tortion, we substitute it for the current tree. We analyze our
random algorithm and show that the expected complexity of
performing one iteration of the proposed random algorithm
is O(m2N log2 n), where n, m, and N are, respectively, the
number of sample shapes, the maximum number of corners in
a sample shape, and the total number of sample points of the
sample shapes. When a leaf is deleted from, (or inserted into)
a tree, all the contours of the internal nodes on the paths from
the root to the leaf will be modified. To implement the deletion
or insertion of a leaf efficiently, the contour alignment of an
internal node is approximated by a sequence of subcontour
alignments.

We use the above approach to find the prototype from the
contours of planar objects. The corners of the prototype contour
are used to segment it into a sequence of smooth subcontours.
A distortion is then introduced to measure the error if one
subcontour is matched to the other subcontour by a similarity
transform. The total distortion when matching two contours is
the sum of all the distortions found when matching pairs of
subcontours.

Because our algorithm for generating a prototype is moti-
vated by the approach in [15], we review and compare latter
with our approach. In [15], the contour of a planar object is
represented as a cyclic string of symbols. The distance of two
strings is the edited distance between the strings [17]. The
editing operations are insert a symbol, delete a symbol, or
substitute a symbol with a string. The mean string (prototype) is
defined by (1), where C is the set of all possible cyclic strings.
However, finding the mean string is an NP-hard problem [6].
For practical purposes, an algorithm is proposed that progres-
sively updates the prototype. The result is a binary tree in which
the root is the prototype. Compared to this algorithm, the unique
feature of our algorithm is that our prototype is constructed
by an iteratively greedy random algorithm, which successively
modifies the initial prototype to obtain the final prototype.

The remainder of the manuscript is organized as follows. In
Section II, we introduce the distortion measurement between
planar contours and present a solution for generating a pro-
totype for two contours. In Section III, we present a random

algorithm for the generation of a prototype for more than two
objects. The experimental results of our algorithm are given in
Section IV. Finally, in Section V, we present our conclusions.

II. DISTORTION AND PROTOTYPE OF TWO CONTOURS

Here, we consider the generation of a prototype contour
from two contours of a planar object. We assume that both the
contours are closed, contain at least two corner points, and are
partitioned into a sequence of subcontours separated by corner
points (the endpoints of the subcontours). The prototype of the
two contours is generated by finding the optimal alignment
between the sequences of subcontours of the two contours.
Before we propose our two-contour alignment algorithm, we
introduce a measure of the similarity between two subcontours
(curves). Our measurement is similar to that in [5]. There are
other measurements such as the editing distance [15], the graph-
matching distance [7], the distance derived from multiscale rep-
resentation [19], and an energy-minimization approach based
on the length and curvature of contours [17].

A. Dissimilarity Between Two Curves

Many methods have been used to measure the similarity
of two curves. We propose a measure based on the similarity
transform, because it can be implemented easily and achieves a
satisfactory result. The similarity transform relates two points,
p and q, by combining translation t, scaling s, and rotation rθ

q = srθp+ t (2)

where

rθ =
[

cos θ − sin θ
sin θ cos θ

]
.

The similarity transform between two curves can be obtained
by aligning the end points between the curves. Let p1 and p2 be
the end points of one curve, and q1 and q2 be the end points of
the other curve. Aligning p1 to q1 and p2 to q2, we have

q1 = srθp1 + t (3)

q2 = srθp2 + t. (4)

Subtracting (3) from (4), we obtain

q2 − q1 = srθ(p2 − p1).

Since the end points p1, p2, q1, and q2 are given planar vectors,
the above equation can be used to solve the scaling s and
rotation rθ

s =
‖q2 − q1‖
‖p2 − p1‖ (5)

rθ =
(q2 − q1)(p2 − p1)T
‖q2 − q1‖‖p2 − p1‖. (6)
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Fig. 1. Bottom-left: The two endpoints of the two top subcontours are aligned.
Bottom-right: The mean subcontour of the aligned subcontours.

The translation vector t can be obtained after substituting s
and rθ into (3). We use S to denote the similarity transform
that takes the curve c2 to c1 by aligning their end points. The
error curve e12 is c1 − Sc2. If we take the inverse similarity
transform S−1 to the curve c1 and align the end points of
the resultant curve with c2, we obtain the error curve e21 =
c2 − S−1c1. In general, e12 is not the same as e21, since their
supports may have different lengths. Therefore, we should
normalize the error curves so that the dissimilarity measure of
curves c1 and c2 does not depend on which curve is transformed
and aligned with the other curve first. We thus align both curves
with the line segment whose end points are at [0 0]T and
[1 0]T by using the similarity transform. The parameters of the
obtained similarity can be derived from (2), (5) and (6). We
use N to denote the procedure shown as the alignment of two
curves in Fig. 1. The dissimilarity measure of curves c1 and c2

is then defined as

d(c1, c2) = ‖N c1 −N c2‖2
2

= d(c2, c1)

where ‖N c1 −N c2‖2
2 can be represented as parameterized

curves with the arc-length parameter t ∈ [0, 1], and then eval-
uated by

∫ 1

0 [N c1(t) −N c2(t)]2dt. This is approximated nu-
merically by integration with a complexity Θ(N(c1) +N(c2)),
whereN(c1) andN(c2) are, respectively, the number of sample
points in curves c1 and c2.

Now, let us assume that contour Ci has mi subcontours,
contour Cj has mj subcontours, and mi ≤ mj . Furthermore,
let the end points of the subcontours in Ci and Cj be in sequen-
tial order, namely, {p1, p2, . . . , pmi

} and {q1, q2, . . . , qmj
},

respectively. We use the notation [a, b] to denote the curve
between end points a and b. Let A be the alignment function
that aligns closed contours Ci and Cj . The function performs a
sequence of curve alignments that take a curve in Ci to a curve
in Cj . In order to retain the order of subcontours in a closed
contour, A must have the following properties:

1) a(k) must be a monotonic function: b(k) = a(k)
modmj .

2) A : [pk, p(k+1) mod mi
] → [qb(k), qb(k+1)], where the cor-

ners qb(k) and qb(k+1) may not be adjacent to each other
for k = 1, 2, . . . ,mi.

We define a legal alignment as the alignment of two con-
tours that satisfies the above properties. Let (A, b) be a

legal alignment and the notation Ci ∼ Cj = {(p1, qb(1)),
(p2, qb(2)), . . . , (pmi

, qb(mi))} represent the ordered sequence
of matched corners between Ci and Cj . The dissimilarity
measure of the two contours Ci and Cj is defined such that

D(Ci, Cj) = min
(A,b)

mi∑
k=1

d
([
pk, p(k+1) mod mi

]
,

[
qb(k), qb(k+1)

])
. (7)

Thus, the dissimilarity of two contours is the minimum of the
sum of the subcontour distances of all possible legal alignments
of the two contours.

Without loss of generality, to analyze the computational
complexity, let us assume that p1 matches q1. We use the
notations P 1

k and Q1
b(k) to denote the curves [pk, . . . , pmi

, p1]
and [qb(k), . . . , qb(mi), qb(1)], respectively. We then have

D(Ci, Cj) = min
b(2)

{
d

(
[p1, p2],

[
qb(1), qb(2)

])

+ Ds

(
P 1

2 , Q
1
b(2)

)}
(8)

where Ds(P 1
2 , Q

1
b(2)) is the cost of aligning [p2, . . . , pmi

, p1]
and [qb(2), . . . , qb(mi), qb(1)]. Ds can be recursively derived for
k = 3, . . . ,mi − 1:

Ds

(
P 1

k , Q
1
b(k)

)
= min

b(k+1)

{
d

(
[pk, pk+1],

[
qb(k), qb(k+1)

])

+ Ds

(
P 1

k+1, Q
1
b(k+1)

)}
. (9)

When k = mi, the recursion should be stopped; therefore

Ds

(
P 1

mi
, Q1

b(mi)

)
= d

(
[pmi

, p1] ,
[
qb(mi), qb(1)

])
. (10)

There are at most mj choices for each b(i) with i =
2, . . . ,mi in the above equations. Thus, in the case where
p1 matches q1, the complexity of finding the optimal align-
ment from curve {p2, . . . , pmi

} to curve {q2, . . . , qmj
} is

O(m2
j (N(Ci) +N(Cj))), where N(Ci) and N(Cj) are, re-

spectively, the number of sample points of Ci and Cj .
The recursions in (8)–(10) can be implemented effectively by

using dynamic programming [1], [14] based on the assumption
that p1 matches q1. In our applications, p1 may not match
q1, thus, we need to calculate the optimal alignment for each
of the assumptions that p1 matches qi with i = 1, . . . ,mj .
We then choose the optimal alignment that yields the mini-
mal dissimilarity value from the results of these assumptions.
As a consequence, an O(m3

j (N(Ci) +N(Cj))) complexity is
applied to find the solution of (7). For convenience, in the
following discussion, we assume that p1 and q1 are aligned;
thus, the complexity of our two-contour alignment algorithm is
O(m2

j (N(Ci) +N(Cj))).

B. Prototype of Two Contours

We now consider the case where the prototype of two con-
tours, Ci and Cj , is to be generated. Ci has N(Ci) sample
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points and mi subcontours, Cj has N(Cj) sample points and
mj subcontours, and mi ≤ mj . According to the definition in
(1), the prototype of two contours X̄ ∈ C satisfies

D(X̄, Ci) +D(X̄, Cj) ≤ D(X,Ci) +D(X,Cj), ∀X ∈ C
(11)

whereD is measured by (7), in which we impose the constraint
that the prototype of Ci and Cj must have mi subcontours.
Therefore, C represents all possible contours that have mi

subcontours. The prototype X̄ cannot be obtained easily, be-
cause it must simultaneously match contours Ci and Cj and
achieve minimal distortion. A simple way to obtain a good
approximation is to use the optimal-alignment function (A∗, b∗)
between contours Ci and Cj to align the contours of X̄ and Ci,
and X̄ and Cj . Then, the prototype contour X̄ of Ci and Cj is
formed by concatenating themi average (mean) subcontours of
the matched subcontours of Ci and Cj according to (A∗, b∗).

Let S be the similarity transform that takes the curve
[qb∗(k), qb∗(k+1)] in Cj to the curve [pk, p(k+1) mod mi

] in Ci.
The kth subcontour of X̄ , which is denoted as x̄k, is the mean
curve and is calculated by

1
2

([
pk, p(k+1) mod mi

]
+ S

[
qb∗(k), qb∗(k+1)

])
.

Using variational calculus, it is easy to show that x̄k is the
curve, among all the curves whose end points are, respectively,
pk and p(k+1) mod mi

, which minimizes the root-mean-square
error when it is used to approximate curves [pk, p(k+1) mod mi

]
and S[qb∗(k), qb∗(k+1)] simultaneously. We present the results
in the Appendix. Since the prototype’s subcontour is the mean
of the aligned subcontours, our prototype is the mean contour
after Ci and Cj have been aligned. By concatenating the proto-
type subcontours sequentially, we obtain the prototype of two
contours, i.e., X̄ = x̄1x̄2 · · · x̄mi

. The proposed two-contour
alignment algorithm needs to find the optimal alignment of
contours Ci and Cj to obtain the prototype of the two contours.
Consequently, its complexity is O(m2

j (N(Ci) +N(Cj))).
The two-contour alignment algorithm could be extended to

align more than two contours simultaneously; however, the
complexity would be too high. To find the optimal align-
ment that simultaneously aligns n contours, we need to visit
every combination of the contours’ corners at least once.
Let the number of sample points and the number of cor-
ners be N(C1), N(C2), . . . , N(Cn) and m1,m2, . . . ,mn, re-
spectively; and let N =

∑n
i=1N(Ci) and m = max(m1,m2,

. . . ,mn). There is a total of
∏n

i=1mi combinations of the
corners and each combination requires an order of N to cal-
culate the cost of the alignment. The complexity of the optimal
alignment is at least Ω(mnN). Thus, an efficient method must
be developed, even though it may give a suboptimal-alignment
solution.

III. PROTOTYPE BASED ON A HIERARCHICAL TREE

Let C be all possible prototype candidates for our con-
straints. Our approach to finding the prototype for more than

Fig. 2. Contour associated with node Q is built from the contours of nodes P
and S and is the prototype of contours C1, C2, C3, and C4. The contour of
root R is the prototype of all the C’s.

two contours is to limit our prototype solution to the subset of
C that has an efficient algorithm for a suboptimal prototype
solution in the subset. To find a suboptimal solution for certain
constrained problems, we use an approach that is popular in
many numerical methods. Starting with the initial prototype,
we modify it slightly, such that the modified version reduces the
distortion of the current prototype. The process is repeated until
we find a prototype in which the distortion cannot be reduced
further. The final prototype is our solution. This greedy iterative
algorithm can be efficiently performed by using a balanced
binary tree.

We build a balanced binary tree so that all the sample
contours are on the leaves of the tree and each internal node is
associated with a contour that is the prototype of all the sample
contours on the leaves of the internal nodes. Fig. 2 shows
an example of our balanced binary tree with eight samples.
A binary tree of n leaves has n− 1 internal nodes. Because
the prototype contour at an internal node is obtained from the
two contours of its children, we need to perform n− 1 two-
contour alignments to obtain our balanced binary tree. For n
sample contours, there is an n! number of combinations for
a possible balanced binary tree. An exhaustive search of all
possible balanced binary trees for the optimum prototype is
impossible. We therefore use a heuristic to modify the current
balanced binary tree with the requirement that the distortion of
the new root prototype decreases. The heuristic is implemented
with a randomization approach. At each iteration, we randomly
choose a pair of leaves of the current tree and swap their
positions to obtain a new tree. This process is repeated several
times until the distortion of the resultant tree cannot be reduced
further, or a computational limit is reached. Our proposed
algorithm is as follows.

Algorithm Prototype

1) Let Γ and ∂Γ be the initial balanced binary tree and the
leaves of the tree, respectively, and let j = 0.

2) Randomly select a pair of leaves Cl and Cr ∈ ∂Γ. Let the
positions of Cl and Cr be at p(l) and p(r), respectively.

3) Swap Cl and Cr by deleting them from Γ and inserting
Cl into p(r) and Cr into p(l).

4) If the distortion decreases, the new tree is used for the
next iteration.

5) j = j + 1.
6) If j > the threshold value, STOP, else GOTO 2.
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Fig. 3. When node R is deleted from (a) and inserted in (b), the prototype
associated with any node on the dash-dot paths must be updated.

When leaf R is removed from Γ in Step 3, the contour
of any internal node on the path from the root of Γ to the
leaf is modified by performing one alignment of its children’s
contours. As with the deletion of a leaf, when R is inserted as
a leaf in ∂Γ, one two-contour alignment is performed on each
node from the root of ∂Γ to R. Fig. 3 shows that the nodes on
the dash-dot paths are modified when a node is deleted from
one subtree and inserted in another subtree. We begin with a
balanced binary tree in step 1 and, at each iteration, modify
the current balanced binary tree by randomly picking a pair
of leaves and swapping them in step 5. After each iteration,
the balanced tree Γ either remains unchanged, or it is replaced
by a new balanced binary tree. Thus, at each iteration, the
algorithm takes O(log2 n) times two-contour alignments. If
ī is the expected number of iterations in the algorithm, then
our random algorithm will perform, on average, no more than
ī log2 n two-contour alignments. Therefore, the expected com-
plexity of the algorithm is O(̄im2N log2 n+m2nN), where
m = max{m1,m2, . . .} and N =

∑
iN(Ci) are, respectively,

the maximum number of corners and the total sample points
of all contours {Ci}. O(m2nN) is the complexity of building
the initial binary tree. In Section III-A, we show that this
complexity can be reduced by using a tree-based approximation
method to align two contours.

This algorithm has an upper bound on the number of sam-
ple contours that produce the prototype. The bound can be
approximated by the following reasoning. If we assume that
the probability of a corner to be aligned in the two-contour-
algorithm is p < 1 and m is the maximum number of corners
in the sample contours, then the number of corners in the mean
contour is mp. The number of corners of a prototype that is l
levels above the leaf level is thusmpl. Because we do not want

to oversmooth the root prototype, we impose a constraint that
the number of corners in a prototype must be at least k. Thus,
a prototype at the l level above the leaf level must meet the
constraint

mpl ≥ k.

After rearranging the terms in the above equation, we have

l ≤ log
(

m
k

)
log

(
1
p

) .

Because, the root prototype is at the level log2 n, where n is the
number of samples above the leaf level, we have

n ≤ 2

log(m
k )

log( 1
p ) . (12)

Equation (12) gives us the limitation of samples for our algo-
rithm, if we impose the constraint that the root prototype must
have at least k corners.

A. Multilevel Approximation of Contour Alignments

For computational efficiency, the cost associated with finding
the prototype of two contours at each iteration when a leaf
contour is deleted and reinserted into a tree must be small. In the
following, we show that aligning two contours of the internal
nodes in the tree can be approximated by aligning a sequence
of subcontours. The approximation reduces the complexity of
aligning two contours.

When a leaf node is removed from (or inserted into) a tree,
we need to find the new contour on the path from the deleted
leaf (or inserted leaf) to the root. If the prototype contour is
generated from the contours of the internal nodes, then, based
on the current alignments in the tree, we can apply a sequence
of subcontour alignments to obtain a good approximation of
the new alignment. Aligning a sequence of subcontours reduces
the complexity of aligning whole contours from O(c2) to
O(

∑
i c

2
i ), where c =

∑
i ci and ci is the number of the corner

in the ith subcontour.
Here, we describe a typical example of the approximation to

demonstrate its efficiency. The formulation is given afterwards.
We use PS(A,B) to represent the prototype of two contours A
and B. In our binary tree, a PS associated with a parent node is
the prototype of the contours associated with its children nodes.
Since the PS is the mean of the aligned contours, it is coarser
than any contour of a child node. As shown in Fig. 4(a), once
A is deleted, B is substituted for P . Since B is a finer structure
than P , removing a leaf contour is the same as replacing the PS
with a finer structure than the previous PS. The node Q is also
modified to Q′ in a similar way. Thus, Q′ is also finer than Q,
since Q′ is PS(B,C), Q is PS(P,C), and B is finer than P .
Thus, removing a leaf from a tree corresponds to replacing the
PS in any internal node on the path from the root of the tree to
the leaf with a finer PS.

On the other hand, as shown in Fig. 4(b), if C is inserted,
then Q = PS(A,C) is substituted for A, which is finer than Q.
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Fig. 4. (a) Node A is deleted from the tree. (b) Node C is inserted into
the tree.

As a result, inserting a leaf into a tree corresponds to replacing
the PS of each internal node on the path from the root of the
tree to the leaf with a coarser structure than the previous PS.

Fig. 5 gives a simple example of this case, where optimum
contour matching at any internal node in a tree can be obtained
by subcontour alignments. Fig. 5(a) shows that B replaces P
after A is deleted. Since b1 matches p1 and p1 matches c1, we
have an approximation in that b1 matches c1. Similarly, since b3
matches p2 and p2 matches c4, we can deduce by approximation
that b3 matches c4. Note that all the matches between B and C
inQ are retained inQ′. The subcontours from b1 to b3 and from
c1 to c4 are realigned to give a new match between b2 and c2 in
Q′. Fig. 5(b) shows that subcontour alignment is applied to the
subcontours between b1 and b4 in B, and q1 and q2 in Q.

We now formulate the above example. Let A and B
be two contours. As defined in Section II-A, A ∼ B =
{(a1, b1), (a2, b2), . . . , (anP

, bnP
)} denotes a legal alignment

of matched corners of A and B. We make the following basic
assumptions in order to implement our approximation:

1) BA 1. If P = PS(A,B) andA ∼ B = {(a1, b1), (a2, b2),
. . . , (anP

, bnP
)}, then P ∼ A = {(p1, a1), (p2, a2), . . . ,

(pnP
, anP

)} and P ∼ B = {(p1, b1), (p2, b2), . . . ,
(pnP

, bnP
)}. This assumption indicates that the match

between the corners of the parent and those of its children
can be derived from the match of the children.

2) BA 2. If P ∼ A = {(p1, a1), (p2, a2), . . . , (pnP
, anP

)}
and P ∼ B = {(p1, b1), (p2, b2), . . . , (pnP

, bnP
)}, then

A ∼ B = {(a1, b1), (a2, b2), . . . , (anP
, bnP

)}. Thus, if
P ∼ A and P ∼ B, then A ∼ B.

Illustrations of these two basic assumptions are given in Fig. 6.
We now show that by applying BA 1 and BA 2, we can locally
update the contour of each internal node in a tree when a leaf is
either inserted into, or deleted from, the tree.
Deleting a Node: Without loss of generality, let us use

Fig. 4(a) as our example of deleting a node. In the left tree,
we have P = PS(A,B) with A ∼ B, and Q = PS(P,C) with
P ∼ C. However, if A is deleted, then we have the following.

1) B is substituted for P = PS(A,B).
2) The new rootQ′ = PS(B,C) can be obtained as follows.

From P = PS(A,B) and A ∼ B, by applying BA 1, we

Fig. 5. (a) A is removed. Q′ is obtained by aligning the subcontours between
b1 and b3 in B, and c1 and c4 in C. (b) C is inserted. P ′ is obtained by aligning
the subcontours between q1 and q2 in Q, and b1 and b4 in B.

can derive P ∼ A and P ∼ B. Because Q = PS(P,C)
in the left tree, we have P ∼ C. Then, from P ∼ C and
P ∼ B, we can, according to BA 2, derive that B ∼ C;
so, Q′ = (B,C).

Using the above procedure, the deletion of a node A can be
efficiently implemented by subcontour alignment. Let us sup-
pose that A ∼ B = {(au(1), bv(1)), (au(2), bv(2)), . . .}. Then,
because P = PS(A,B), by applying BA 1, we have

P ∼ B =
{(
p1, bv(1)

)
,
(
p2, bv(2)

)
, . . .

}
.

Let us also suppose that {pw(1), pw(2), . . .} is a subsequence
of {p1, p2, . . .}, w is an increasing function, and P ∼ C =
{(pw(1), cy(1)), (pw(2), cy(2)), . . .}. By applying BA 2, we can
derive from P ∼ C and P ∼ B that

B ∼ C =
{(
bv(w(1)), cy(1)

)
,
(
bv(w(2)), cy(2)

)
, . . .

}
.
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Fig. 6. Illustration of our two basic assumptions. (a) BA 1. If A ∼ B =
{(a1, b1), (a2, b3), (a3, b4)}, then P ∼ A = {(p1, a1), (p2, a2), (p3, a3)},
and P ∼ B = {(p1, b1), (p2, b3), (p3, b4)}. (b) BA 2. If A ∼ B =
{(a1, b1), (a2, b3), (a3, b4)}, and B ∼ C = {(b1, c1), (b2, c2), (b4, c3)},
then A ∼ C = {(a1, c1), (a3, c3)}.

To obtain P ′ = PS(B,C), we only align the subcontours seg-
mented by corners bv(w(i)) and bv(w(i+1)) in B and corners
cy(i) and cy(i+1) in C for all i. Thus, we use a sequence
of subcontour alignments to obtain the contour Q′. Note that
according to (8)–(10), the alignment of two subcontours can be
efficiently implemented by dynamic programming.
Inserting a Node: Without loss of generality, let us use

Fig. 4(b) as our example of inserting a node. In the left tree,
we have A ∼ B. However, if C is inserted, then we have the
following.

1) Let Q = PS(A,C), and compute A ∼ C by aligning
contours A and C. Because BA 1 and BA 2 cannot be
applied in this case, A and C must be aligned by the two-
contour alignment algorithm.

2) The contour for the new root P ′ can be obtained as fol-
lows:According to BA 1, we knowQ ∼ A; and according
to BA 2, we can findQ ∼ B byQ ∼ A andA ∼ B. Thus,
if C is inserted, we have P ′.

The second step in the above procedure can be efficiently
implemented by a sequence of subcontour alignments. Let us
suppose that A ∼ B = {(au(1), bv(1)), (au(2), bv(2)), . . .}. For
convenience, we introduce a function z so that z(u(i)) = v(i)
for all i. Because Q = PS(A,C), by applying BA 1, we have

Q ∼ A =
{(
q1, aw(1)

)
,
(
q2, aw(2)

)
, . . .

}
.

Let us suppose that y is an increasing function and
{qy(1), qy(2), . . .} is a subsequence of {q1, q2, . . .} so that

Fig. 7. Hierarchical binary tree that builds the prototype of the four sample-
fish contours shown in the left column. (b1) is the prototype of (a1) and (a2);
(b2) is the prototype of (a3) and (a4); and (c) is the prototype of all the contours.
The table measures the distortion between a candidate prototype in the first
column and a sample, either a1, a2, a3, or a4. The mean distortion is obtained
by dividing the total distortion by 3 if the candidate is one of the samples, or by
4 if it is not in the sample set. Note that prototype (c) gives the smallest mean
distortion.

{aw(y(1)), aw(y(2)), . . .} is a subsequence of {au(1), au(2), . . .}.
By applying BA 2, from Q ∼ A and A ∼ B we can derive

Q ∼ B =
{(
qy(1), bz(w(y(1)))

)
,
(
qy(2), bz(w(y(2)))

)
, . . .

}
.

To obtain Q′ = PS(B,C), for all i, we only align the subcon-
tours segmented by corners qy(i) and qy(i+1) in Q, and corners
bz(w(y(i))) and bz(w(y(i+1))) in B. Thus, we use a sequence of
subcontour alignments to obtain the contour Q′.

Complexity Analysis: The complexity of the proposed ap-
proximation algorithm depends on the distribution of corners
in a sequence of random trees. A complete complexity analysis
of the approximation algorithm is difficult. Here, we perform a
simplified analysis for a special case in which we assume that
the probability of a corner being an end point of a subcontour
is p. Thus, the number of subcontours in a contour forms a
binomial distribution, with the expected number mp. Also, the
expected number of corners in a subcontour is m/mp = 1/p.
Therefore, the expected complexity of aligning a sequence of
mp subcontours is O(

∑mp
i=1(1/p)

2N) = O((m/p)N), where
N is the number of sample points of all contours. As noted
previously, at each iteration, the algorithm prototype takes at
most log2 n two-contour alignments, in which the alignment
of two leaves needs whole contours. The remainder can be
approximated by a sequence of subcontour alignments. Thus,
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Fig. 8. (a) Our prototype fish. (b) The simple mean fish obtained by averaging
the four sample contours after aligning the marked corner and normalizing
the lengths of the contours. Our prototype preserves corners, but in (b) all the
corners, except the marked corner, are smoothed. (c) and (d), respectively, give
the number of corners of the fishes in the final tree and the average number of
corners of the fishes at each level in Fig. 7.

with the approximation, the complexity of aligning log2 n pairs
of contours is reduced from O(m2N log2 n) to O(m2N +
(m/p)N log2 n).

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate our method by applying
our prototype-generation algorithm to a set of planar patterns.
Fig. 7 shows an example of our hierarchical binary tree of
sample fishes. The left column of Fig. 7 is the lowest level
of the tree and shows four sample-fish contours. Our subjects
used a marker to hand draw the contours of the fishes on
paper, without constraints on size. We then used a scanner to
digitize and process them into binary images. Before applying
our prototype-generation algorithm, we had to preprocess the
binary images to extract the corners of their contours. To
detect corners, we used a chain-code algorithm to extract a
contour and a singularity-detection algorithm from the modulus
maxima of wavelet coefficients of the contour [2], [13], [18].
There are many other corner-detection methods [9], [12], [21]
that could be used. The middle column in Fig. 7 shows the
intermediate prototypes of the four fishes. Each fish in the
middle column is the prototype of two corresponding fishes in
the left column. The right column in Fig. 7 is the prototype
fish of our sample fishes. The table in the figure gives the

Fig. 9. Hierarchical binary tree that builds the prototype of the four sample-
fighter contours shown in the left column. (b1) is the prototype of (a1) and (a2);
(b2) is the prototype of (a3) and (a4); (c) is the prototype of all the contours;
and (d) is the prototype generated by using fewer corners in the samples.

dissimilarity distance between a candidate prototype fish in the
first column and a sample fish: either a1, a2, a3, or a4. The fifth
column is the total distortion between the candidate fish and the
sample set. If the candidate prototype is in the sample set, the
mean distortion is obtained by dividing the total distortion by 3
to exclude bias due to self-matching. If the candidate prototype
is either b1, b2, or c, the total distortion is divided by 4, i.e., the
size of the sample set, to obtain the mean distortion. Note that
our root prototype gives the smallest value.

Fig. 8(a) is our prototype, and Fig. 8(b) is obtained by taking
the average of the four sample-fish contours. We first choose
the same starting point for each fish. We then align the chosen
point in each fish’s contour, normalize the contours so they are
equal to the mean of the contours of the four fishes, and take the
average of the normalized contours to obtain Fig. 8(b). Because
our algorithm preserves the corners in the sample fishes, our
prototype has a few sharp corners; however, in other methods,
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Fig. 10. (a) Distortion measured between a candidate prototype in the first
column and a sample, either a1, a2, a3, or a4, in the first row. The mean
distortion is obtained by dividing the total distortion by 3 if the candidate is
one of the samples, or by 4 if it is not in the sample set. Note that prototype
(c) gives the smallest mean distortion. (b) and (c), respectively, give the number
of corners of the fighters in the final tree and the average number of corners of
the fighters at each level in Fig. 9. (d) gives the number of corners at each level
when the corners of samples are reduced for the prototype in Fig. 9(d).

all the corners, except the marked corner, become smooth. The
average number of corners of the prototypes at each level pro-
vides a useful index to measure the coarseness of the prototypes
at that level. Note that the number of corners of each prototype
is measured in Fig. 8(c), while the average number of corners at
each level is given in Fig. 8(d). Note that the number of corners
decreases as the tree level increases. From Fig. 8(d), we can
deduce that the probability that a corner exists at the next level
is p = 0.5. p is an important index, because it can be used to
derive the upper bound of the number of samples in (12), and
to estimate the complexity of our approximation algorithm in
Section III-A.

Figs. 9 and 10 demonstrate another example of our prototype
generation. Fig. 9(c) is the prototype of the fighters, which
also generates the smallest distortion, as shown in Fig. 10(a).
Meanwhile, Fig. 10(c) gives the average number of corners
of the prototype fighters at each level. The average number
of corners at level 1 provides an approximate estimation of
the complexity of the samples. The number of corners of
the fighters at level 1 is larger than that of the fishes at the
same level. This indicates that the fighter example has a more
complicated structure than the fish example. To examine the
quality of our prototypes for missing corners, we reduced the
detected corners of the samples. For this case, the number of
detected corners at each level is given in Fig. 10(d), while the
corresponding prototype is shown in Fig. 9(d).

Fig. 11 demonstrates another example of prototype gener-
ation in which Fig. 11(b) is the prototype of the 16 hand-
drawn samples in Fig. 11(a). The corner features of the samples
are preserved in our prototype [see Fig. 11(b)]. Fig. 11(c) is

Fig. 11. (a) Sixteen hand-drawn samples. (b) Our prototype. (c) Simple mean
in which all contours are aligned at the marked point. (d) Average number of
corners at each level of the final binary tree. The samples are at level 1 and the
prototype (b) is at level 5.

obtained by taking the mean of the samples without imposing
any constraints. We observe that the corners on the head of
Fig. 11(c) disappear. Fig. 11(d) gives the average number of
corners of the prototype at each level. The probability that a
corner exists at the next highest level (above) is p = 0.6.

Finally, we present a preliminary result of a pattern-
recognition application that uses a prototype as the representa-
tive of a set of objects. Readers should refer to [3], [8], [15], and
[19] for other applications of prototypes. We experimented on
the application of prototype generation in planar-shape recogni-
tion, and chose nine fish contours as the reference template. We
asked our subjects to draw these contours on transparencies,
and then scanned the contours as images. The sizes of the
contours were not constrained. Our subjects were then divided
into two groups, A and B, each of which had 20 members.
Group A drew contours for fish1 to fish5, while group B drew
contours for fish6 to fish9. Four subjects were chosen from each
group to generate the prototype fish images. Fig. 12 shows the
prototype contours of all the fishes.

We then tested the performance of our fish prototype. In the
test, all the contours, including the contours used to generate
prototype fishes, were used as query images. Each query fish
was compared by measuring the dissimilarity between it and
the nine prototype shapes. In the next stage, each fish was
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Fig. 12. Prototype fishes 1, 2, and 3 are shown in the first row; 4, 5, and 6 are in the second row; and 7, 8, and 9 are in the third row.

Fig. 13. “The best one” is the curve of detection probability indicating that
the correct fish is the top candidate. The curve “the best two” is the detection
probability that the correct fish is one of the top two candidates.

assigned to the prototype number whose dissimilarity measure
was the minimum among all nine distortions. The detection
probability, denoted as the best one, is plotted in Fig. 13.
Another measurement is to assign a query fish to the two
best prototype fishes that it matches. This yields the other plot
(denoted as the best two) in the same figure. One can see that
the recognition rate of all fishes, except fish5 and fish7 in the
best two, is approximately 80%. This result indicates that the
prototype could be used in unsupervised pattern recognition to
distinguish different objects.

V. CONCLUSION

A prototype is defined as an object that satisfies the con-
straints and minimizes the distortion between similar sample
objects. The constraints are important features of the sample
shapes that the prototype object must retain. We use this ap-
proach to obtain a prototype of hand-drawn planar objects. In
addition, we show that a good approximation of our prototype
can be obtained efficiently by applying a random algorithm to
obtain the contours of a hierarchical binary tree. We also derive
an upper bound on the number of samples in order to produce
a prototype whose corners are imposed as a constraint. This

method can be extended to align multiple deoxyribonucleic-
acid (DNA) sequences and other applications. There are, how-
ever, some unsolved issues, such as 1) whether the prototype
derived by using the mean distortion matches that derived by a
perceptual quality measurement and 2) whether our algorithm
would be robust if a corner was missing. We pose these inter-
esting issues for further study.

APPENDIX

Let c1(t), c2(t), and z(t) be planar curves, 0 ≤ t ≤ 1 and the
end points of these curves be aligned. That is, c1(0) = c2(0) =
z(0), and c1(1) = c2(1) = z(1). Then

u(t) = arg min
z(t)

(d (z(t), c1(t)) + d (z(t), c2(t)))

where

u(t) =
c1(t) + c2(t)

2
.

Proof: For any given t ∈ [0, 1], the value that minimizes
(N z(t) −N c1(t))2 + (N z(t) −N c2(t))2 can be obtained by
taking the derivative of the above with respect to N z(t) and
setting the result to zero. This gives us the optimal curve

Nu(t) =
N c1(t) + N c2(t)

2
.

Let N−1 be the inverse similarity transform that takes [0 0]T

and [1 0]T to c1(0), and c1(1), respectively. Then, by applying
N−1 to Nu(t), we obtain the optimal curve u(t). �
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