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Fast Matching Pursuit Video Coding by Combining
Dictionary Approximation and Atom Extraction

Jian-Liang Lin, Wen-Liang Hwang, Senior Member, IEEE, and Soo-Chang Pei, Fellow, IEEE

Abstract—In this paper, we propose a systematic approach that
approximates a target dictionary to reduce the complexity of a
matching pursuit encoder. We combine calculation of the inner
products and maximum atom extraction of a matching pursuit
video coding scheme based on eigendictionary approximation
and tree-based vector quantization. The approach makes the
codec design and optimization cleaner and more systematic than
previous dictionary approximation methods. We vary the quality
of approximation to demonstrate the tradeoff between computa-
tional complexity and coding efficiency. The experiment results
show that our codec achieves speed-up factors of up to 100 with
a performance loss of less than 0.1 dB. We use double-stimulus
impairment scale scores to evaluate the perceptual quality of our
approach for different levels of complexity.

Index Terms—Fast algorithm, matching pursuit (MP), tree-
based vector quantization (VQ), video coding.

I. INTRODUCTION

EFFICIENTLY encoding motion residuals is essential for
low-delay video applications in which videos are en-

coded by hybrid motion compensation and a residual encoding
structure. Matching pursuit (MP), first proposed by Mallat and
Zhang in [12], decomposes a signal into a linear combination
of bases within an overcomplete dictionary (frame). In [14],
Neff and Zakhor show that using MP to code motion resid-
uals performs better than using the discrete cosine transform
(DCT) in terms of the peak signal-to-noise ratio (PSNR) and
perceptual quality at very low bit rates. The results reported
in [10] also demonstrate that the fined-grained scalable (FGS)
MP codec performs better than MPEG-4 FGS at very low bit
rates. In a transform-based decoder, loop filtering and post
processing are usually applied at very low bit rates to remove
blocky and ringing artifacts, but an MP decoder can achieve
comparable quality without the two processes [13]. Because
MP is a data-dependent frame-based representation, an MP
codec technique cannot be directly translated from conven-
tional transform-based approaches. Therefore, new MP coding
techniques have been developed to deal with quantization noise
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in the MP algorithm [15], [24], multiple description coding for
reliable transmission [21], scalable bitstream generation [10],
[1], [23], [19], and dictionary learning and adaptation [4].

Because an MP encoder uses an iterative algorithm, and each
iteration performs many inner product calculations, its compu-
tational cost is higher than that of transform-based methods.
Common approaches that reduce the complexity of an MP en-
coder are dictionary approximation and suboptimal atom extrac-
tion. The latter attempts to find an atom within a local search
area. The most popular algorithms of this approach are pro-
posed in [14] and [1], whereby the next atom is found in the
block of the largest (weighted) energy. Meanwhile, the results
in [11] show that better performance with lower complexity is
achievable, provided that the next atom is found in multiple
blocks. Dictionary approximation, on the other hand, tries to re-
duce the complexity of the inner products by using a dictionary
with a low computational cost to approximate the target dictio-
nary. The works in [18], [22], [3], and [16] are representative
of this approach. We are particulary interested in the two-stage
approach in [18] and [16] because it is extremely efficient. The
approach approximates a basis by a linear combination of the
elementary functions. Thus, by computing the inner products of
an MP residual and the elementary functions, the inner products
of the MP residual and bases can be obtained. Fig. 1(a) shows
the structure of the two-stage dictionary.

An efficient implementation of the two-stage structure is de-
scribed in [16]. However, the elementary dictionary and the
order of bases are heuristically chosen. Developing a system-
atic approach for selecting the elementary functions to approx-
imate a target dictionary and substantially reducing the com-
plexity while maintaining low performance loss are essential
for the success of the approach. The method in [2] uses the or-
thonormal transform between the elementary functions and the
bases. According to principal component analysis (PCA), the
optimal elementary functions that approximate a dictionary with
an orthonormal transform are the eigenfunctions of the dictio-
nary. This structure does not necessarily yield the most efficient
approximation of a target dictionary; however, it is a system-
atic approach for selecting elementary functions, and we have
exploited it by combining it with vector quantization (VQ) to
find an atom, as is shown in Fig. 1(b). Because the dictionary is
approximated by its eigenfunctions, the vector formed by the
coefficients of projecting a basis to the eigenfunctions corre-
sponds to a point in the space spanned by the eigenfunctions.
The number of points in the space is , which is the size of the
dictionary. The VQ approach can then be applied to partition the
space into components, where the points are the centroids of
the components. We can design VQ so that if the coordinate of
a block, which is obtained from the inner products of the block

1051-8215/$25.00 © 2007 IEEE
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Fig. 1. (a) Block diagram of the two-stage dictionary in [18], [16]. The arrows
indicate the order of the bases in the approximated dictionary. By ordering the
bases, a later basis can be economically represented as a linear combination
of its previous bases using only a few elementary functions. (b) The proposed
combined design in which the components enclosed in the box in (a) are replaced
by a tree-based VQ process.

and the eigenfunctions, lies in a component whose centroid cor-
responds to a basis, then with the basis the block will have the
largest absolute inner product. We then impose tree-based VQ
on the centroids to find the basis efficiently.

The elementary functions must be simple so that the inner
products with them can be implemented efficiently. However,
the eigenfunctions have complex structures, so they should be
approximated further. We therefore use a low cost decimated
Haar filter bank to approximate the eigenfunctions. The complete
process, shown in Fig. 2, is comprised of two stages. The first
obtains the inner products with Haar wavelets; and the second ob-
tains the inner products with the eigenfunctions, followed by VQ
to find an atom. We call our approach the two-stage VQ approach.

Having introduced the two-stage VQ structure, we present
the technical part of our method in Section II. The computa-
tional complexity is analyzed and compared to other methods
in Section III. The performance of our approach is objectively

Fig. 2. Proposed two-stage VQ structure.

and subjectively evaluated in Section IV. Section V presents our
conclusions.

II. TWO-STAGE VQ DESIGN

We first describe the MP algorithm, and then present our
approach for dictionary approximation and efficient atom
extraction.

A. Matching Pursuit (MP) Algorithm

Let be a dictionary of over-complete image bases .
The MP algorithm decomposes an image into a linear expansion
of the bases in the dictionary by a succession of greedy steps.
The image, , is first decomposed into

where , and is the residual
image after approximating in the direction of . The dic-
tionary element, , combined with the inner product value

is called an atom. The MP algorithm decomposes the
residual image by projecting it on to the basis functions of

, as was done for . After iterations, an approximation of
the image can be obtained from the atoms by

and converges strongly to as .

B. Dictionary Approximation

In our approach, the MP dictionary is approximated by its
eigenfunctions, each of which is then approximated by the
DWT with Haar bases. Let the bases in the dictionary be

, which can be non-separable. If the sizes of
the bases are different, zeros are added to equalize them. We
apply PCA to the bases and select the eigenfunctions with
the largest eigenvalues. Let the eigenfunctions be denoted as

. Then, we have

where is the index of the basis and .
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The eigenfunctions are wavelet-transformed using the
Haar wavelet, denoted as . The Haar wavelet is used be-
cause its filtering operations can be implemented efficiently. To
further reduce the computational cost, each eigenfunction is ap-
proximated by the largest DWT coefficients, i.e.,

(1)

where is the index set of the DWT coefficients of the th
eigenfunction. Because is an approximation of , the
orthogonal property of does not hold for . Applying
the Gram-schmidt procedure to , we have

. . .

i.e.,

, are orthonormal functions used to approx-
imate the bases . Hence, we can derive the approximation
of our dictionary basis as

(2)

where is the projection of basis onto . Because
are orthonormal functions, the norm is equal to the

norm of the vector , i.e.,

The inner product between and the normalized basis
can be expressed as

(3)

where

Hence, the inner product can be obtained from
the inner product of two dimensional vectors.

...

(4)
Note that can be pre-computed. Moreover, according to (1)

(5)

can also be precomputed.

C. Tree-Based VQ

Our atom extraction technique is combined with the calcula-
tion of the inner product by a VQ method. Equation (4) shows
that the inner product between an MP residual and a basis func-
tion can be obtained from the inner product of two vectors,
and . Vector only contains the basis information and can
be pre-calculated, while vector depends on the MP residual
and must be re-computed or updated at each iteration. The vec-
tors form points in the dimen-
sional vector space. Using the VQ technique, the vector space
can be partitioned into components centered at each . If

lies inside a component whose center corresponds to the basis
, then the absolute inner product between and will be

the largest among and any vector in .
With VQ, finding the atom from all the inner product values of

and the basis functions is the same as locating the nearest
to . The complexity of finding the atom can be further reduced
by using tree-based VQ [5]–[7] to find the best codeword. If it
cannot do so, it usually finds a codeword whose performance is
close to the best codeword.

We use a simple bottom-up algorithm to build a binary tree,
based on VQ, in which a parent node has two child nodes. Our
objective is to organize the codewords, , in such a way that the
binary search algorithm can find the basis whose inner product
is close to that obtained by an exhaustive search. Let be the
lowest level of the tree. We use to represent that the
codeword is at level . To build the parent level, we find the
pair of child nodes that gives the maximum inner product value

If the inner product is positive, we use the mean vector
of and to represent their parent node ; otherwise, the
parent node is the mean vector of and . By the same pro-
cedure, we select another pair of child nodes from the remaining
vectors in and construct
their parent node . We continue the procedure until all the
vectors in have been selected and the
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Fig. 3. (a) Approximation error as a function ofN andK . (b) Approximation error versusN curves for differentK . LargerN andK yield a better approximation
of the Gabor dictionary. The error rate increases slowly as N and K decrease. When both N and K are less than 25, MSE increases significantly.

Fig. 4. Average Y-PSNRs of various N and K , whose ranges are between 10 and 100, with different merging thresholds, f MSE=rjr = 0; 1; 2; 4g. (a) Akiyo
sequence. (b) Mother and Daughter sequence encoded at 30 kbps, 10 fps.

upper level has been constructed. By repeating the above
procedure, we can build the level from the nodes in the

level until the root node is reached. The tree will then
be balanced with a depth of .

To query a codeword in the tree, we use a top-down approach.
If the current internal node is , and its left and right children
are respectively and , then node will be se-
lected if

otherwise, node will be selected. This procedure is re-
peated at each encountered internal node until a leaf of the tree
is reached. Our binary tree-based VQ requires
to search the basis vector for . Although the search procedure
does not always find the basis that gives the maximum abso-
lute inner product, our experiments show that the probability of
finding a basis with an absolute inner product close to that value
is high. The effectiveness of our binary tree-based VQ will be
discussed in Section IV.

D. Bases Elimination

The MP algorithm is designed to greedily reduce the distor-
tion at each iteration; however, the approach may not be the
best for compression purposes, because the coding objective is
to select the atom that gives the largest rate-distortion reduc-
tion at each iteration [20]. Reducing the number of bases in a
dictionary increases the distortion, but it reduces the number of
bits required to encode the bases’ indices. Therefore, the coding
performance may be improved. The number of bases in the pro-
posed method depends on two parameters: the number of eigen-

functions , and the number of dyadic wavelet coefficients .
The mean square error (MSE) of our dictionary approximation
is measured by

Although we can approximate any MP dictionary, we use the
Gabor dictionary in [14] as our target dictionary. Fig. 3 shows
the MSE of Gabor dictionary approximation as a function of
and . When both and are small, some similarly shaped
bases can be clustered so that only a representative basis is kept
to represent the others, which reduces the number of bases. We
cluster bases according to the following rule: if the Euclidean
distance between two bases is less than a given threshold, we
only keep one of them. Reducing the size of a dictionary will
reduce the complexity of computing the inner products as well
as the entropy of encoding the indexes of the bases. Fig. 4
shows the average Y-PSNRs of various and with different
merging thresholds, ; means
that dictionary elimination processing is not applied. As shown
in the figure, by clustering the bases, the Y-PSNR is slightly
better than that without dictionary elimination. Based on the
experiment results, we set in the following experi-
ments, which achieves the best PSNR gain. The increase in
the Y-PSNR after basis elimination is mainly because fewer
bits are used to encode a basis’s index of each atom. Fig. 5(a)
shows the number of bases in the reduced Gabor dictionary as
a function of and when the threshold is , while
Fig. 5(b) shows that the average number of bits used to encode
a basis decreases as the approximation error increases.
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Fig. 5. (a) Number of bases in the reduced dictionary as a function ofN andK . (b) Average number of bits used to encode the index of a basis of variousN and
K for the Foreman sequence at 30 kbps.

III. COMPLEXITY ANALYSIS

We now analyze the complexity of our approach and compare
it with that of other approaches. There are two different imple-
mentations of the MP algorithm. One recalculates all the inner
products at each iteration, while the other calculates all the inner
products once at the beginning, and modifies them according to
pre-calculated update information. The latter approach, called
the MP update algorithm, is faster at the expense of needing more
storage space for the update information. Because finding an
atom from within an entire image is very time-consuming, we
use the popular suboptimal algorithm [14], [1], which divides an
MP residual into disjoint blocks of size by and finds an
atom within the block that has the highest (weighted) energy.

In Section III-A, we analyze the complexity of the implemen-
tation that recalculates all the inner products at each iteration.
Then, in Section III-B, we analyze the complexity of using the
MP update algorithm.

A. Without Using MP Update

First, we address the complexity of the proposed two-stage
VQ approach without using the MP update algorithm. We mea-
sure the complexity of calculating (5) for a residual block and
the complexity of our tree search algorithm. We also compare
the complexity of finding an atom with that of the algorithm pro-
posed in [16] and [18].

1) Inner Product of an MP Residual and Eigenfunctions: To
compute the inner products between a residual block and the
eigenfunctions, we first compute the DWT of each sub-block of
size by centered at a pixel in the by region, as shown
in Fig. 6. We apply the undecimated 2-D wavelet transform (à
trous algorithm) [17] to obtain all the DWT coefficients. A level
of the 2-D undecimated Haar filter bank takes addi-
tions to decompose a size by image block. There
are levels of decomposition for an by block. Thus,
the total number of additions is

(6)

Fig. 7 illustrates the block diagram of the implementation of our
approach. In the figure, the weights in the box were pre-com-
puted according to (1). Because the number of dyadic wavelet

Fig. 6. The size of the local search area (middle box) is S by S, and that of the
extended search area (outer box) is S + L by S + L.

coefficients required to approximate each eigenfunction is ,
the complexity of calculating the inner products of eigenfunc-
tions in the local search area is

. If we use op to denote an addition or a multiplication,
we then have

(7)

2) Tree Search and Comparison: The last step in Fig. 7 ap-
plies a binary tree search to find a basis. The complexity of
finding the basis in the search block is

(8)

If the implementation is used without the proposed tree-based
VQ, it is necessary to form all the inner products between the
residual image and the basis from the combination of the inner
products between the residual image and the eigenfunctions, and
then find the maximum atom by exhaustive search. This would
require
to obtain all the inner products and comparisons to
find the atom by exhaustive search. The advantage of using tree-
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Fig. 7. Block diagram of the implementation of our proposed structure. The weights in the large left-hand box are pre-calculated and the number of dyadic wavelet
coefficients used to approximate each eigenfunctionN = 2. The input data is f , which is first applied to the DWT with Haar bases to obtain the wavelet coefficients
of the data fhf; iig. The complexity of computing all wavelet coefficients is O(6� log L).

TABLE I
COMPLEXITY OF THE TRADITIONAL TWO-STAGE APPROACH AND OUR TWO-STAGE VQ APPROACH MEASURED PER ITERATION

based VQ is obvious and becomes more significant as the size
of a dictionary increases.

3) Comparison Based on One Iteration: Fig. 1(a) shows the
structure of a conventional two-stage approach, in which a basis
is approximated by an elementary dictionary and its previous
basis. If the dictionary consists of elements and the average
number of operations needed to compute the elementary inner
product is , then the complexity of computing the inner prod-
ucts of the elementary dictionary over the extended search re-
gion will be . To approximate the bases,
each basis is assumed to be approximated by a linear combina-
tion of the average of different elements and other bases. It
takes to compute the inner products of
the bases. Note that, because the bases are approximated, their
norms are not equal to one. It requires comparisons
and extra to normalize them in order to extract the
maximum atom. We summarize the complexity of the two ap-
proaches, measured per iteration, in Table I.

As shown in the table, each approach has different parame-
ters; therefore, it is difficult to compare their complexity pre-
cisely. However, our approach is systematic, whereas the tradi-
tional approach uses ad hoc methods to find elementary func-
tions and the computational order. Thus, designing a fast MP
encoder using our approach is simpler than using a traditional
approach when a dictionary is large. Also, the complexity of

the traditional approach, , is a
linear function of the dictionary size; while that of our approach,

, is a logarithmic function of the dic-
tionary size. This also gives our approach an advantage if the
goal is to approximate a large dictionary.

B. Using MP Update

The complexity analyzed so far is based on recalculating the
inner products at each iteration. Since the MP update algorithm
reduces the computational complexity at the cost of using
extra memory to store the update information, in the following,
we use the algorithm to further reduce the computational
complexity of our approach. At each iteration, we obtain the
vector , and use it to find an atom in
tree-based VQ. We then update the vector to at
each iteration according to

(9)

In the above equation, , which is independent of each
iteration, is pre-calculated and stored; and is the
inner product of the atom of the previous iteration. We store all
the inner products of (of size real
values) so that the update step can be implemented efficiently
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Fig. 8. Comparison of the complexity of our approximating dictionary and that in [16] measured as average operations per frame for 10 S. (a) QCIF Coast guard
sequence encoded at 48 kbps,N = 170 andM = 30. (b) QCIF Foreman sequence, encoded at 48 kbps,Natom = 173 and Mblk = 28. The solid curve
of Neff et al. is taken from [16] and the dashed curves are estimated by (12). The stars indicate the results of our method for different N andK .

using one addition and one multiplication at each iteration with
complexity:

(10)

Let us assume that, on average, blocks are encoded in
one frame. To find the first atom of each block, we need to cal-
culate all the inner products within that block. As discussed in
Sections III-A.I and III-A.II, it takes to find
the first atom of a block, where , , and are defined in
(6)–(8) respectively. The update algorithm can then be applied
to the other atoms. Therefore, after iterations, the com-
plexity is

(11)

Compared to the two-stage approach with the update algorithm
in [16], the complexity of is

(12)

where is the initial step of each frame, is the
complexity of finding the atom in each iteration, and is
the complexity of applying the update. For detailed derivations
of these items, readers should refer to [16].

We compare the complexity (ops/frame) of our approach with
that given in [16]. Fig. 8 compares the operations per frame of
different methods. The curves of Neff et al. are either taken from
their paper or estimated according to (12). We performed the
estimation by first obtaining , , and from
the corresponding figures and the table in [16]. Then, using these
values and , obtained by our simulation, we calculated
the complexity of the approach in [16] from (12). Note that our
estimated complexity is very close to that given in [16]. As can
be observed from the figure, for most and , the complexity
of our algorithm is lower when both methods have the same
dictionary approximation error.

IV. PERFORMANCE EVALUATION

Here, we evaluate the coding performance of our two-stage
VQ algorithm. The parameters of an atom are the index, the po-
sition of the basis, and the inner product value. We use adap-
tive arithmetic coding to encode the indexes of the bases. The

inner product values of the bases are encoded by a bit plane
based approach, whereby crucial atom positions are encoded
based on a quadtree representation of a bit plane [10]. In the fol-
lowing experiments, we use the most popular separable Gabor
dictionary with 400 bases [14] as our target dictionary. The un-
restricted motion vector mode and advanced prediction mode in
the H.263 standard [9] are used to obtain the motion vectors.
The first frame of a video sequence is an intra-frame (I-frame)
encoded by the DCT, while all other frames are inter-frames
(P-frames). The sizes of our test sequences are in QCIF format
and the testing frame rate is 10 fps.

We measure the efficiency of our approach by the Y-PSNR
loss and speed-up factors. The former is defined as the Y-PSNR
of the target dictionary minus that of the approximating dictio-
nary. Fig. 9 shows the Y-PSNR loss as a function of and at
different bit rates for various sequences. As shown in the figure,
the Y-PSNR loss increases as and decrease. For some
and , the Y-PSNR of our approximating dictionary at low bit
rates of the News sequence is better than that of the original dic-
tionary. This is because the elimination of bases reduces the bits
required to encode the indexes of bases. Therefore, the approxi-
mating dictionary can encode more atoms than the original dic-
tionary at the same bit rate, which further reduces the distortion.

The reduction in computing time is measured by the speed-up
factor, which is obtained by dividing the complexity of the al-
gorithm in [14] by that of our algorithm. Fig. 10 shows the per-
formance versus the speed-up factor. Each point corresponds to
a pair of and . The envelope curves indicate the best per-
formance that our algorithm can achieve as a function of the
speed-up factor. The general trend of the curves indicates that
increasing the speed-up factor degrades the performance. Note
that, for all the sequences, there are some that speed up
the computation more than 50 times with a Y-PSNR loss of ap-
proximately 0.1 dB.

So far, we have demonstrated the case of finding the optimal
pair of and that yields a given performance loss without re-
source constraints. For resource-constrained environments, we
are interested in determining the optimal pair for a given con-
straint. Our method is described in Appendix 1.

To compare the subjective quality of our approach with
that of the 2-D Gabor dictionary, we used the methodology of
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Fig. 9. Average Y-PSNR loss of our approach. The left subfigures are functions of N and K , which are both between 10 and 100, and the right subfigures are
functions of N for differentK . The average Y-PSNRs of the Gabor dictionary for the News, Coast guard, and Stefan sequences are 30.68, 27.25, and 28.97 dBs,
respectively. (a) News sequence at 20 kbps. (b) Coast guard sequence at 31 kbps. (c) Stefan sequence at 128 kbps.

subjective assessment in [8]. The double-stimulus impairment
scale (DSIS) was used to evaluate the subjective quality. In
this test procedure, participants were shown multiple pairs
of sequences. Each pair consisted of an original sequence
and a compressed sequence, both of which were rather short.
The original sequence was presented first, followed by a gray
period, then the compressed sequence was presented. Both
sequences were presented twice. The participants were re-
quired to score the sequences using a five-grade impairment
scale: imperceptible (5), perceptible, but not annoying (4),
slightly annoying (3), annoying (2), and very annoying (1).
The subjective evaluation results are shown in Fig. 11. For
each point, the axis represents the average DSIS score given
by 40 participants for the sequences encoded using the Gabor
dictionary, and the axis represents the average score for the
sequences encoded using our two-stage VQ dictionary with
different speed-up factors. As shown in the figure, the points
are scattered around the diagonal line, indicating that the two

approaches achieve the same score. From the test, we conclude
that our approach does not degrade the perceptual quality of
an image, even if the Gabor dictionary is approximated with
speed-up factors of up to 250. Snapshots of a video sequence
encoded using the Gabor dictionary and our two-stage VQ
dictionary with different speed-up factors are shown in Fig. 12.
The overall perceptual quality of the pictures is comparable.
Specifically, the artifacts induced by reducing the complexity
are noisy spots on the faces. This is due to the irregularity of
the approximating bases when the approximation error is large,
which corresponds to a large speed-up factor.

V. CONCLUSION

We have proposed a two-stage VQ approach that com-
bines dictionary approximation and atom extraction in a new
framework. Compared to previous two-stage dictionary ap-
proximations, our approach is systematic and has a lower
computational complexity when the size of the target dictionary
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Fig. 10. Average Y-PSNR loss and corresponding speed-up factor for various
test sequences of different N and K; each point corresponds to a pair of N
andK , whose ranges are between 10 and 100. Note that the speed-up of News,
Coast guard, and Stefan achieved by our algorithms is respectively 190, 60, and
110 with negligible 0.1 PSNR loss compared to that in [14]. The curves are the
upper envelopes of the points. (a) News sequence at 20 kbps. (b) Coast guard
sequence at 31 kbps. (c) Stefan sequence at 113 kbps.

is large. We applied our method to approximate the Gabor
dictionary, and showed the trade-off between performance loss
and the speed-up in computational time. Through examples,
we demonstrated that our method can achieve a complexity
reduction factor of up to 100 in exchange for approximately
0.1-dB performance loss. Subjective evaluations indicate that
our approach retains the perceptual quality of a sequence, even
when the speed-up factor is as high as 250. We have also pro-
posed an approach for obtaining the best coding performance
within the constraint of a given complexity. We used MSE as
the criterion for bases elimination. However, using a perceptual
measurement to merge bases would be an interesting research
topic worthy of further study.

Fig. 11. Average DSIS scores of the Gabor dictionary and our two-stage VQ
approach for sequences with various speed-up factors. The scores are the aver-
ages of 40 participants. PointsA ;A ;A are from News;B ;B ;B are from
Coast guard; and C ;C ;C are from Stefan. The parameters of the points are
indicated in Fig. 10.

APPENDIX

RESOURCE-CONSTRAINED PARAMETER SELECTION

The computational efficiency of the proposed method de-
pends on the number of eigenfunctions, , and the number
of dyadic wavelet coefficients, , used to approximate an
eigenfunction. Determining and values for the best pos-
sible coding performance with constrained encoder resources
is a crucial step in adapting the proposed algorithm to a het-
erogeneous environment in which encoder resources vary.
We thus propose an approach for optimizing parameters that
generates the least Y-PSNR loss according to the constraints
of an encoder’s resources. Let be the Y-PSNR loss
of our algorithm if and are chosen as the algorithmic
parameters; and let be the affordable computational cost
for a system to execute the MP algorithm. depends on the
system’s resources, such as the CPU and memory constraints
at the encoder side. We formulate the following constrained
optimization problem

(13)

where is the computational cost of executing the MP
algorithm using our proposed dictionary with a given and .
We use the following example to demonstrate the concept of our
approach. For simplicity, we approximate the average Y-PSNR
loss of executing eleven MPEG-4 QCIF sequences at 30 kbps
as the quadratic equation

(14)

The manifold shown in Fig. 13 is generated by fitting the above
equation. For a case where the MP update algorithm is not ap-
plied, the computational cost per atom is

(15)

where is a system constant; and , ,
and are respectively the cost per atom of: 1) the
DWT; 2) obtaining the inner products between the residual
image and the eigenfunctions; and 3) tree-based VQ. Because

is a monotonically decreasing function of and
, and is a monotonically increasing function of the
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Fig. 12. Perceptual quality of Frame 66 of the QCIF News sequence encoded at 20 kb, 10 fps. (a) Original frame. (b) Gabor dictionary. (c) Our approach with a
speed-up factor of 92. (d) Our approach with a speed-up factor of 184;. (e) Our approach with a speed-up factor of 243.

parameters, for a given , the solution that minimizes is
derived when . The above constrained problem
can be solved by the Lagrange multiplier approach; that is, by
finding the and that minimize the following equation:

(16)

where is the Lagrange multiplier. Note that is the
measured cost, while is the estimated Y-PSNR loss.
By partially differentiating with respect to , , and

, we obtain

(17)

Fig. 13. Numerical optimal solutions for different at 30 kbps. All the points
on a curve have equal , but the highlighted circled points have the best Y-PSNR
performance. The manifold was generated by averaging eleven MPEG-4 se-
quences in QCIF format.

The highlighted circled points marked by a star in Fig. 13 are the
numerical solutions of , , and for different values.
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