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Analysis of Singularities From Modulus Maxima of
Complex Wavelets

Chun-Liang Tu, Wen-Liang Hwang, Member, IEEE, and Jinn Ho

Abstract—Complex-valued wavelets are normally used to mea-
sure instantaneous frequencies, while real wavelets are normally
used to detect singularities. We prove that the wavelet modulus
maxima with a complex-valued wavelet can detect and charac-
terize singularities. This is an extension of the previous wavelet
work of Mallat and Hwang on modulus maxima using a real
wavelet. With this extension, we can simultaneously detect instan-
taneous frequencies and singularities from the wavelet modulus
maxima of a complex-valued wavelet. Some results of singularity
detection with the modulus maxima from a real wavelet and an an-
alytic complex-valued wavelet are compared. We also demonstrate
that singularity detection methods can be employed to detect the
corners of a planar object.

Index Terms—Continuous wavelet transform, corner detection,
singularity, wavelet modulus maxima.

I. INTRODUCTION

I N recent years, singularity analysis has emerged as a mul-
tiple-area problem solving method [2], [3], [6], [19], [13],

[12]. One pioneering work [15] studied the detection of the
singularities of local homogeneous functions from the phase
of wavelet transforms. Singularities of a signal can be charac-
terized by the modulus of their wavelet transforms [10], [17].
Furthermore, it was shown in [14] that only from the modulus
maxima of a real-valued wavelet can all the singularities be de-
tected and characterized. However, [14] focused on the modulus
maxima of real wavelets for singularity detection and characteri-
zation, not on the modulus maxima of complex-valued wavelets.

A complex-valued analytic wavelet only responds to the non-
negative frequencies of a given signal and, thus, produces a
transform whose moduli are less oscillatory than in the case of
a real wavelet. Analytic wavelets have been widely used to de-
tect and characterize the instantaneous frequencies of signals
and images based on ridges [7], [22], which mark the places in
the time–frequency plane where most of the local energies of
a signal are concentrated. One can detect ridges from either the
phase or the magnitude of a wavelet transform [5]. Instantaneous
frequencies can be approximately identified from the modulus
maxima of a real wavelet based on general maxima, which are
the locations of the largest modulus along maxima lines [14].
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However, compared to ridges, general maxima are not as mathe-
matically or practically elegant for detecting and characterizing
instantaneous frequencies.

Our main contribution is to prove that the modulus maxima
of the wavelet transform using a complex-valued wavelet can
detect and characterize singularities. Because of this, we are
able to simultaneously process instantaneous frequencies and
singularities from the modulus maxima of the wavelet transform
using a complex-valued wavelet. By simulation, we demonstrate
that using the modulus maxima of a complex-valued analytic
wavelet is better for detecting and estimating singularities than
using a real wavelet when a signal is embedded in an additive
white Gaussian noise environment. Additionally, we apply a sin-
gularity method to detect corners from the contour of a planar
object. Through simulation, we show that complex-valued ana-
lytic wavelets outperform real wavelets in this task.

The remainder of this paper is organized as follows. Section II
contains background material on the complex-valued wavelet
transform. In Section III, we review the results of singularity
processing based on the modulus maxima of a real wavelet. We
also present our results based on a complex-valued wavelet and
demonstrate its performance by comparison with singularity de-
tection and estimation. In Section IV, we show that a singularity
method can be applied to detect corner points. In addition, we
demonstrate and compare examples with a real wavelet and a
complex-valued wavelet. Finally, in Section V, we present our
conclusion.

II. COMPLEX-VALUED WAVELETS

The continuous wavelet transform was first introduced by
Morlet and Grossmann [9]. To review, let be a complex-
valued function, which is said to be a wavelet if its integral is
zero

(1)

The continuous wavelet transform of a function
with respect to the wavelet is defined as

(2)

where and denotes the complex con-
jugate of . A wavelet is said to have vanishing
moments if and only if for all positive integers , it
satisfies

(3)
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The wavelet transform is invertible, and is recovered with

(4)
where

and is the Fourier transform of .
Several interesting complex-valued wavelets have been used

in a wide variety of applications. The Cauchy wavelet

has been used in quantum mechanics [1], while the Morlet
wavelet

has been used to detect instantaneous frequencies and analyze
textured images [7], [11]. Strictly speaking, the Morlet wavelet
is not a true wavelet in that its integral is not zero. However,
for a large enough (in practice, larger than ), the integral of

is small enough to ensure that it can be used numerically,
as if it were a wavelet. A popular wavelet in computer vision is
the th derivative of the Gaussian function

(5)

These wavelets can be easily turned into analytic wavelets by
canceling their negative frequencies by means of the Hilbert
transform , i.e., by considering .
The frequency response is then

where denotes the Heaviside step function, which is
equal to when and to otherwise. denotes a nor-
malization constant. The parameter gives different numbers
of vanishing moments of wavelets. When performing wavelet
singularity analysis, the number of vanishing moments is very
important, as it provides an upper bound measurement for sin-
gularity characterization.

III. SINGULARITY DETECTION FROM

COMPLEX-VALUED WAVELETS

The Lipschitz exponent is a measurement of the strength of
a singularity. It has been shown that the Lipschitz exponent of
a local singularity can be characterized by wavelet transforms.
One can find related results in [10], [17], [18]. Furthermore,
Mallat and Hwang [14] showed that the Lipschitz exponent can
also be computed with the restriction of the wavelet transforms

, placed on their local modulus maxima at each scale
. However, their results are valid only if the wavelet is real.

In this section, we first review the results in [14] regarding de-
tection and characterization from the modulus maxima of a real
wavelet. We then extend part of these results, using the modulus
maxima of a complex-valued wavelet, to show that the modulus
maxima of a complex-valued wavelet can also be used to detect

and characterize singularities. We begin by introducing some re-
lated definitions.

Definitions:

• If a function satisfies
with , and , we say that the
function is uniformly Lipschitz of exponent over
the interval.

• Let be a positive integer, and . A function
is said to be uniformly Lipschitz of exponent over

the interval if for any in the interval there exists
a polynomial of order and a constant such that

for small enough.

• We say that the Lipschitz (regularity) of at is
if is a superior bound of all Lipschitz exponents of

at . A function is singular at if it does not have
Lipschitz regularity at .

• In numerical computations, we may encounter negative
Lipschitz exponents. The negative Lipschitz exponents
for tempered distributions are defined in [14] as follows:
The distribution is said to be uniformly Lipschitz
over interval , if and only if its primitive is uniformly
Lipschitz in the interval.

• A modulus maximum is the point where

when belongs to either the right or the left neighborhood
of , and

when belongs to the opposite neighborhood of .

• A maxima line is a connected curve of the modulus
maxima in the scale space .

A. Isolated Singularity

The theorems given in [14] state that the wavelet modulus
maxima of a real wavelet can detect all singular points in a
given interval. Maxima lines converge as the scale decreases
to (while not being limited to) all the singular points in the in-
terval. From the values of the lines, one can characterize their
Lipschitz regularities.

In order to extend the above-mentioned results from a real
wavelet to a complex-valued wavelet, one should place con-
straints on the real and imaginary parts of wavelet transforms.
For convenience, we introduce the following definition: two
functions and are finite deviations within a given
interval if for any subinterval (of length ) of , they can
be divided into at most intervals , where
in each interval is either

• (Type I) for all in or
• (Type II) at the two ends of the interval, but

for any in between them.

Two functions are not finite deviations within an interval only
if they have an indefinite number of intersections (of Type I, or
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Fig. 1. (a) There are four singularities that follow from left to right in this signal. In the left neighborhood of the first singularity, it locally behaves like O(jxj ),
whereas in its right neighborhood, it behaves likeO(jxj ). The second singularity is a Dirac whose Lipschitz is�1. The Lipschitz exponent of the third singularity
is 1:5. The fourth is a step singularity. (b) The modulus of the complex-valued wavelet transform of (a). (c) The maxima line of (b). (d) The real part of the wavelet
transform in (b). (e) The maxima lines of (d) in which there are three maxima lines corresponding to the first singularity. The left maxima line corresponds to the
left neighborhood of the singularity with O(jxj ), and the right maxima line corresponds to the right neighborhood of the singularity with O(jxj ). The middle
maxima line is the compromise behavior between the left and right neighborhoods of the singularity. (f) Decay of log(jWf(s; x)j) as a function of log(s) along
the maxima lines of the first singularity. The maxima line of (c) is plotted with a solid line. The three maxima lines of (e), from left to right, are plotted with a long
dash line “—, “ short dash line “-,” and a dotted line “.”. Their slopes are recorded on the lines.

Type II, or both) in the interval. An example of two functions,
which are not finite deviations for any interval including ,
are and . The two functions have an unbounded
number of intersections for any subinterval around .

We show in the following theorem that if there are no com-
plex-valued wavelet modulus maxima in all sufficiently small
scales in a given interval, and if the real and imaginary parts
of the wavelet transform in all these scales are finite-deviations,
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then the function is uniformly Lipschitz for any , in this
interval.

Theorem 1: Let be a strictly positive integer. Let be
a complex-valued wavelet that has compact support, has van-
ishing moments, and is times continuously differentiable. Let

.

• If a scale exists such that for all scales and
, has no local maxima, and if the th

derivatives of and
are finite deviations for each scale , then for any
and , is uniformly Lipschitz in .

• If is the th derivative of a smoothing function, then
is uniformly Lipschitz on any such interval

.

The proof of this theorem is given in Appendix I. The the-
orem indicates that if the real and imaginary parts of the wavelet
transform for a function are finite deviations for all suffi-
ciently small scales, then from the wavelet modulus maxima of
a complex-valued wavelet , we can
detect all the singular points of the function , as is the case
with the real wavelet . The following theorem states that
the wavelet modulus maxima of a complex-valued wavelet can
characterize singularities.

Theorem 2: Let and let the th deriva-
tive of and be finite-deviations
for each scale . If a scale and constants and exist
such that for and , all the modulus maxima of

belong to a cone defined by

(6)

such that, at each modulus maxima in the cone

(7)

then is uniformly Lipschitz at when , and
is Lipschitz at when is a noninteger.

The proof of this theorem is similar to that given in [14,
Appendix I]. We further illustrate it in Appendix II in this paper.
In order to apply our theorems, the extra finite-deviations con-
dition for the real and complex parts of the wavelet transform
and those required in [14] are needed. If the real and imaginary
parts of the wavelet transform of are not finite deviations
within an interval, then they must have an indefinite number of
intersections (of Type I, or Type II, or both). Hence, there is an
indefinite number of oscillations of within the interval. In
many applications, however, signals do not oscillate indefinitely
over an interval.

In order to obtain the Lipschitz exponent numerically, (7) is
usually rewritten as

(8)

In [14], and are computed by

In practice, however, it is known that estimating by means of
least squared fitting is not reliable. A more robust least median
of squares regression [21] can be used to find and that
minimize the objective function

Fig. 1 shows the wavelet transforms and the wavelet mod-
ulus maxima of a function obtained by using the wavelet

, where is the second derivative of a Gaussian
function. Our function is constructed with the isolated singular-
ities shown in Fig. 1(a). There are four maxima lines in Fig. 1(c):
the first line from the left is not vertical because the two sides of
the corresponding singular point behave differently, while the
rest of the maxima lines are vertical. More maxima lines con-
verge to each singular point in Fig. 1(e) than in Fig. 1(c) due
to the oscillation in the modulus of the real wavelet transform.
In Fig. 1(e), three maxima lines correspond to the first singular
point at the left under the real part of the wavelet transform,
while only one maxima line corresponds to this singular point
under the complex-valued wavelet transform. In Appendix IV,
we calculate the modulus maxima of this singularity with real
and analytical wavelets.

We compare the detection and characterization efficacies
of real and analytic wavelets for the singularities in Fig. 1
by adding white Gaussian noises to the signal such that the
signal-to-noise ratios (SNRs) of the resultant signals vary from
40 to 10 dB. We use the algorithm proposed in [14] to generate
maxima lines from the modulus maxima of wavelet transforms.
The location of a singularity is measured by the mean of the po-
sitions in the finest scale from the maxima lines corresponding
to the singularity. There is more than one maxima line for a
singularity if a real wavelet is used; thus, the estimated location
of the singularity is the mean of the location of each maxima
line. The left column of Fig. 2 compares the statistics of loca-
tion detection for each singularity, while the right column of
the figure compares the statistics of characterization of each
singularity by measuring its Lipschitz exponent. Note that the
mean of the measured Lipschitz exponents of each maxima line
is used for the real wavelet, except for the first singularity on
the left. The Lipschitz exponent of this singularity for the real
wavelet is measured from the modulus of the middle maxima
line. The dashed line in each part of the figure indicates the
value if a clean signal has been analyzed. The third singularity
has a Lipschitz exponent of , indicating that the value of a
modulus maxima in a finer scale is less than that in a coarser
scale. For this singularity, the noise variance in the finer scale
dominates the wavelet modulus of the singularity; thus, its
correct maxima lines are not discernible. However, the analytic
wavelet gives a moderate error of up to 30 dB in Lipschitz
exponent estimation, while the real wavelet looses the value,
even at 40 dB. The bottom right part of the figure shows that
the analytic wavelet yields a better estimation of the step edge.

Remark: The resolution of a discrete signal is limited to, say,
. Thus, when estimating the Lipschitz exponent of a sin-

gular point in the signal, we know that the scale cannot be
arbitrarily small, i.e., it is constrained by . The Lip-
schitz exponents estimated in Fig. 1 are the best possible solu-
tions when applying our method with .
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Fig. 2. Comparison of singularity detection and characterization of the signal in Fig. 1(a) using a real and an analytic wavelet in additive white Gaussian noise
environments. The SNRs vary from 40 to 10 dB. The results of the real wavelet are indicated by � and that of analytic wavelet by �. The left column shows the
mean and standard deviation of the location estimation of each singularity, while the right column shows those of Lipschitz exponent estimation. Each statistic
was measured by 16 experiments. The horizontal dashed lines give the values measured in the clean signal. The subfigures from top to bottom correspond to the
singularities from the left to right.

IV. CORNER DETECTION OF PLANAR SHAPE SKETCHES

The shape of a planar object has been widely used in com-
puter vision to recognize and represent an object. The perfor-
mance of a shape-recognition system depends heavily on the
effectiveness of low-level processing of contour signals. Corner
points, which are the locations on a contour where the curvature
changes sharply, are regarded as the most descriptive features.
Imaging a planar object usually produces quantization noise. In
Fig. 3, the sequence is the contour of the original planar
object, and the sequence is the contour of its image. Note
that due to quantization to a lattice point, the two contours are
different.

The contour of a planar object is usually represented as a one-
dimensional signal using the chain code method [4], [8]. We use

for the chain code, where is the angle between the

tangent to the boundary of an object with arc length and the
direction of the horizontal axis

horizontal axis

Let and be, respectively, the chain code represen-
tation of the planar object and its image; the difference between
them is the quantization noise due to the digitizing process. The
corner detection problem is to estimate the corners in the chain
code of the original planar object from the given chain
code of the imaged object.

Since two neighboring points of a digitized object have a lim-
ited number of directions, the chain code representation of the
object’s contour has a limited angle. If the direction of each seg-
ment is coded by using an -connectivity numbering scheme,
such as the one shown in Fig. 4(a), then the chain code of an
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Fig. 3. Imaging a planar object. Note that B , B , B in the contour of the original object are mapped to A in the imaged object, B to A , and B to A ,
respectively. The number beside the segment is the chain code of the segment.

Fig. 4. Chain-code. (a) Direction of 8-connectivity. (b) Angle added to the current chain code by supposing that the current segment points toward 0. If we move
counterclosewise to the next segment by , then the index of the angle to be added to our chain code is 2. (c) An example.

imaged object can only have values in , where and
are integers and is within to . In chain code implementation,
an angle , where corresponds to a
direction shown in Fig. 4(b), is added to the current chain code
when we trace the contour to the next segment. For example,
if the next segment has the same direction as the current seg-
ment, we add to the current chain code. This implementation
adds to our current chain code the smallest angle with range

between the current and the next segments. Fig. 4 (c)
illustrates an example in which the angle is added to a chain
code by moving counterclosewise from segment to segment

. The number beside each segment indicates the chain code of
the segment after dividing it by . For convenience, we here-
after represent the chain code by its number.

The derivative of the chain code of a planar object at is the
curvature at that location. A corner point is a location where
the curvature changes sharply, and the tangent to the contour is

discontinuous. In [3], the chain code of a corner at is
modeled as

if
if

where , are curvatures, and are, respectively, the angle
and the angle discontinuity at . By employing the wavelet
transform with a wavelet that has at least two vanishing mo-
ments, we obtain when and
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Fig. 5. A few patterns yield a chain code (a; a; a+d; a; a), with d 2 f�1;�2;�3g. We draw patterns of positive d. Patterns with negative d values are similar
and we, therefore, omit them. Any corner of a planar object, whose chain code is one of the patterns (as shown in solid line segments), cannot be detected by our
method. The chain codes are a five-point Dirac segment. The dashed line in (a) shows that this pattern may belong to a polygon segment containing an angle �

greater than + arctan 2 � 108 . Thus, our method may fail to detect a polygon angle greater than 108 .

When , we have

(9)

where and are constants. Thus, the modulus maxima line
occurs as a straight line of at , and the modulus on the
line is if , or if .



1056 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 3, MARCH 2005

Fig. 6. The corners (marked by dots) obtained using wavelet modulus maxima.
Left: from the real wavelet. Right: from the complex wavelet. Top: Bat. Middle:
Temple. Bottom: Handkerchief.

In this model, the modulus value of the corner will not decrease
as the scale increases. This implies that the Lipschitz regularity
of the corner is a nonnegative value.

Equality (9) characterizes the Lipschitz regularity of a
corner of a planar object with wavelet modulus maxima. In
Appendix V, we show that the chain code of an imaged line is
a constant, plus a Dirac impulse sequence

(10)

where is an integer constant between and , ,
and . Note that the chain code of a line is a
constant value; thus, the above Dirac sequence results from the
digitization of the line. A Dirac impulse has a negative Lipschitz
regularity whose value is . Therefore, the Dirac sequence can
be removed by a singularity method that applies a threshold on
the Lipschitz exponent so that a singularity of the Lipschitz
exponent greater than the threshold is sustained. Although
applying a threshold on the Lipschitz exponent effectively
removes a Dirac sequence, it may also remove some corner
singularities of a planar object. Fig. 5 shows some patterns
whose corresponding chain codes are a five-point Dirac segment

with . Any corner in a curved

segment that yields one of these patterns after digitization
cannot be detected by our method because the singularity of
the corner is a Dirac and will be removed by our method.

In Fig. 6, we show and compare corner detection results (in-
dicated by dots). Fig. 6 (a), (c) (e) shows the results obtained by
superimposing the corners detected from applying real wavelet
transform modulus analysis, while Fig. 6 (b), (d), (f) super-
imposes detected corners by applying complex-valued wavelet
transform modulus analysis. The top pattern is a bat, the middle
is a temple, and the bottom is a handkerchief. In our implemen-
tation, the Lipschitz exponent of a maxima line was computed
using the least median square regression method with the scale
ranging from to . We kept maxima lines having
and deleted the rest. It is obvious that the corners of these pat-
terns were better detected using the modulus maxima of a com-
plex-valued wavelet.

V. CONCLUSION

We have proven that the wavelet transform modulus maxima
of a complex-valued wavelet can be used to detect and charac-
terize singularities. This is an extension of the previous work of
Mallat and Hwang, which applied the modulus maxima using a
real wavelet to detect singularities. Currently, analytic wavelets
are used to measure instantaneous frequencies, while real
wavelets are used for singularity detection. With our extension,
we are able to simultaneously detect instantaneous frequencies
and singularities using only the modulus maxima of the wavelet
transform of an analytic wavelet. We have demonstrated the ro-
bustness of estimating singularities from the modulus maxima
of an analytic wavelet over that of a real wavelet. Furthermore,
we show that the singularity detection method can be employed
to detect the corners of a planar object.

APPENDIX I

In this appendix, we prove Theorem 1. We first need the fol-
lowing lemmas.

Lemma 1: Let be a real-valued function and
for then

Proof: Since , we know that is a
function with a constant sign in . For simplicity, we only
discuss the case where are all positive in . Since

are all positive, is a strictly monotonically increasing
function in . We present our result by discussing the fol-
lowing two cases.

Case 1: intersects with the axis.
Suppose for . Since ,

we have . Therefore,

By similar deduction, we have .
Then
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Case 2: does not intersect with the axis.
Suppose for all . Since

we have

Similarly, let for . Since

we have

Based on Cases 1 and 2, we have

Lemma 2: Let be a real-valued function. If

then

Proof: Since is a constant sign function in ,
is a strictly monotonically increasing or decreasing func-

tion in . We then have

The last inequality above follows from Lemma 1. Without loss
of generality, let us suppose that

Then, must be either all positive values or all negative
values within the interval . If this is not the
case, then

and a violation of our assumption occurs. Thus, we have for any

By Lemma 1,

Therefore,

Lemma 3: Let be a positive constant, and let be a
complex function that satisfies . Suppose that

has no local maxima in . Let , and let the first

derivatives of and be finite deviations; then
there exists a constant such that, for all in ,

.

Proof: Since has no local maxima in , for all
in

Without loss of generality, let us suppose that

Let , where and
are real functions. Since the first derivatives of

and are finite deviations, we can divide the
interval into subintervals .
Within each interval : either for all in , or

only at the two ends of the subinterval . We
now define a real function over such that

.

As a result, we have

for . We can now apply Lemma 1 to each
interval over and obtain
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where is the length of the subinterval . Furthermore, we
have

(11)

Clearly

Therefore,

Substituting this into (11), we have

and, therefore,

As a result, for all in , .

Lemma 4: Let be a positive constant, and let be a
complex-valued function that satisfies

Suppose that has no local maxima in . Let

, and let the second derivatives of and be
finite deviations. Then, a constant exists such that for all

in , .
Proof: The proof of this lemma is similar to that of the

previous lemma. has no local maxima for all in .
Therefore, for all in

Without loss of generality, let us suppose that
is equal to .

Let , where and
are real functions. Since the second deriva-

tives of and are finite deviations, we can
divide into subintervals .
Within each subinterval : either for all in
the subinterval, or only at the two ends of the
subinterval. Let a real function be

.

Then, we have

for . For a subinterval , by Lemma 2, we
have

Furthermore, we have

(12)

Assume that . Then, all and, therefore,

Clearly,

Then, we have

Substituting this into (12), we have

Then, we have . Thus, we
have for all in , .

Proof of Theorem 1

1. We prove the first part of this theorem by induction with
the following proposition.

Proposition : Let be a complex-valued wavelet
that can be written as . is equal to

, where both and are continuous
functions of compact support. Let be a real function. Then,
for any , a constant exists such that, at all scales

(13)

where .
If has no modulus maxima for and
, then for any , there exists a constant such that, for

any and

(14)

Proof: If we modify by multiplying it by the indi-
cator function of , then we do not modify its regularity on
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any interval . In the following, we thus assume that
for all .

• Let us first prove that (13) is satisfied.
Since and for all ,

it follows that

With a change of variable in the integral, we obtain

Hence, is bounded by a constant inde-
pendent of the scale , as in (13).

• Let us now prove that (14) is satisfied.
We first prove that the proposition is true for .

Since , we find that

Let . By (13) and Lemma 3, we have
for all , . There-
fore, .

The proof of for is based on (13) and
Lemma 4. Since , we find that

For all , .
Therefore, .

• Let us now prove that if is true for , then
is also true. Let be a wavelet with

vanishing moments. The wavelet can be written
, where is a wavelet that has

vanishing moments. Let be the derivative of
in terms of distributions; then

(15)

In order to apply our induction hypothesis to
with respect to the wavelet , we need to

prove that for any , a constant exists such that,
at all scales

(16)

Since the wavelet has more than two vanishing mo-
ments, proposition , which we proved above, implies
that for any if , then

Assuming that , and that ,
, , and are all in ,

then is uniformly Lipschitz on the intervals
, for any [10], [17], [18] (also Appendix III).

Hence, is uniformly bounded on any such in-
terval. We can then easily derive that (16) is satisfied. Let
us now apply the induction hypothesis to
with respect to the wavelet . A constant exists
such that for any and

Equation (15) implies that

This completes the proof of .
By applying the theorem stated in Appendix III to state-

ment , we derive that the function is Lipschitz
for any .

2. The proof of the second part of Theorem 1 is as follows.

• Let us now prove that (14) implies that is Lipschitz
if the wavelet can be written as

(17)

where , and both and
are smoothing functions. Let be the

th derivative of in terms of distributions. Similar to
(15), (17) yields

Equation (14) of proposition implies that for any
, there exists a constant such that for any

and

Since the integral of is nonzero, this equation implies
that is a function that is bounded by
over the interval . Hence, is uniformly
Lipschitz over the interval .

APPENDIX II
PROOF OF THEOREM 2

First, we derive that is Lipschitz at any . For
any , a scale exists such that for all , there
is no wavelet modulus maxima at . Further-
more, from Theorem 1, the th derivatives of and

are finite deviations for all ; therefore, the Lip-
schitz regularity in the neighborhood of any
is . Thus, is uniform Lipschitz at any point in .
The same is true for any point in .

Let us prove that is Lipschitz at , and that it can be
characterized by the complex-valued wavelet modulus maxima.
For any interval including , there is a small
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enough scale such that for all the wavelet modulus
maxima for these scales are contained entirely within the region

by . Then, there is a constant such
that all the wavelet transforms in the region will be bounded by

From the theorem stated in Appendix III, any subinterval in-
cluding in will be Lipschitz . This implies
that the Lipschitz regularity at is .

APPENDIX III

Here, we review a well-known theorem, a proof of which can
be found in [10], [17], [18].

Theorem: Let be a real-valued function, and let
be an interval of . Let . Then, is uniformly
Lipschitz over if and only if for any , a
constant exists such that for all and ,

.

One can easily show that the theorem is also true for a com-
plex-valued wavelet , provided that

, , , and are all in .
This theorem can also be extended to a Lipschitz exponent
larger than by requiring the wavelet to have enough vanishing
moments. A related discussion can be found in [14].

APPENDIX IV

In this appendix, we analyze the signal

using a second derivative Gaussian wavelet and an ana-
lytic wavelet whose real part is .

We first show that there are three maxima lines if the wavelet
is . Let the wavelet transform in scale be

Clearly, for all . Thus, the maxima lines can be
obtained by taking the derivative of and setting the
result to zero. Omitting the constant, we have

(18)

where is the standard deviation of the Gaussian function. For
each , if the scale is large enough such that , then

Substituting this into (18) and calculating the integrations, we
obtain a degree polynomial of

By substituting and , which correspond to the
leftmost singularity in Fig. 1, we derive three real roots. Note
that when , the terms and in are zeros. This
indicates that is a real root; and if is a root, then
is also a root for such a case.

Now, we will show that there is only one maxima line when
we use the analytical wavelet , whose
real part is the second derivative of the Gaussian function. The
Hilbert transform of is

(19)

The Hilbert transform of a Gaussian function is a confluent
hyper-geometric function, which has a hyper-geometric series
and generally does not have a closed form. However, we can
approximate the Hilbert transform of a Gaussian function

when

The Hilbert transform of is , which is also
the derivative of with respect to . Therefore, when

, the Hilbert transform of can be approximated

as its derivative and yields . Substituting this re-
sult into the last term in (19), we obtain

(20)

The above is the imaginary part of our analytical wavelet .
The wavelet transform of is

(21)

Let be the real part of and be the imaginary part
of . The wavelet transform modulus maxima can be found by

(22)

Substituting (21) into the above equation, and supposing that
(this can be done for each by allowing scale to be

large enough) and using the approximation
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Fig. 7. The following patterns are impossible in ��[n] for the chain code
of a line: (a) two consecutive 1’s; (b) subsequences 101 and 10(0) 1; and
(c) subsequence 010.

we obtain a polynomial of of degree . Omitting any degree
higher than of this polynomial (because ) yields the
cubic equation

Using a similar technique to that used to obtain the roots of the
real wavelet transform modulus maxima, we find numerically
that the solution of the above cubic equation has a unique real
root when and . When , is zero. In
such a case, the real root is at .

APPENDIX V

In this appendix, we show that the chain code of an imaged
line is

where is a constant, , and .
Let be the chain code of an imaged line, and its discrete

derivative be . We show that the fol-
lowing are impossible patterns for . We use to denote
a sequence of with length . We shall show that has
the following two properties:

• P1: contains neither a subsequence nor
.

Proof: The dashed diamond in Fig. 7 indicates that any
point in the region will be quantized to the lattice point at the
center of the diamond. We stipulate that the top and right coners
of a diamond are not included in the dashed area.

Fig. 7(a) shows that subsequence is impossible in .
The right corners of diamonds and are not quantized
to our lattice point. Thus, line does not intersect all the di-
amonds. Any line that intersects before must cross the
lower segment of point . The line cannot intersect and .
A similar argument can be employed for any line intersecting

before . A line must cross the upper segment of point
; therefore, the line does not intersect and . Fig. 7(b)

shows that a diamond can be inserted between and . The
corresponding subsequence in is , and any number of
diamonds can be inserted between and . Similarly, we can
show that is an impossible pattern. As the subsequence in

is , it is omitted from the proof.

• P2: contains neither a subsequence nor
.

Proof: Fig. 7(c) illustrates that any line with a slope
smaller or greater than the slope of line will intersect at
most four diamonds. The corners in and where line
intersects are not quantized to our lattice points. Thus, there is
no line that can intersect all the diamonds. So sequence is
an impossible pattern for . Because a similar argument
can be used for the sequence , it is not included in the
proof. The chain code can then be derived according to the
above two properties of .
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Case 1: There is a in . Let the sequence be
and the corresponding sequence of the chain code
be . According to P1 and P2,
the in is neither nor ; hence, is . The
correspoinding chain code value is therefore

. The corresponding piece of the chain code that
contains a Dirac is

A similar argument can be applied to a subequence
of : , as it obtains a Dirac at the
corresponding piece of the chain code.

Case 2: There exists no in . According to P1 and P2,
is , and the corresponding

piece of the chain code is

This piece of chain code contains many Diracs and
the distance between two consecutive Diracs is at
least . A similar argument to Case 2 can be applied
when is , which obtains a
piece of the chain code

The conclusion drawn from Cases 1 and 2 is that the chain code
of an imaged line is a constant plus a Dirac sequence.
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