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Abstract

The ��D fractional Brownian motion �fBm� model is useful in describing natural

scenes and textures� Most fractal estimation algorithms for ��D isotropic fBm

images are simple extensions of the ��D fBm estimation method� This method

does not perform well when the image size is small �say� 	�� 	��� We propose a

new algorithm that estimates the fractal parameter from the decay of the variance

of the wavelet coe
cients across scales� Our method places no restriction on the

wavelets� Also� it provides a robust parameter estimation for small noisy fractal

images� For image denoising� a Wiener �lter is constructed by our algorithm using

the estimated parameters and is then applied to the noisy wavelet coe
cients at

each scale� We show that the averaged power spectrum of the denoised image is

isotropic and is a near �

f
process� The performance of our algorithm is shown

by numerical simulation for both the fractal parameter and the image estimation�

Applications on coastline detection and texture segmentation in noisy environment

are also demonstrated�
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� Introduction

Fractional Brownian motion 	fBm
 is a non�stationary stochastic model� which has a

��f spectrum and the statistical self�similar property ���
� For an isotropic ��D fBm�

it has the averaged power spectrum ��
���


P 	wx� wy
 �
���q

w�
x � w�

y

����� �

where � is the scaling exponent� � � � � �� Other types of ��D fBm� such as the

multi�fractal rough surface ���
 and the extended self�similar model ���
 � also exhibit

features controlled by the scaling exponent �� Many natural phenomena are found

to have ��f spectrums� Thus� an fBm provides good mathematical modeling of these

phenomena� Moreover� the self�similar property� which means that the statistical mea�

sure is invariant to the change of scales� makes fBm very useful in describing natural

scenes and textures� The scaling exponent � has also been shown to be related to the

fractal dimension and surface roughness ���
� Many research works have focused on the

generation of fBm ���
���
 and estimation of the fractal parameter 	scaling exponent


� ��
��
���
���
� Among them� the wavelet approach was adopted naturally because the

statistical self�similarity properties of an fBm can be described based on the scaling

properties of wavelet transforms� Most of the previous wavelet�based results have de�

pended heavily on the orthogonality and vanishing moment of the wavelet function�

They used the approximation that the orthogonal wavelet coe�cients are almost white

processes� This approximation works only if orthogonal wavelets with high vanishing

moment are used� The performance will severely degrade if non�orthogonal wavelets

are used� It was shown in ��
 that the orthogonality of a wavelet can be discarded if

the fractal parameter is estimated from the autocorrelation of the wavelet transform of

an fBm� In spite of the comparative performance of the fBm estimation and denoising

methods with the results obtained using orthogonal wavelet transform� the approach

in ��
 allows fractal estimation and other applications� such as edge detection and in�

�



stantaneous frequency analysis� both of which are captured nicely by non�orthogonal

wavelet transforms� to be done with one wavelet transform analysis ��
���
���
�

In this paper� we will extend the proposed methods in ��
 to an isotropic ��D noisy

fBm image� The extension is not straightforward� Although one can obtain the frac�

tal parameter of an isotropic fBm by averaging the estimated fractal parameters from

several directions using the ��D fractal parameter estimation algorithm ��
��
���
���
�

this approach does not work well in practice� Note that when the fBm is embedded

in additive white noise environment� it usually requires a su�cient number of sampled

points for robust ��D fractal parameter estimation ��
� Thus� for a small image 	say

of size less than �� � ��
� there are not enough pixels in each direction for accurate

��D fractal parameter estimation� As a result� alternative methods must be developed

in order to achieve fractal estimation from a small noisy fBm image� In this paper�

we show that the wavelet transform of an isotropic fBm image at each scale is a two�

dimensional wide�sense stationary 	WSS
 process� Thus� fractal parameter estimation

can be obtained from two�dimensional wavelet coe�cients� even in the case of a small

noisy fBm image� We propose a fractal parameter estimation algorithm which formu�

lates the fractal parameter estimation problem as the characterization of a composite

singularity from the autocorrelation of the wavelet transforms of an noisy fBm image�

All the related parameters are then solved and estimated using a robust regression

method� Our proposed ��D estimation method is more e�cient than those based on

averaging the results obtained by applying ��D estimation method many times on a

��D fBm image� For fBm image estimation� we apply the Wiener �lter to noisy wavelet

coe�cients at each scale� The �denoised� image is then obtained by means of wavelet

reconstruction� Finally� we show that the denoised image is a near �
f
process� The pro�

posed parameter estimation and denoising method are applied on problems of coastline

detection and texture segmentation�

In Section �� we derive the properties of the autocorrelation of the wavelet transform

of a ��D noisy fBm� The parameter estimation method is also developed in this section�

�



In Section �� we discuss the image denoising method� In Section �� simulation results

based on these methods are shown� We also demonstrate the applications on coastline

detection and texture segmentation� Conclusions are given in the �nal section�

� Fractal Parameter Estimation from the Autocorrelation

of ��D Wavelet Transform

In this section� we will show that the wavelet transform of an fBm image is a two�

dimensional WSS process at each scale� Moreover� the variance of the wavelet trans�

formed image at each scale s is proportional to s��� where � is the fractal parameter

of the fBm� Using a similar procedure� we will also prove that the wavelet transform

of a white noise image is also stationary in both the horizontal and vertical directions�

and that its variance at each scale s is proportional to s���

The wavelet transform Wsf�	x� y
 of a ��D fBm image f�	u� v
 with scaling expo�

nent � is formulated as

Wsf�	x� y
 �

ZZ
f�	x� u� y � v
�s	u� v
dudv� 	�


where �	u� v
 is the wavelet� and �s	u� v
 �
�
s�
�	u

s
� v
s

� The autocorrelation of the

wavelet transform Wsf�	x� y
 at the scale s is derived as follows�

EfWsf�	x� y
Wsf�	x� �x� y � �y
g 	�


� Ef
ZZ

f�	x� u� y � v
�s	u� v
dudv

ZZ
f�	x� �x �m� y � �y � n
�s	m�n
dmdng

�

ZZZZ
Eff�	x� u� y � v
f�	x� �x �m� y � �y � n
g�s	u� v
�s	m�n
dudvdmdn�

where �x and �y are shifts in the horizontal and vertical directions� respectively� Note

that the autocorrelation of the fBm image is ���


Eff�	x� u� y � v
f�	x� �x �m� y � �y � n
g 	�


� ��
�f�	x� u
� � 	y � v
�
� � �	x� �x �m
� � 	y � �y � n
�
�

��	�x �m� u
� � 	�y � n� v
�
�g�

�



where ��� is a constant� Furthermore� from the properties of wavelets ���
� the following

equation must be satis�ed�

ZZ
�s	u� v
dudv � �� 	�


Replacing 	�
�	�
 into 	�
� we can simplify the above to

ZZZZ
����j	�x �m� u� �y � n� v
j���s	u� v
�s	m�n
dudvdmdn�

where j	u� v
j �
p
	u� � v�
� By changing of variables with p � m� u and q � n� v�

the above equation can be further simpli�ed to�

ZZZZ
����j	�x � p� �y � q
j���s	u� v
�s	p� u� q � v
dudvdpdq

�

ZZ
����j	�x � p� �y � q
j�� �

s�
�	

p

s
�
q

s

dpdq 	�


� RWsf�	�x� �y
�

where �	x� y
 �
RR

�	u� v
�	u�x� v�y
dudv� From the above equation� we know that

the autocorrelation of the wavelet transform of a ��D fBm at each scale depends only

on the shift parameters �x and �y� Therefore� the wavelet transform of a ��D fBm is a

WSS process at each scale ���
� Replacing �x � � and �y � � in 	�
� we have

RWsf�	�� �
 �

ZZ
����j	p� q
j�� �

s�
�	

p

s
�
q

s

dpdq�

Let u � p�s and v � q�s� the above equation becomes

RWsf�	�� �
 � ����s��
ZZ

j	u� v
j���	u� v
dudv � s��Kp� 	�


where Kp depends on � and the wavelet� and Kp is a �xed constant given the wavelet

transform of a ��D fBm image� The variance of wavelet transform at each scale s

changes according to s��� This variance progression provides a method to estimate the

scaling exponent �� and this method works for orthogonal or non�orthogonal wavelets

because in our deduction� we only require that the wavelets satisfy 	�
�

�



Following a similar procedure� the formula of the autocorrelation of the wavelet

transform of the ��D white noise n	u� v
 is derived as

EfWsn	x� y
Wsn	x� �x� y � �y
g

�

ZZ
�n

�		�x � p� �y � q

�

s�
�	

p

s
�
q

s

dpdq 	�


� RWsn	�x� �y
�

where �n
� is the noise variance� Again� by replacing �x � � and �y � �� we obtain

RWsn	�� �
 � �n
� �

s�
�	�� �
 �

�

s�
Kn� 	�


where Kn is determined by the noise variance and wavelet� The variance of wavelet

transform at scale s of the white noise changes proportionally to s���

Assume that z	u� v
 � f�	u� v
 � n	u� v
 is a ��D fBm embedded in white noise�

Because the wavelet transform is a linear operation� we can combine the result of wavelet

transform for ��D fBm and white noise by means of addition� The autocorrelation of

the wavelet transform of the noisy fBm is the summation of 	�
 and 	�
�

RWsz	�x� �y


�

ZZ
�����j	�x � p� �y � q
j�� � �n

�		�x � p� �y � q


�

s�
�	

p

s
�
q

s

dpdq

� �����j	u� v
j�� � �n
�		u� v

 � �s	�x� �y
� 	�


where �s	�x� �y
 �
�
s�
�	 �x

s
�
�y
s

� In fact� 	�
 is the wavelet transform of ����j	u� v
j���

�n
�		u� v
 with wavelet �	u� v
� which has a vanishing moment two times greater than

�	u� v
� It is worth noting that ����j	u� v
j�� � �n
�		u� v
 has a composite singularity

at 	�� �
� which is the superposition of an isotropic peak and a Dirac� The problem

of parameter estimation can then be related to the detection and characterization of

singularities ���
� Taking 	�x� �y
 � 	�� �
� the variance of the wavelet transform of

z	u� v
 is

RWsz	�� �
 � Kps
�� �Kns

�� 	��


�



for � � � � � and Kn�Kp � �� The above variance progression formula does not

depend on wavelets that have more vanishing moments� which only in�uences the decay

of the autocorrelation RWsz	�x� �y
 at 	�x� �y
 �� 	�� �
�

In practice� it is su�cient to estimate the parameters Kp�Kn and � from the dyadic

scales� Kp�Kn� and � in Equation 	��
 can be obtained from any three dyadic scales�

However� to get a robust numerical result� we shall estimate these parameters from

as many di�erent scales as possible� For dyadic scales s � �j � j � �� ����m� we �nd

the parameters Kn�Kp� and 
 � ��� that are the solution of the following constrained

nonlinear minimization problem�

f	Kp�Kn� 

 � min
mX
j��

	Kp

j �Kn�

��j �RW
�j
z	�� �



� 	��


subject to

� � Kn �
Pm

j�� RW
�j
z���

Pm
j�� �

��j �

� � Kp �
Pm

j�� RW
�j
z���

Pm
j�� �

�

� � 
 � ��

n � ��

In the nonlinear minimization problem as in 	��
� we need to solve three parameters

Kn� Kp� and 
 to �t the variance of wavelet transform at each scale� But from our

observations in experiments and from those given in another report ��
� we know that

the variances at some scales are not stable� This may introduce signi�cant bias in the

�nal estimation result� The authors in ��
 tried to exclude the �rst scale� or the �rst two

scales� and claimed to have better results� The method proposed is not a systematic

�



method generally� Therefore we change our least mean square formula in 	��
 into a

least median of squares regression one �

f	Kp�Kn� 

 � minmed
j

	Kp

j �Kn�

��j �RW
�j
z	�� �



�� 	��


The least median of squares algorithm has been claimed to resist the e�ect of nearly

��� of contamination in data ���
� However� it has the drawback of low computation

e�ciency� In practical computation� we �rst calculate the solution of Kn� Kp� and 


from variances from any three scales� All possible combinations of any three scales are

included� Then� the median of the square terms in 	��
 is found for all combinations�

We choose the combination with the minimal median� We next include half of the

scales whose square terms are less than those of the other half� Finally� a constrained

nonlinear minimization algorithm is applied to the data of these scales to �nd the

solution of Kn� Kp and 
� The nonlinear minimization formula becomes

f	Kp�Kn� 

 � min
X
j�J

	Kp

j �Kn�

��j �RW
�j
z	�� �



�� 	��


where J is the set that contains the selected scales from the least median of squares

method�

��� Optimization by the Penalty Method

There are many algorithms for solving of a constrained nonlinear minimization problem�

We have used the internal penalty method in our experiments� The internal penalty

method transforms the constrained problem into an unconstrained problem so that the

minimization can be solved easily ��
�

Let N �

Pm
j�� RW

�j
z�����

Pm
j�� �

��j and P �

Pm
j�� RW

�j
z�����

Pm
j�� �

� The penalty function of equation

	��
 is

�r	Kp�Kn� 

 � f	Kp�Kn� 

 � r	 �
N�Kn

� �
Kn

� �
P�Kp

� �
Kp

� �
��� �

�
���
�

�



where f	Kp�Kn� 

 �
P

j�J	Kp

j �Kn�

��j �RW
�j
z	�� �



� is the objective function�

r � � is the penalty parameter� and the terms following r are obtained from the

constraints 	��
� We can �nd an initial Kn� Kp� and 
 from any three scales� and

calculate an initial r as the ratio of the objective function f	Kp�Kn� 

 to the penalty

terms� A local minimization technique� such as the conjugate gradient method� can

be used to �nd the local minimum of �r	Kp�Kn� 

� which occurs at K
�
p � K

�
n� and 
��

Then� r can be multiplied by a constant less than �� These new parameters are used

to �nd the local minimum of �r again� This process can be iterated until the desired

accuracy is reached�

� Fractal Image Estimation

Although several algorithms have been proposed to estimate the parameters of a noisy

fBm image ��
� few works have focused on the reconstruction of an fBm image from a

noisy environment� Extension of ��D fBm algorithms of signal reconstruction to ��D

fBm image denoising might be straightforward� However� little work has been reported

in the literature� In the classic algorithm of fBm signal reconstruction given in ���
� the

authors made an assumption that the wavelet transform of an fBm is white noise� The

assumption is an approximation that depends on the number of vanishing moments of

orthogonal wavelets� Extension of their algorithm to the ��D case can be done easily

and is thus omitted here� In this section� we will propose an fBm image estimation

algorithm that places no constraints on the orthogonality of wavelets�

Since we have shown that the wavelet transform of a ��D noisy fBm is a WSS process

at each scale� Wiener �ltering can be applied to each scale� Note that in Section �� the

autocorrelation of the wavelet transform Wsf�	x� y
 of a ��D fBm at scale s was

RWsf�	�x� �y
 �

ZZ
����j	�x � p� �y � q
j�� �

s�
�	

p

s
�
q

s

dpdq� 	��


By simple calculation� the power spectra Ssf�	wx� wy
 of Wsf�	x� y
 is the Fourier

�



transform of 	��
� and we obtain

Ssf�	wx� wy
 �
��

��
p

 	��� �
sin	
�
q
w�
x � w�

y

����
!�	swx� swy
� 	��


where !�	wx� wy
 is the Fourier transform of �	wx� wy
� Recall that the autocorrelation

of the wavelet transform of ��D white noise is

RWsn	�x� �y
 �

ZZ
�n

�		�x � p� �y � q

�

s�
�	

p

s
�
q

s

dpdq� 	��


and that its Fourier transform is

Ssn	wx� wy
 � �n
�!�	swx� swy
� 	��


Note that Wsf�	x� y
 and Wsn	x� y
 are uncorrelated� since f�	x� y
 and n	x� y
 are

uncorrelated� the frequency response of the Wiener �lter for the wavelet transform of

a noisy fBm is an isotropic function of the frequency and has the following form �

Hs	wx� wy
 �
Ssf�	wx� wy


Ssf�	wx� wy
 � Ssn	wx� wy


�

��
��
p
�	������sin����p
w�x�w

�
y

����
!�	swx� swy


	��
��
p
�	������sin����p
w�x�w

�
y

���� � �n�
!�	swx� swy


�
��

��
p

 	��� �
sin	
�


����
p

 	��� �
sin	
�
 � �n�

q
w�
x � w�

y

���� � 	��


As shown by the above calculation� the Wiener �lter appears to be scale indepedent�

Our denoising algorithm �rst applies the proposed fractal parameter estimation method

for parameters � and ��� in equation 	��
� then the wavelet coe�cients of the noisy fBm

at each scale are passed through the corresponding Wiener �lter� After all� the wavelet

reconstruction produced a denoised fBm image�

Now� we will show that the power spectrum of the denoised fBm image is isotropic

and is a near �
f
process� Let us take Mallat and Zhong"s approach ���
� Let the

horizontal wavelet ��	x� y
 and vertical wavelet ��	x� y
 be given by

��	x� y
 � �	x
��	�y
� ��	x� y
 � ��	�x
�	y
�

�



respectively� where �	x
 is a wavelet which is the derivative of a smoothing function�

At each scale s� a coarse image and two detail images� which represent the horizontal

and vertical details� are generated�

In our denoising algorithm� the Wiener �lter is applied to the wavelet coe�cients

of the noisy fBm at each scale� and then the denoised image f e	u� v
 is recovered by

means of wavelet reconstruction �

f e	u� v
 �
X
s

	hs
� � Ws

�x � �s�	u� v
 � hs
� � Ws

�x � �s�	u� v

� 	��


where ��	u� v
 and ��	u� v
 are the reconstruction wavelets� �s	u� v
 �
�
s�
�	u

s
� v
s

� and

hs
� and hs

� are the impulse response of the Wiener �lter for the horizontal and vertical

wavelet coe�cients� It is easy to see from 	��
 that hs
� � hs

�� Without loss of

generality� we will use the dyadic wavelet transform� Since f e	u� v
 is the output of a

sequence of linear operation� its power spectrum can be written as

Sfe	wx� wy
 � Sx	wx� wy
jHs	wx� wy
j�
X
j�Z

j !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
j�

� j !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
j��

	��


where Sx	wx� wy
 is the average power spectrum of the noisy fBm�

To show that the denoised image is a near �
f
process� we �rst deal with the termP

j�Z	j !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
j� � j !��	�jwx� �

jwy
 !��	�
jwx� �

jwy
j�
� Some re�

��



lated results can be found in ���
� and we list them below for convenience �

j!�	w
j � �� 	��


jH	w
j� � �� 	��


j!�	�w
j � jH	w
jj!�	w
j� 	��


X
j�Z

	 !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
 � !��	�jwx� �

jwy
 !��	�
jwx� �

jwy

 � �� 	��


G	w
K	w
 � jH	w
j� � �� 	��


L	w
 �
� � jH	w
j�

�
� 	��


j !��	�wx� �wy
 !��	�wx� �wy
j� � jG	wx
K	wx
L	wy
j�j!�	wx
j�j!�	wy
j�� 	��


j !��	�wx� �wy
 !��	�wx� �wy
j� � jG	wy
K	wy
L	wx
j�j!�	wx
j�j!�	wy
j�� 	��


Using 	��
� the lower bound is

X
j�Z

	j !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
j� � j !��	�jwx� �

jwy
 !��	�
jwx� �

jwy
j�


� j
X
j�Z

	 !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
 � !��	�jwx� �

jwy
 !��	�
jwx� �

jwy

j� � ��

	��


��



The upper bound is derived from the above relations step by step �

X
j�Z

	j !��	�jwx� �
jwy
 !��	�

jwx� �
jwy
j� � j !��	�jwx� �

jwy
 !��	�
jwx� �

jwy
j�


�
X
j�Z

	j!�	�j��wx
j�j!�	�j��wy
j�
�
jG	�j��wx
K	�

j��wx
L	�
j��wy
j�


� jG	�j��wy
K	�
j��wy
L	�

j��wx
j�
�

�
X
j�Z

	j!�	�j��wx
j�j!�	�j��wy
j�
��
�� jH	�j��wx
j�

���� � jH	�j��wy
j�
�

��

�
�
�� jH	�j��wy
j�

���� � jH	�j��wx
j�
�

���



�
X
j�Z

	j!�	�j��wx
j�
�
�� jH	�j��wx
j�

�
� j!�	�j��wy
j�

�
�� jH	�j��wy
j�

�



�
X
j�Z

	
�j!�	�j��wx
j� � j!�	�jwx
j�

�
�
�j!�	�j��wy
j� � j!�	�jwy
j�

�



� lim
wx��

j!�	wx
j� � lim
wx��

j!�	wx
j� � lim
wy��

j!�	wy
j� � lim
wy��

j!�	wy
j� � ��

We can see that the summation term is between the upper and lower bounds�

therefore� we have recoverd a near �
f
process�

Finally� we make a comparison between our algorithm and the spatial�domain esti�

mation� Wiener �ltering is equivalent to the spatial�domain minimumMSE estimation�

Due to the non�stationarity of fBm� direct application of Wiener �ltering to the noisy

fBm is extermely computationally complex in the spatial domain� since it involves the

factorization of a correlation matrix that is not Toeplitz� However� our approach is

to apply Wiener �lter at each scale in the wavelet domain� in which the noisy fBm is

stationary as proved� Although the cross�scale depedencies are ignored in our method�

our approach is more computationally e�cient�

��



� Simulation Results and Applications

In this section� we will �rst demonstrate the simulation results of our algorithms� Then�

the applications on coastline detection and texture segmentation are shown�

��� Simulation results

For the simulation process� the discrete version of the isotropic ��D fBm synthesis was

given by ���
� The increments of the ��D fBm are �rst synthesized by discrete Fourier

transform� and then the fBm image is added from the incremental values� This method

cannot produce ��D fBm images with exact fBm statistics� but is claimed by the authors

to have almost perfect fBm statistics and fast implementation� A constant parameter

��
� is set as ��� in the synthesis process� �� fBm realizations of image size ��� � ����

with each scaling exponent � � ���� ���� and ��� are generated� Smaller image sizes

of ��� � ���� �� � ��� and �� � �� are generated by cutting out the central part of

the ���� ��� images� Note that the above generated discrete ��D fBm is the periodic

sampling of the continuous fBm� that is� f��m�n
 � f�	mTs� nTs
� where Ts is the

sampling period� When we take the discrete sampling fBm as the input to the discrete

wavelet transform ���
� our derivation of equation 	�
 based on the continuous wavelet

transform would be slightly biased on the �ne scales� according to the extension of the

results shown in ��
� This bias e�ect would be reduced in our parameter estimation

process by the use of least median of squares method�

In our implementation of wavelet transform� we followed the approach described in

���
���
� where no decimation was applied to the detailed images in both the horizontal

and vertical directions� We then estimated the scaling exponent � in both directions

from the detailed images� They were expected to be close in magnitude because we used

the isotropic ��D fBm images� which had the same scaling exponent in all directions

statistically� We then took the average of the scaling exponents in these two directions

as the scaling exponent of the whole fBm image� In all the experiments� we adopted two

��



wavelets� the Haar wavelet and Mallat wavelet� for comparison of �lter performance�

An image size of N �N was decomposed up to log�N scales� Using the least median

of squares method� only the data on half of the scales were selected� Kn� Kp and �

were calculated from the data of the selected scales using internal penalty method�

As a comparison� we implemented the Wornell and Oppenheim"s ��D fBm estimation

algorithm ���
 by using Haar wavelet to estimate the fractal parameters of the ��D fBm

images� For an N � N image� we estimated the fractal parameters of N ��D traces

both along the horizontal and vertical directions� The total �N estimated values are

then averaged to obtain an estimation of the image�

White noise was added to the fBm images so that the SNR	Signal�to�Noise Ratio


was �dB� The mean and root mean square 	RMS
 errors of the estimated !� are plotted

in Figs� � to � as a function of the image size for various values of �� From the results of

parameter estimation of clean fBm images shown in Fig� �� we can estimate the scaling

exponent � precisely for image sizes larger than ��� � ���� The degree of the RMS

error is about ����� This result is comparable to that of another proposed method

��
� in which the same ��D fBm generation process was used� As reported in ��
� the

underestimation of � with a true value ��� was also observed by our experiments� The

performance of the Haar wavelet was slightly better than that of the Mallat wavelet

because Mallat wavelet has longer support� which introduces unwanted boundary e�ects

in smaller images� In the case of a noisy environment� our method still estimates � well

for image sizes larger than ��� � ���� The estimation error is about ���� worse than

that in the case of clean image� showing the robustness of our method to added noise�

In all cases� our method always produces estimates of � that are distinguishable from

each other if their true values are originally di�erent� This is a good property if we do

not require precise estimation� but robust estimation that can still distinguish one fBm

region from another� for example� in the application of texture image segmentation ���
�

The results show that our proposed ��D estimation method outperforms ��D estimation

method for small images� The computational complexity of ��D estimation is much less

��



than that of the ��D estimation� since the ��D estimation has to be applied to several

��D traces in the image�

The performance of the image denoising algorithm described in Section � was also

evaluated� In order to distinguish the error introduced by parameter estimation and

the image denoising algorithm� we set a prior the true parameters ��
� and �n

� in the

Wiener �lter formula 	��
 in the experiments� The Wiener �lter was applied to each

scale of wavelet transform� Then� the denoised fBm image was generated by means of

wavelet synthesis of the �ltered wavelet transform images� Sixty�four realizations of

fBm images� with sizes of ��� � ��� and ��� � ���� and scaling exponents � of ����

���� and ���� were used� The SNR gain� which is the reconstructed image"s SNR minus

the original SNR� was measured by taking the average of �� SNR gains for each case

described above� The Mallat wavelet ���
 was used in our experiments� The results

are shown in Fig� �� Images of size ��� � ��� have about � to �dB more SNR gains

than those of size ��� � ��� in the case of � � ��� and ���� The SNR gain of � � ���

is higher than that of � � ��� for about �dB� and � � ��� is higher than � � ��� for

about � to �dB� The degrading of the denoising e�ect for small � values is due to the

smoothing e�ect of the Wiener �lter� The fBm images with lower � values represent

rougher surfaces ���
� and exhibit similar behavior with respect to noises� Therefore�

the Wiener �lter not only smoothes out the added noises� but also smoothes out the

original roughness of the fBm images� The low SNR images have better SNR gains

after denoising�

For visual evaluation� we present some sample �gures of image denoising in Figs� �

to �� The ������� fBm images with � � ���� ���� and ���� were added with noises such

that the noisy fBm had an SNR value of � dB� We can see that all denoised results are

visually acceptable� In the following� we demonstrate two applications for fbm image

parameter estimation and denoising� In both applications� we used the Haar wavelet

to process the data�

��



��� Application � � Coastline detection

The �rst application of fBm image denoising is a model of a terrain surface� In order

to identify the coastline� we set those pixel values below a certain threshold to black as

if they were below sea level� For example� Fig� �	a
 is an fBm image with � � ���� and

Fig� �	b
 is the result of coastline detection� If the image is added with white noise�

then simple thresholding cannot identify the coastline well� This is clearly shown in

Fig� �	c
� where �dB noise was added to the image shown in Fig� �	a
� One can observe

many dotted noises� and that the coastline cannot be identi�ed clearly� In Fig� �	d
�

we show the result of coastline detection on the denoised image using our algorithm� It

is a smoothed version of the original coastline shown in Fig� �	b
� but shows essential

topographical features comparing to �	c
� For this application� one may simply �lter

the noisy fBm image with a low�pass �lter and threshold the resultant image for the

denoised coastline� However� the parameters of the low�pass �lter are usually hard

to determine and the resultant smoothed image is not an �
f
process� Besides� the

knowledge of the fBm and noise is not used in this approach� Therefore� low�pass

�ltering is not a suitable solution compared with our denoising approach�

��� Application � � Texture segmentation

The estimated fractal parameter � can be used as a useful feature for texture segmenta�

tion and classi�cation� In this subsection we will demonstrate its application in texture

segmentation� Fig� �	a
 shows a ��� � ��� image of natural scenes� which by human

eyes can be classi�ed into three clusters � a sky� a cloud� and a mountain surface� We

used a small sliding window of size �� � �� to estimate the scaling exponent �� and

the center pixel of this window was assigned this estimated � value as its local feature�

This fractal feature was computed for each pixel� then this feature image was clustered

to obtain the segmented image� A Gaussian �lter of variance � was used to smooth

the resultant feature images� Then� we applied c�mean algorithm to classify each pixel

��



to one cluster� assuming that the number of clusters was given as a priori knowledge�

The classi�ed pixels were given gray level N which was equal to their cluster number�

This clustered image is shown in Fig� �	b
� Although the cloud can be modeled as an

fBm� there are still regions of smooth gray values inside the cloud and these regions

are mis�classi�ed� The mountain surface and the sky form another areas with di�erent

degrees of coarseness� This leads to di�erent fractal parameter � in these areas�

Fig� �	a
 shows a ��� � ��� texture mosaic created by three fBm images with

di�erent scaling exponents �� in the upper ���� ��� is an fBm image with � � ���� in

the lower left corner is a ������� fBm image with � � ���� and in the lower right corner

is a ��� � ��� fBm image with � � ���� One can easily see the texture boundaries�

They are not detectable by an edge detection method� too many edge points will be

found due to the singular behavior of an fBm� According to our previous experimental

result in Fig� �� in the case of clean fBm parameter estimation� the degree of the

RMS error is below ���� for window size above or equal to �� � ��� Therefore� We

used sliding window of size ��� �� to estimate the fractal parameter of the clean fBm

mosaic� It had been reported that the fractal feature alone cannot segment texture

well ��
� especially in the case of noisy environment� in which the parameters cannot be

precisely estimated with only local data� So we added the fracal power parameter ���

in 	�
 as another feature� ��� could be converted from Kp in our parameter estimation

process� or derived as follows� From the formula of fBm ��
�

var�f�	u� x� v � y
� f�	u� v

 � ���	x
� � y�
��

�rst we compute the x� and y� directed increments of the fBm image� that is� Ix	u� v
 �

f�	u� v
 � f�	u � �� v
 and Iy	u� v
 � f�	u� v
 � f�	u� v � �
� Then we calculate the

average energy of each of the two increments over a window as the approximation to ����

These two quantities can be used as local features for the middle pixel in the window�

A Gaussian �lter of variance � was used for smoothing� Then� c�mean algorithm was

used to classify the feature images� This clustered image is shown in Fig� �	c
� The

��



major segmentation errors happened in the texture boundaries� in which the parameter

estimation is inaccurate�

White noise was added to the fBm mosaic in Fig� �	a
 such that the SNR is ��dB�

This noisy fBm mosaic is shown in Fig� �	b
� From previous experiments in Fig�

�� window size must be greater than �� � �� to achieve better parameter estimation�

We thus chose sliding window of size �� � ��� The scaling exponent and the fractal

power parameter for each pixel were also estimated� Similar Gaussian smoothing of

variance � and c�mean clustering method were applied in the noisy fBm mosaic� The

clustered result is shown in Fig� �	d
� A more severe segmentation error occurs in

the texture boundaries� Based on this segmentation result� we will estimate the fBm

mosaic� We identi�ed the texture boundaries of the noisy fBm mosaic and partitioned

them into three rectangular sub�images� Then� we applied our parameter estimation

method to each sub�image for the parameters �� Kp� and Kn� We obtained ��
� and

�n
� from the estimated Kp and Kn at each sub�image by using the Equations 	�
 and

	�
� respectively� Finally� the denoised sub�images were obtained by using our proposed

Wiener �ltering method� The denoised fBm mosaic is shown in Fig� �	e
� The SNR

of the denoised fBm mosaic is about �����dB� Thus� we have about �dB gain from the

segmentation and denoising process�

� Conclusion

We have showed that the wavelet transform of a ��D fBm at each scale is WSS� A

new fractal estimation method� based on the decay of the variance of the wavelet

transform of a noisy fBm image across scales� has been proposed� This new method

allows estimation of the fractal parameter on small image blocks� and outperforms many

conventional fractal parameter algorithms on small images� where the fractal parameter

is obtained by averaging the ��D results in many directions using ��D fractal estimation

algorithm�

��



For the estimation of a denoised image� a Wiener �lter was applied to the noisy

wavelet transform on each scale� Then� a smoothed �denoised� image was obtained

after applying the inverse wavelet transform� We have shown that the averaged power

spectrum of the estimated image is isotropic and is a near �
f
process� Finally� we

demonstrated our algorithms on the applications of coastline detection and texture

segmentation� Further extension of this work to wider classes of scaling processes is

under investigation�
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Figure �� The mean and RMS error of the scaling exponent estimation from �� realiza�

tions of clean fBm images with various sizes� �$�� and ��� indicate the results obtained

by using the proposed ��D estimation method with Haar and Mallat wavelet� respec�

tively� �o� denotes the result obtained by using ��D WO"s method with Haar wavelet�

Top� Estimation of � � ���� Middle� Estimation of � � ���� Bottom� Estimation of

� � ����
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Figure �� The mean and RMS error of the scaling exponent estimation from �� real�

izations of noisy fBm images with various sizes� Noise was added to image such that

SNR � �dB� �$�� and ��� indicate the results obtained by using the proposed ��D

method with Haar and Mallat wavelet� respectively� �o� denotes the result obtained

by using ��D WO"s method with Haar wavelet� Top� Estimation of � � ���� Middle�

Estimation of � � ���� Bottom� Estimation of � � ����
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Figure �� The SNR gain from denoising the image with various SNR using Mallat

wavelet� 	a
� image of size ��� � ���� 	b
� image of size ���� ���� ���� �o�� and �$�

indicate the results obtained of fBm with � � ���� ���� and ���� respectively�
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Figure �� Image denoising example� Top �gure � ��� � ��� fBm image with � � ����

Bottom left � noisy fBm with SNR � �dB� Bottom right � denoised fBm image with

SNR gain �����dB�
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Figure �� Image denoising example� Top �gure � ��� � ��� fBm image with � � ����

Bottom left � noisy fBm with SNR � �dB� Bottom right � denoised fBm image with

SNR gain �����dB�
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Figure �� Image denoising example� Top �gure � ��� � ��� fBm image with � � ����

Bottom left � noisy fBm with SNR � �dB� Bottom right � denoised fBm image with

SNR gain ����dB�
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Figure �� Example of coastline detection� 	a
� original ��� x ��� fBm image with

� � ���� 	b
� coastline detection of original fBm image� 	c
� coastline detection of the

noisy fBm with SNR � �dB� 	d
� coastline detection of the denoised fBm image�
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Figure �� Segmentation of natural scenes� 	a
� Original ���� ��� photograph 	© Aris

Entertainment� ����
� 	b
� Texture segmentation result�
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Figure �� Application of texture segmentation and denoising� 	a
� Original ��� � ���

fBm image mosaic� 	b
� Noise was added to 	a
 such that SNR � ��dB� 	c
� Texture

segmentation result of 	a
� 	d
� Texture segmentation result of 	b
� 	e
� Denoised

image of 	b
 according to the segmentation result of 	d
�
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