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Wavelet Analysis for Brain-Function Imaging 
RenC A. Carmona, Member, ZEEE, Wen L. Hwang, and Ron D. Frostig 

Abstract-The purpose of this paper is to present a new 
algorithmic procedure for the analysis of brain images. This 
procedure is specifically designed to image the activity and func- 
tional organization of the brain. Our results are tested on data 
collected and previously analyzed with the technique known as in 
vivo optical imaging of intrinsic signals. Our procedure enhances 
the applicability of this technique and facilitates the extension of 
the underlying ideas to other imaging problems (e.g., functional 
MRI). The thrust of the paper is two fold. First, we give a 
systematic method to control the blood vessel artifacts which 
typically reduce the dynamic range of the image. We propose 
a mathematical model for the vibrations in time of the veins and 
arteries and we design a new method for cleaning the images 
of the vessels with the highest time variations. This procedure is 
based on the analysis of the singularities of the images. The use 
of wavelet transform is of crucial importance in characterizing 
the singularities and reconstructing appropriate versions of the 
original images. The second important component of our work 
is the analysis of the time evolution of the fine structure of the 
images. We show that, once the images have been cleaned of the 
blood vessel vibrationdvariations, the principal component of the 
time evolutions of the signals is due to the functional activity 
following the stimuli. The part of the brain where this function 
takes place can be localized and delineated with precision. 

I. INTRODUCTION AND NOTATIONS 
PTICAL imaging of intrinsic signals is a recently de- 0 veloped in vivo imaging technique that enables the 

visualization of the functional organization of the brain with 
the highest spatial resolution ( ~ 5 0  pm) compared with other 
in vivo brain imaging techniques (see [8], [9], and [IS]). The 
principle behind this imaging technique is that when the brain 
is illuminated, active areas reflect less light compared to non- 
active areas, and that the stronger the activity, the smaller the 
reflectance. The change in reflectance after brain activation has 
a characteristic evolution in time and is termed intrinsic signal. 
Activity-dependent intrinsic signals are small ( 
of the illumination) and slow (rise time to peak on the order 
of 1-2 s) relative to the time of action-potentials in the brain. 
Intrinsic signal’s imaging, however, produces detailed high- 
resolution in vivo functional maps from large areas of the brain 
that are identical to the areas of spiking neurons in the brain. 
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Using optical imaging of intrinsic signals, a new functional 
organization of the visual cortex has been discovered (see [3]) 
and for the first time, the relations between several functional 
systems within the visual cortex could be investigated (see 
[ 11). Recently, further development of the technique enabled 
this imaging to be obtained in a noninvasive way to the brain 
(see [14]) and thus led, for the first time, to the ability to 
image the functional organization of the brain repeatedly from 
the same animal over time (a chronic preparation) (see [15]). 

The major sources underlying intrinsic signals are: I )  
changes in blood volume in an active area of the brain; 2) 
changes in the oxygenation level of hemoglobin in active areas 
of the brain; and 3) changes in the volume of active neurons 
(see [SI). While all three mechanisms are active simultaneously 
after brain activation, illumination of the brain with specific 
narrow wavelengths highlights the dominance of one specific 
mechanism. Most experiments are performed with 630-nm 
illumination that highlights the blood oxygenation mechanism. 
As a consequence, blood vessels in the imaged area tend to 
produce strong signals that reduce the dynamic range of the 
images, and hence the quality of the images. Blood vessel 
artifacts are the strongest source of noise in the system and, 
in extreme cases, completely mask the visualization of brain 
activation. Therefore, the reduction of their contribution is the 
single most important step to obtain better images of brain 
activity. Similar problems are encountered with functional 
Magnetic Resonance Imaging (fMRI) since this imaging 
technique is also based on measuring the oxygenation level 
of the blood [2], [ l l ] ,  [16]. Thus, the major priority for better 
functional imaging is to clean the process from the blood- 
vessel artifacts without reducing the visualization of brain 
activity. This manuscript describes the first successful attempt 
to solve this problem by developing an algorithmic procedure 
for functional imaging. It is based on a new mathematical 
model for the evolution of the light reflectance, and the 
treatment of the images is based on the features of this model. 
We tested our algorithm on data previously processed with 
various ad hoc division methods tailored to the experiments 
(see, for example, [ I ] ,  [31, [SI, 191, [141, [15,] and [18] for 
details on these diverse imaging procedures). In all cases, the 
performance of our single algorithm was at least as good. 

One of the driving forces of our study was the potential 
applicability of our automatic imaging technique to M R I  
problems (see [ I l l  and [16] for early work in this area 
and the discussion in [5] for the use of our algorithm for 
long sequences of images). Nevertheless, it is important to 
emphasize that the nature of the data (and consequently the 
approach used in the analysis) is very different. Indeed, most 
fMRI studies require long sequences of images (typically 
between 40 and 140) in order for the stimuli to be presented 
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many times in a periodic manner. The responses to the stimuli 
are also periodic in time and hence can be picked up by 
fitting a periodic waveform to the response as in [6], or by 
the use of standard time-frequency techniques as, for example, 
in [2] or [lo]. The shortcomings of these approaches and the 
advantages offered by our algorithm for brain imaging are 
documented in [ 5 ] .  Since we are working from data containing 
only one occurence of the stimulus, the response is localized in 
time (like a transient) and Fourier techniques cannot be used 
to detect the activity resulting from the stimulus. Also, the 
resolution of our images is much finer than the resolution of 
images produced by fMRI (and PET). This is another source 
of difficulty since the experimental noise and the vibrations of 
the blood vessels increase the dynamic ranges of the images 
and significantly lower the signal-to-noise ratios. 

The thrust of the paper is twofold. First, we give a system- 
atic method to reduce the blood vessel artifacts. We propose 
a mathematical model for the vibrations in time of the main 
veins and arteries and we design a new method for cleaning 
the images of the vessels with the highest variations in time. 
This procedure is based on the analysis of the singularities 
of the images. We use wavelet transform to characterize 
these singularities and to reconstruct appropriate versions of 
the original images. The second important component of 
our algorithm is the analysis of the time evolutions of the 
reflectance values of the pixels forming the images. The 
fine analysis of these evolutions, including more wavelet 
transforms and statistical data analysis processing, leads to the 
identification of the response area of the brain to the stimuli. 
Our mathematical model implies that, in the absence of blood 
vessel artifacts, the covariance matrix of the light reflectance 
time evolutions has rank one. The eigenvector corresponding 
to the only nonzero eigenvalue gives the intrinsic signal while 
the projections onto this eigenvector form an image of the 
response of the brain to the stimulus. Since we cannot expect 
a perfect cleaning of the images, a perturbation argument 
is necessary to justify our search for the largest eigenvalue 
(and the corresponding eigenvector) of the time evolution 
covariance matrix. This is our rationale for the use of the 
singular value decomposition of matrices. In some sense, 
this is a simple form of principal component analysis. It 
is important to emphasize that our use of this technique is 
different from previous attempts to use it to image brain 
functions as in, for example, [7] and [17]. We are classifying 
pixel time evolutions instead of images. The works of [7] 
and [17] are plagued with difficulties created by the high 
dimensionality of the vectors to classify: each observation is 
an image, so its dimension is the number of pixels and the 
resulting covariance matrix is very large. As a consequence, 
the computational burden is the main obstruction to the 
implementation of the method and most of the efforts of [7] 
and 1171 are devoted to finding solutions for the dimensionality 
problem. By contrast, we use a form of principal component 
analysis in a situation with a large number of observations 
(as many as pixels in a frame) of low dimension (typically 
between 7 and 9) and the computations are very fast. 

The correctness of the specific boundaries given by these 
image manipulations has been compared with the results of 

Fig. 1 .  Image of the somatosensory cortex of a rat. A 6.7 x 5.0-nun region 
of the cortex is shown. It is illuminated with green light (540 nm) to enhance 
the visualization of the blood vessels. 

[ 141 using structural and functional markers. In order to illus- 
trate our method, we reproduce the results obtained in three 
experiments. More experimental results can be found in [5]. 

We refer to [ 141 for a description of the main features of the 
in vivo imaging technique and for details of the experimental 
protocols. We shall only describe the spatial and temporal 
features of the intrinsic signals in somatosensory cortex which 
are relevant to the understanding of the algorithms which we 
introduce. 

For the purpose of the present discussion, we concentrate 
on experiments producing a sequence of images of the brain 
taken by a slow scan scientific CCD camera. Each image 
has n, = 144 rows and n, = 192 columns of reflectance 
values. The value of each pixel is a grey level coded by 
an integer between 0 and 255. Typical experiments produce 
sets of nf = 9 or nf  = 10 successive images (also called 
frames) each lasting 500 ms. The stimulus is applied between 
the second and the fifth frame and the relaxation process covers 
the remaining images. Fig. 1 shows a typical image obtained 
during the experiments. Any of the n f  images taken from 
the same experiment would be visually indistinguishable from 
this particular one. It is important to emphasize that the main 
hindrance to the analysis of these images is the difference in 
scale between the time variations of the blood vessels and the 
variations of the region of activity. 

11. THE MATHEMATICAL MODEL 

The mathematical model is as follows. We use the notation 
2 for the row number and y for the column number of a pixel. 
We use the notation t for the image number. z varies from 
1 to nr = 144, y varies from 1 to n, = 192, while t varies 
from 1 to nf  = 10 or nf = 9, depending on the experimental 
conditions. Let us denote by f ( t !  x. y) the reflectance intensity 
at the pixel (2.y) of the tth image. We assume that it is of 
the form 

f ( t ?  2, y) = I ( t .  2 ,  y) + V ( t , X ,  y). (1) 

The function I ( t .  z, y), when regarded as a function of t ,  
gives the evolution over time of the intrinsic signal at the 
location (z. 9). The function V ( t ,  5 ,  y) represents the large 
vibrationshariations of the reflectance values at time t and at 
the pixel location (:z,g). As explained in Section I, we are 
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(b ) 

Fig. 2. (a) Surface plot of the function S(.r. y) taming off the intrinsic signal 
away from the activity region. (b) Graph of the function X ( t )  used as a 
model for the typical time evolution of the response of the pixels in the active 
region. Note that this plot is always given “upside down” in publications on 
the subject. 

interested in the estimation of the intrinsic signals despite the 
presence of the component V ( t ,  2 ,  y). Indeed, these signals 
contain the characteristics of the responses of the various 
parts of the brain to the stimuli. We assume that the function 
I ( f :  z: y) is the sum of a baseline constant E(  I )  and a variation 
term in the form of a tensor product. More precisely, we 
assume that the intrinsic signals are of the form 

I ( t ,  .c. y) = E ( I )  + S ( x ,  y ) N ( t )  

where S(.c, y) is a function of the pixel location only and 
N ( t )  is a function of time. The baseline constant E ( I )  can be 
viewed as a mean signal and computed as the time average of 
the intrinsic signal I ( t .  z. y). As such, its value depends only 
upon the location (:r> 11) of the pixel. For the sake of simplicity, 
we assume further that it is independent of the pixel. 

The function S(.r.?y) can be thought of as a smooth bell- 
shaped surface centered around the center of the activity region 
where the response to the stimulus takes place. It should decay 
to zero away from the center of this activity region. See 
Fig. 2(a) for the plot of the function S(5,y). The function 
N ( t )  gives the typical variations (around the value of the 
baseline constant) of the time evolution of the intensity at the 
pixels of the activity region. Fig. 2(b) shows how the graph 
of such a time evolution appears. Slow decay in the initial 
stage accentuated decay followed by a sharp tum around the 
mid-life time of the signal and rapid increase leading to a 
clear overshoot above the original baseline constant. Note that, 

for the sake of clarity of the mathematical derivation of the 
model, we break away from the common practice of plotting 
the intrinsic signals upside down, as in [14], for example. 

It is not easy to explain the biological nature of the re- 
laxation effect and the overshoot, but it is relatively easy to 
give an attractive rationale to our mathematical model. For the 
purpose of the present discussion, we shall take some freedom 
with the rigor of a detailed biological explanation and use 
instead a more picturesque (obviously naive) justification for 
the choices of the functions S(z, y) and N ( t ) .  The biological 
response to the stimulus is localized in a region which, because 
of a sudden increase in the level of activity, requires an 
increase in the blood supply. For a short time, the center of the 
region can be viewed as a “blood sink.” The topology of this 
sink is given by the bell-shaped surface defined by the time 
independent function S(5 ,  y). Because of the change in blood 
volume and the deoxygenation process, the incoming light is 
absorbed more strongly and this causes the dip in the graph 
of the time evolution exemplified by the function N ( t ) .  This 
explanation is confirmed by the experimental results which 
we give in Section V. 

A. Time Evolutions and Vibration Maps 

analysis of the time derivatives 
The time evolution of the images is best studied via the 

computed at each pixel (z:y). Note that 

This time derivative behaves differently when the pixel (z, y) 
is near an active blood vessel. Indeed, in this case, the second 
term overwhelms the first term and makes it extremely difficult 
(if not impossible) to see the activity as exemplified by the 
intrinsic signals. Previous measurements (see [ 141) have shown 
that the dynamic range of the intrinsic signals is about -30 
dB. It is argued in [14] that 

at the peak of the time evolution of the pixels ( 2 , ; ~ )  in 
the active region where the response to the stimulus can be 
detected. It is clear from this fact that the presence of the 
intrinsic signals in the active region will not be detected if the 
main source of variations (given by V( t ,  2 ,  y) in our model) is 
not controlled. The function d I ( t ,  2, y ) /d t  is, by definition, a 
bounded flat function essentially equal to zero away from the 
active region, and we expect that, especially when the pixel 
(2, y) is near or on a blood vessel, the variations will mostly 
come from the term V ( t ,  2 , y ) .  If we denote by V f ( t ,  z, y) 
the gradient with respect to the space variables 2 and y, i.e., 
if we set 

then we can use the square of the length of this vector, i.e., 
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as a measure of the intensity of the gradient variations (in 
space) of the value of a pixel at a given time. Blood vessels 
have several types of variations. As time goes by, they com- 
press and expand, and these changes lead to sharp variations 
in the time evolutions of their boundaries. We combine this 
notion of space gradient Of with the notion of time derivative 
f t  introduced earlier to define a notion of vibration intensity 
with the intent to use it to discriminate the pixels responsible 
for the artifacts preventing the intrinsic signals from being 
seen. We measure these vibrations by the following quantity: 

We expect that this measure of the vibrations of a pixel will 
be large on or near the active blood vessels. This vibration 
measure [Vf](:r,y) depends only upon the location of the 
pixel. It is different from the term V ( t , : c , y )  advocated in 
the introduction ( 1 )  of our mathematical model. In particular, 
it does not depend upon the time variable t. 

Biological experiments have shown that the dynamic range 
of the blood vessel vibrations is typically larger than the 
dynamic range of the vibrations due to the intrinsic signals 
(see [14], for example). Since the vibrations of the blood 
vessels are the main obstruction to the identification of the 
intrinsic signals, it is natural to try to clean the images from 
these vibrations. According to the above discussion, this might 
be possible by identifying the regions where [ V f ] ( x ,  y) has 
a large value. Identifying these regions is a first step in the 
cleaning of the images, the second step requiring the removal 
of the vibrations in these regions. We shall see how the wavelet 
analysis which we describe in the next section makes this 
enterprise possible. 

B. Estimation of the Intrinsic Signals 

We first assume that the removal of the large vibrations 
due to the blood vessels has been successfully performed. 
Given this assumption, the intrinsic signal N ( t ) ,  and most 
importantly the surface S(z. y), can be identified from the 
characteristics of our model. This mathematical derivation, 
together with the perturbation result recalled below, form 
the mathematical justification of our use of the principal 
component analysis when the cleaning of the blood vessel 
artifacts has been successful. 

We assume that the time variable t has been sampled (i.e., 
that there are a finite number of images) and we denote 
by t l , . . .  > t n f  the times at which the images have been 
taken. Computing time derivatives, we have the values of the 
derivatives at the times t l , . . .  , tn,-l.  Let us denote by C = 
[Ci , j ] t , j x l , . . . .n f - l  the covariance matrix of the time derivative 
of the intrinsic signals. A simple computation shows that 

if we use the notation r = rcT.9, and if as denotes the standard 
deviation of the response surface S, T denotes the length of 

the vector of the time derivatives of the intrinsic signals 

and U denotes the unit vector in the direction of these time 
derivatives, i.e., 

The covariance matrix C has rank one. In fact, up to a mul- 
tiplicative factor, it is the matrix of the orthogonal projection 
onto the one-dimensional (1 -D) subspace generated by the 
vector of the time derivatives of the intrinsic signal. r2 is the 
only nonzero eigenvalue of the matrix C and the corresponding 
normalized eigenvector is the vector U defined above. The size 
of the projection of the vector [ d l ( t i ,  z, y)/dt]i=l,...,nf-l onto 
U is given by 

= T S ( 5 ,  y). 

Recall that the quantity S(z,y) was introduced in the math- 
ematical model as a time independent factor whose role was 
to tame the response to the stimulus away from the center of 
the active region. We see now that, up to the multiplicative 
constant T ,  this damping factor is given by the projection of 
the time derivative of the intrinsic signal onto the nontrivial 
eigenvector of the covariance matrix C. This observation 
will be instrumental in the algorithm which we give later to 
delineate the active region. 

Since neither the intrinsic signal nor the covariance matrix 
are accessible to the experimenter, we devote the remainder 
of this section to derive a way to estimate them from the 
available data. 

We now assume that most of the vibrations from the blood 
vessels have already been removed from the signals f ( t ,  z, y). 
We denote by f ( t ,  z, y) the cleaned signals. We have 

af( t :  5 ,  y) - a q t ,  z, y) a q t :  5: y) 
+ at . at at 

- 

Note that the removal of the vibrations did not affect the time 
derivative of the contribution of the intrinsic signals. 

The term a v ( t , x , y ) / a t  is complex. Its presence is due 
to heartbeats and/or breathing of the animal, ..., and the 
superposition of all these contributions destroys its structure. 
For this reason, it is useful to view it as a noise term. 
Moreover, its contribution is obviously independent of the 
intrinsic signals. As a consequence, if we denote by Ci the 
covariance matrix of a f ( t .  2,  y)/at ,  and by Cp the covariance 
matrix of aV(t: 2:  y ) / 3 t ,  we have 

CJ = C + CF. 

Since Cf can be computed from the data, we try to control the 
perturbation C p  to get information on what we are seeking, 
namely C. We use a standard result from the perturbation 
theory of eigenvalues of symmetric matrices (see, for example, 
1201). 

Lemma 11-B: If n x n symmetric matrices A and B satisfy 
A = r2UUt + B where r > 0 and U is a unit vector in IR”, 
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then, if we denote by X,(A) and A,(B) the eigenvalues of A 
and B respectively (counting multiplicity), one has 

X,(A) = mpr2 + X,(B) 

for some nonnegative numbers ml m2. . . . , m,, summing up 
to one. 

This result explains the influence of the perturbation Xp. 
Its effect is to smear the largest eigenvalue r2 of C and to 
spread it over all the eigenvalues of C j  by means of the 
m,’s. A similar perturbation result holds fo: the corresponding 
eigenvectors.The modified derivatives a f ( t ,  z, y) /at could 
be smoothed out by a low-pass filter in order to minimize 
the smearing effect of Cc on the eigenvalue r2 and the 
eigenvector U .  This would lessen the influence of the vibra- 
tion derivative dT/( f ,  Y ,  y ) / a t .  We nevertheless refrain from 
doing so because the experimental time series giving the time 
evolutions of the pixels are too short. 

We use a standard “singular value decomposition” proce- 
dure to compute (or estimate) the first eigenvalue and the 
corresponding eigenvector of the matrix C j  M C. Since this 
matrix is a covariance matrix, the result of its singular value 
decomposition has a statistical interpretation. It is known under 
the name of Principal Component Analysis (PCA, for short). 
Even though we arrived at this procedure from a different 
perspective, we shall freely use the intuitive interpretations 
provided by this time-honored statistical point of view. 

We shall denote by A, the eigenvalues (in decreasing order) 
of the covariance matrix, and by ,I(‘) the corresponding eigen- 
vectors. The largest eigenvalue A 1  measures the proportion of 
the variation which is explained by the first eigenvector v( l ) .  
The latter will be used as our estimation of the time derivative 
of the intrinsic signals, i.e., of N‘( t ) .  Finally, we shall use the 
size of the projection onto dl) as our estimator of the function 
S ( T .  3). Remember that, according to the above calculations, 
this gives us a map of the brain activity as a response to the 
stimulus. 

Remark 11-B: It may happen in practice that the typical time 
evolution velocity given by the first eigenvector ~ ( l )  (or any 
other normalized eigenvector for that matter) is the negative 
of the time evolution illustrated in Fig. 2; the PCA proce- 
dure searches for normalized eigenvectors of a (symmetric) 
covariance matrix and it cannot make the difference between 
a vector and its negative. 

111. WAVELET ANALYSIS 

A. Wavelet Transform of Images 
This section is devoted to the description of the specific 

wavelet transform which we use. For the sake of the present 
discussion, we restrict ourselves to one single image, say 
{ I ( X , ? / ) } ( ~ - ~ ) .  Refer to [12] and [13] for details. 

Let O(.r> y) be a smoothing function (low-pass filter), and 
let us define the two wavelets +(l)(.z. y) and ~ I ( ~ ) ( z .  y )  by 
the formulas 

respectively. The dyadic wavelet transform of the image I = 
{I(zl Y ) } ( ~ , ~ )  at resolution J (or equivalently at scale s = P )  
is defined as the set of images 

{W:’)I, M7,(2)1},=2~ , 2 ~ ,  . 2 ~  and S ~ J  I 

where the wavelet transforms W,(l)I and WJ2)I  at scale s = 
23 are defined by the convolutions 

W,(l)I = I * {I:’) and = I * $i2), 
where we use the notation +s  for the scaled version of 41, i.e., 

(4) 

and where the so-called coarse scale component S,JI is the 
image defined by 

S y I  = I * CpSl  

where cps is the scaled version of the scaling function cp 
canonically associated with $I. 

It will be convenient to use the following notations. For 
each pixel ( r . y ) ,  the two components [W,(l)I](z,y) and 
[W,(2)I](z,y) of the wavelet transform of the image I at 
the scale s = 23 can be put together into a 2-D vector 
[W,I](z,  y) = [[WL1)I](z, y), [ W , ( 2 ) I ] ( ~ ,  y)]. In this way, the 
notation 

WJ = {[WsIl(z, Y H ( 5 . y )  

stands for a vector of two images. We shall make extensive 
use of the modulus (or length) of this vector 

The name of dyadic transform is used because we are re- 
stricting the analysis to the dyadic scales s = 23 for j = 
1, 2, . . . .  Let us give an enlightening interpretation of the 
wavelet transform as we just defined it. For each scale s ,  we 
first smooth the image with the low-pass filter H,(z, y), scaled 
according to the formula (4). This produces a blurred version 
of the original image, and the main features of this version are 
the scale $9 characteristics of the original image. The wavelet 
transform WsI at scale .s is nothing but the gradient of this 
smoothed version of the original image. Consequently, the 
main features of this wavelet transform (and, in particular, of 
its modulus) are the points of high variations (still at the scale 
s) of the original image. This interpretation explains why this 
specific wavelet transform has been introduced and used in the 
analysis of singularities (see, for example, [I21 and [13]). 

B. Reconstruction from Wavelet Transform Extremas 

We review the reconstruction of an image from the extrema 
of its dyadic wavelet transform. This procedure is an important 
element of our algorithm. 

If { I ( r .  Y / ) } ( ~ , , , )  is an image, a very good approximation of 
the original image can be obtained from the mere knowledge 
of the extrema of its dyadic wavelet transform and from its 
coarse scale approximation. More precisely, if we know the 
locations, say ( T ~ , ~ ‘  , of the local maxima of the modulus 
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Fig. 3. Example of a partial reconstruction from a selective set of extrema 
of the wavelet transform. (Left) Top: A typical image. Bottom: Image 
reconstructed from the values of the wavelet transform at the locations of 
the local modulus maxima which are smaller than their 80%-tiles and from 
the values of the coarse scale image (shown at the bottom of the right 
column). Notice that the blood vessels have been removed and replaced by 
low-frequency surfaces (compare with the original image). (Right) The scale 
increases from top to bottom. Positions of the local modulus maxima at the 
scales .% = 2’, 2’, 2” 2* after removing the local maxima with modulus larger 
than the 80%-tile of the maxima sizes at each scale. Notice that the modulus 
maxima near the boundaries of the blood vessels are removed. The larger the 
value of a pixel, the brighter it shows. Bottom: Coarse scale approximation 
at scale .\ = z 2 .  

of the wavelet transform W2,1 at scale 2 3 ,  and if we also 
know the corresponding values of the wavelet transform at 
these extrema, then it is possible to join this information to 
the information of the coarse scale approximation to produce 
an image which is very close to the original image I (refer 
to [13] for details). Strangely enough, the beauty of this 
approximate reconstruction procedure is in its versatility more 
than in the precision of the reconstructions. Indeed, very 
interesting partial reconstructions are made possible by the 
freedom one has to trim some of the extrema and to select 
specific extrema before starting the reconstruction procedure. 
This idea has been successfully implemented in denoising 
problems (see, for example, [4] and [12]), but it can also 
be used to get rid of undesirable components of an image. 
This is especially easy when these components have a clear 
multiscale characterization in terms of some of the extrema of 
the wavelet transform. 

Fig. 3 gives an example of application of this strategy. 
We present it for the sake of illustration of the present 
discussion. Indeed, our final form of the algorithm does 
not use this exact form of cleaning since it involves the 
trimming of extremas based both on their sizes and their 

locations. A typical image has been reconstructed from the 
extrema of its wavelet transform after discarding the extrema 
greater than the 80th percentile of the sizes of the extrema 
at each resolution. The net result is an image without the 
high gradients produced by the walls of the blood vessels. 
Such a cleaning of the images is very useful in getting rid of 
some of the blood vessel artifacts. We used it successfully in 
the analysis of several experiments. Unfortunately, it cannot 
control the second source of problems: the large vibrations 
in time of the blood vessels. A solution to this problem is 
obtained by including the properties of the time derivatives in 
the analysis. 

C. Wavelet Analysis of the Blood Vessel Artifacts 

For each scale s, the quadratic variation at scale s is defined 
by 

This definition is to be understood in the following way. The 
wavelet transform W,ft  can be thought of as the gradient 
of ft at scale s. Consequently, (5) can be viewed as the 
implementation of (3) at the scale s. Notice that the time t 
is now discrete and that integrals with respect to the variable 
t have been replaced by discrete sums. The natural notion 
of quadratic variation is then obtained by summing over the 
scales. We get 

J 

v(2)(r !I) = [V.?f*] ( 2 ,  w ) .  
J=1 

This quantity can be used (see, nevertheless, the changes 
given below in the actual implementation of the algorithm) 
to detect the large blood vessel vibrations. The latter can be 
found where V(’)(z, y) takes large values. Once the regions 
of large vibrations are determined (see the white region in 
the image at the bottom of the right column of Fig. 4), the 
extrema of the wavelet transform which are located inside 
these regions can be trimmed. The reconstruction of such an 
image is shown in Fig. 5.  The time evolutions of the images 
which are reconstructed in this way no longer contain the blood 
vessel vibrations. 

D. Summary 

The purpose of the wavelet analysis described above is 
twofold: first we make a map of the light reflectance vari- 
ationdvibrations, and then we reconstruct all the images 
without using the extrema from the regions of high varia- 
tiondvibrations. In accordance with the discussion of Section 
11, we denote these new signals by f ( t :  z, y). According to our 
mathematical model, the covariance matrix CJ of these time 
derivatives should essentially be of rank one. The (normalized) 
eigenvector dl) corresponding to the largest eigenvalue A(’) 
should be a good estimator of the derivative of the intrinsic 
signal archetype N(t ) ,  and the image of the projections on 
this eigenvector should give a good estimate of the response 
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Fig. 4. Example of a vibration map. (Left) Vibrations I f at the dyadic 
scales ranging from .c = 2l to .s = 2“. The scales increase from top to 
bottom. As before, the larger the modulus, the brighter the pixel. (Right) 
Top: Total vibration \,?f. The pixels with the largest vibration energies are 
aggregated nearby the blood vessels. Some of these blood vessels are not 
visible in the original frames (see, for example, the image given at the top of 
the left column of Fig. 3). They form secondary structures which are captured 
only by the difference of adjacent time frames. Bottom: Black and white binary 
image showing in white the locations of the pixels where the total vibration 
is greater than the 90%-tile of the values displayed on the top image. 

surface S(Z:~J). We are now ready to give the details of the 
various steps of our functional imaging algorithm. 

IV. DETAILED ALGORITHMS 

A. Removing the Blood Vessel Mbrutions 

We first compute, for each pixel ( T ,  y), the discrete time 
derivative f t ( , r .  y) of the time evolution of the pixel 
values. This leaves us with nf - 1 images ft(l) = 

the same sizes. 
We compute, for each of these n,f - 1 images, the wavelet 
transform W,?ft at the scales s = 2’, 2’. . . . ,2,’. We use 
J = 4 in the experiments reported in this paper. 
For each scale s = 21,22,...,2.J, we compute the 
variation V9f at scale s .  According to the discussion of 
the previous section, this is the image whose value at pixel 
(.c.yj gives the total variation (over time) of the values 
of the modulus of the wavelet transforms [Wsft](2,  y )  
at scale s of the time derivative ,ft at time t. Instead 
of considering the square root of the quadratic variation 
which we introduced earlier, we use the more robust 
quantity 

f(1) - f(o),..’*.ft(nf - 1) = f ( n f )  - f (n f  - 1) of 

Fig. 5.  Example of the use of the vibration map in the partial reconstruction 
of images. This image was reconstructed after removal from the original 
image at the top of the left column of Fig. 3, of all the local extrema nearby 
the secondary blood vessels as identified by the vibration map constructed 
as illustrated in Fig. 4. This procedure preserves the blood vessels that are 
stationary in time, but the vibration nearby the secondary blood vessels are 
removed. This phenomenon is very subtle and difficult to visualize: it is based 
on the time evolutions across several frames and it is of a lower scale than 
the main features of the images. 

which captures the same features as Vi2’f. We then sum 
the variations over the resolutions to get the single image 
V = {V(~,Y)}(z,,y) defined by 

J 

V(2,Y) = C[VDfl(:r,Y). 
3=1 

Next we compute the map of the high vibration points 
of the data. Given a threshold Q between 0 and 1, we 
compute the 100n-th percentile, say ra (V) ,  of the V 
values computed above. Next, we determine the pixels 
(2 ,  yj at which the total variation V ( x ,  y)  is above this 
percentile threshold. In other words, we determine the set 

M = { ( T , ? ) )  : V(z.9) > x n ( V ) )  

which we call the vibration map. 
We now go back to the wavelet transforms Wsft of the 
various time derivatives. We compute the maxima of the 
modulus of these transforms and we set to 0 all the 
maxima within a distance As of a pixel of the vibration 
map M ,  Notice that the trimming of the extremas is done 
as a function of the locations of the extrema. This is in 
sharp contrast with the usual trimming procedures which 
are based on a thresholding depending only on the size of 
the extrema (see, for example, [4] and the discussion of 
the previous section illustrated by Fig. 3). After trimming, 
each time derivative image is reconstructed from the 
remaining extrema. In this way, we get a new sequence 
ft( 1): . . . , ft(nf - 1) of images of the same sizes. 

The images ft ( . ) produced by the above algorithm are the 
same as the original images, except that most of the vibrations 
due to the active blood vessels have been removed. 

B. Intrinsic Signals and Active Regions 

We are now dealing with data which have been cleaned from 
the blood vessel vibrations. In other words, we can assume that 
the artifacts of the active blood vessel vibrations do not mask 



CARMONA et al.: WAVELET ANALYSIS FOR BRAIN-FUNCTION IMAGING 563 

Fig. 6. (Left) Top: The time derivative of the intrinsic signal of the ex- 
periment considered throughout (recall Fig. 1 and the top part of Fig. 3), 
as given by the first normalized eigenvector after applying the PCA to the 
sequence of modified velocity images. Notice that the values are negative for 
the first part and positive after that. This plot is consistent with the model 
of intrinsic signal given by the function s ( t )  (recall Fig. 2). Bottom: Image 
of the values of the sizes of the projections of the time evolutions of the 
modified velocities onto the first normalized eigenvector given in the top 
part. The region identified this way coincides with the area determined both 
anatomically and electrophysiologically. (Right) Top: The second normalized 
eigenvector given by the PCA. Notice that there is no change of sign. This 
type of time evolution does not correspond to the time evolution one expects 
(on biological grounds) from the active region. Bottom: Image of the sizes of 
the projections of time evolutions of the modified velocities onto the second 
eigenvector. These sizes are much smaller than those of the first projections. 
Scaling was performed to use the same gray scale. The information contained 
in this projection cannot be used. As earlier, we did not plot the first two 
values of the eigenvectors. 

the functional response to the stimuli. We finish the description 
of the algorithm with the steps involving the extraction of the 
intrinsic signals and the identification of the region where the 
response to the stimulus takes place. 

As explained in the previous section, the main thrust of this 
last part of the algorithm is the use of principal component 
analysis (PCA) in the search for the characteristic "time 
evolutions" of the pixels in the active region. The covariance 
matrix is computed from 7 1 ,  x n ,  = 144 x 192 observations. 
It is an (nf - 1) x ( n f  - 1) = 8 x 8 matrix which is very easy 
to diagonalize. Recall the discussion in Section I to compare 
this use of the PCA with previous use5 in similar imaging 
problems. 

Consider, at each pixel ( . r ,g ) ,  !he modified time evolu- 
tion of the response velocity f t (  . .r, y) as a vector in 
n f  - 1 dimensions. Let {71(7)(t)j15t5nf-1 be the 7th 
normalized eigenvector produced by the PCA. The first 
of these eigenvectors gives the typical time evolution of 
the response velocity of the points in the active region; 
see Figs. 6 and 7 for three different examples. 
For each pixel (.r.?y), the number 

~ ( ' ) ( n ,  y) = ( j t (  . ,.r. y), 7)( ' ) )  = 

gives the size of the projection of the modified velocity 
time evolution of the pixel (s,y) on to the first eigen- 
vector. As explained in the previous section, it measures 

7 l f - 1  

ft(t..r, y)v( ')( t)  
t=l  

Fig. 7. (Left) Top: A typical image from another experiment. Middle: The 
intrinsic signal as identified by the first normalized eigenvector-notice the 
change of sign. Bottom: The corresponding activation region as identified by 
the values of the first eigen-projections. (Right) From top to bottom: Image 
from still another experiment, the first normalized eigenvector (for which the 
change in sign is noticed) and the corresponding activation region. 

the degree of similarity with the prototype exemplified by 
the eigenvector U ( ' )  in the sense that the larger P ( l ) ( z ,  y), 
the more active the pixel. Imaging { p ( ' ) ( z ,  y))(e,y) gives 
a snapshot of the activity of the brain in response to 
the stimulus. Figs. 6 and 7 give three different examples 
of this projection. In each case, the high values are 
found in a compact region which we identify with the 
functional response to the stimulus. Fig. 6 also gives 
an illustration of the images produced by the second 
projection P ( 2 ) ( z ,  y) .  No special region can be delineated 
in this case. 

V. EXPERIMENTAL RESULTS 

The algorithms described above have been implemented 
in the statistical data analysis environment Splus. (A Matlab 
implementation is currently being worked out by S. Zhong.) 
The images of five experiments conducted in the last six 
months (in the laboratory of R. D. Frostig) have been re- 
analyzed using the method described in this paper. The results 
of three of the experiments are reproduced in Figs. 6 and 7 
(see [5]  for more experimental results and comparisons with 
Fourier based analyses). Our results are consistent in the sense 
that: 

The first normalized eigenvector of the PCA of the 
changes in time of the modified velocities (i.e., of the 
images preprocessed to remove the main vibrations of the 
blood vessels) do change sign in the middle as expected. 
Recall the plot of N(t) given in the bottom of Fig. 2. 



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 14, NO. 3, SEPTEMBER 1995 5 6 4  

a 

. 

The second normalized PCA eigenvector DOES NOT 
change sign. It is either monotone increasing or monotone 
decreasing. This is an obvious contradiction with the 
type of time evolution examplified by our choice of the 
function N ( t ) .  Recall that N ( t )  (whose graph is given in 
the bottom of Fig. 2) is our mathematical model for the 
intrinsic signals. 
The image of the activity region as given by the size 
of the first eigen-projection is consistent with the results 
obtained previously with the various division methods and 
with the experimental verifications which followed. 

These claims are illustrated in Fig. 6 in the case of the 
experimental data which we considered throughout the paper. 
Fig. 7 gives two examples of the precision and robustness of 
our method. 

We close this section with a short discussion of the roles 
of the free parameters needed in the practical applications 
and the values we used in the experiments described in the 
paper. The first free parameter is the scale s = 2’ at which 
the wavelet transforms are computed. The resolution of the 
images (and consequently the size of the files to manipulate) 
was a factor in this choice. But it is fair to say that, in all 
the experiments we conducted, the properties of the images 
(dynamic range, Fourier localization, . . .) were captured by 
these scales. The only choice left to the user concems the 
vibration map. For the sake of generality, we introduced a 
parameter X in the definition of the size of the neighborhood 
of pixels to be included in the vibration map. This parameter 
is not of crucial importance: we used X = 1 in all the 
applications. The important parameter is the threshold used 
to trim the extrema of the wavelet transforms. We chose the 
90%-tile to discard extrema according to their size. This choice 
is reasonable for the data files we analyzed but it may need 
some adjustment in different situations. 

VI. CONCLUSION 
We proved that it is possible to design and implement an 

algorithmic procedure to control the blood vessel artifacts and 
delineate the region of the brain where the functional activity 
occurs as a response to stimuli. Moreover, as a byproduct 
of the mathematical analysis, we get a realistic estimation of 
the actual time evolution of the light reflectance in the active 
region. 

The reliability of the procedure and the crispness of the 
identification will prove to be crucial in the future use of this 
imaging technique. These procedures will be further applied to 
brain imaging, especially for imaging from chronic preparation 
before, during, and after manipulation to the system (such as 
drugs, changes in behavior, ...). 
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