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Abstract

We propose an operator-based method of adaptive signal decomposition,

whereby a local narrow band signal is defined in the null space of a singular

local linear operator. Based on the definition and the algorithm, we propose

two types of local narrow band signals and two singular operator estimation

methods for adaptive signal decomposition. We show that our approach can

solve a special case of Huang et al.’s empirical mode decomposition algorithm.

For signals that cannot be resolved by our method or the empirical mode

decomposition algorithm, we propose a hybrid approach. Conceptually, the

approach applies the empirical mode decomposition algorithm, followed by

our algorithms. Our experiments show that the proposed hybrid approach

can solve a wide range of complex signals effectively.

1 Introduction

In recent years, the local narrow band signal (or ”time-varying” narrow band signal)

has attracted a great deal of attention in the field of signal and image processing

[1, 2, 3, 4, 5, 12, 13]. A singular local linear operator is a linear operator whose

support is compact and whose null space is not zero. We provide a local narrow band

signal model in which the signals are vanished by a singular local linear operator.

In other words, the local narrow band signals are in the null space of the singular
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local linear operator. Thus, we can use the operator to extract local narrow band

signals from its null space. To do this, we apply a singular local linear operator

to a signal in order to extract the local narrow band components of the signal for

signal decomposition purposes. Signal decomposition has been widely applied in

many fields. The most widely used approach models a signal as a superposition of

basic signals. For example, the basic component of Huang et al.’s empirical mode

decomposition (EMD) algorithm is the intrinsic mode function (IMF) [9]. We have

developed a signal model in which the signal consists of local narrow band signals.

Of particular interest is our approach’s ability to successfully apply a decomposition

algorithm to extract local narrow band signals. As we will show, our algorithm is

adaptive to a signal and can be used to solve an optimization problem in which the

solution is constrained. Specifically, in each decomposition, we obtain a local narrow

band signal in the null space of a singular local linear operator, which is estimated

from the extremal points of the signal.

The EMD algorithm models a signal as the superposition of IMFs, each of which

is obtained by a sifting process. We show that if the positions of the extremal points

of a signal are invariant during the sifting process, then the IMF is in the null space of

a singular local linear operator. In this case, the EMD algorithm and our approach

share a common conceptual framework; thus, the proposed signal decomposition

algorithm can be used to obtain the IMF.

We propose two singular local linear operators whose null spaces are of partic-

ular interest; one is based on integration and the other on differentiation. We also

construct a signal that can be correctly decomposed into a superposition of local

narrow band signals by the EMD algorithm, but not by the proposed singular local

linear operators. Although it has been shown empirically that the EMD algorithm

is very effective in decomposing a signal [14, 11, 6, 18], the solution of the algorithm

is in a larger class of signals than the local narrow band signals. We thus propose a

hybrid framework that uses the EMD algorithm to retrieve a signal, after which our

proposed differentiation-based algorithm is applied to extract a local narrow band

signal.

The remainder of this paper is organized as follows. In Section 2, we define a

singular local linear operator and a local narrow band signal. We also propose two

singular local linear operators: one based on an integral operator, and the other on

a differential operator. In Section 3, we introduce our adaptive signal decomposition
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algorithms for estimating the singular operators and extracting local narrow band

signals. In addition, we analyze a special case of the EMD algorithm and show that

the IMF of a signal in this case can be obtained by our approach. In Section 4, we

present our hybrid approach, which conceptually combines the EMD algorithm and

our approach for signal decomposition. In Section 5, we demonstrate the efficacy

of applying the proposed methods on two real-world signals. We then present our

conclusions in Section 6.

2 Local Narrow Band Signal

It is known that a narrow band signal can be expressed as A(t) cos(ωt+φ(t)), where

A(t) is a band-limited signal whose maximal frequency is much smaller that ω,

and φ(t) is a slow-varying phase function. Hence, the narrow band signal can be

extended to a local narrow band signal. A signal is a local narrow band if, at any

point, there exists a neighborhood interval such that the signal can be approximated

as a narrow band signal on the interval. For a narrow band signal (at+b) cos($t+c)

with a neighborhood interval of t, we have

(
1

$2

d2

dt2
+ 1)2(at + b) cos($t + c) = 0.

The narrow band signal (at + b) cos($t + c) is in the null space of the differential

operator ( 1
$2

d2

dt2
+ 1)2. We can use this perspective to define local narrow band

signals.

Definition 1. A linear operator T from L2(R) to L2(R) is called a local linear

operator if, for each t ∈ R, there exists a neighbor Bt of t such that

T (S)(t) = T (S|Bt)(t), (1)

where S|Bt(t) = S(t) when t ∈ Bt, and 0 otherwise. If T is a singular operator, we

call T a singular local linear operator.

From the definition, a local linear operator has a neighborhood, Bt. Note that

each neighborhood has a different operator. We present two types of singular local

linear operator because their local narrow band signals have generated a great deal

of interest in signal processing applications. We define the first type as

T (S)(t) =
∫

Bt

S(x)dx. (2)
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The local narrow signal of the operator is defined as follows.

Definition 2. A local narrow band signal S(t) is called the first type of local

narrow band signal of order n if there exists a singular local linear operator, as

in (2), and a number n such that

T n(S)(t) = 0, a.e. (3)

The local narrow band signal in (2) with n = 1 is defined in [1, 2]. In fact, we

often find signals of the form Pn(t) cos($t + c). For such signals, using the first

order integral is not sufficient to make the integral zero in any period. Therefore,

we extend the definition in [1, 2] to a higher order integral with n ≥ 1.

The first type of local narrow band signal is defined according to the integral oper-

ator. However, we can also define a local narrow band signal by using a differential

operator. Let us define the operator as follows:

Tα =
∑

k∈Z

α(k)
dk

dtk
, (4)

where {α(k)} is a square summable sequence belonging to l2(Z). This operator is

a singular operator with many eigenfunctions corresponding to eigenvalue 0. Here,

we give a derivation of the eigenfunctions. Let A(x) =
∑

k∈Z
α(k)xk, and let Ω be the

set of zeros of A(x). For any m elements {λk, k = 1, · · · ,m} in Ω, fm(t) =
m∑

k=1
cke

λkt

is an eigenfunction of Tα corresponding to eigenvalue 0, where λk can be a real or a

complex number. For a signal Pn(t) cos($t + c), λk is an imaginary number. The

local narrow band signal of the operator (4) is given by the following definition.

Definition 3. A local narrow band signal S(t) is called the second type of local

narrow band signal if for each point t, there exists a sequence α ∈ l2(Z), and all

the zeros of A(x) =
∑

k∈Z
α(k)xk are imaginary numbers such that

Tα(S)(t) = 0, a.e. (5)

The following example illustrates that a local harmonic function is in the null space

of a differential operator.

Example 1. Let

Tn =

(
1

$2

d2

dt2
+ 1

)n

. (6)
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The solution of Tn(S)(t) = 0 is

S(t) = Pn(t) cos($t + c), (7)

where Pn(t) is a piecewise polynomial of degree n− 1.

3 Singular Operator Signal Decomposition

The main purpose of signal decomposition is to decompose a signal into a superpo-

sition of signals that have certain features. Since signal decomposition problems are

usually ill-posed, we propose regularization methods that decompose a signal into a

superposition of local narrow band signals. Specifically, given a signal S(t), we seek

some local narrow band signals Sk(t) and a residual P (t) such that

S(t) =
∑

k

Sk(t) + P (t). (8)

To solve (8), we propose an adaptive signal decomposition technique that uses an

optimization method to find a component, Sk, at each iteration. Consider the fol-

lowing problem: given a signal S(t), find S1(t) and U(t) such that

S(t) = S1(t) + U(t), (9)

where S1(t) is either the first or the second type of local narrow band signal, and

U(t) is the residual. Since S1(t) is a local narrow band signal, there exists a singular

linear operator T such that

T (S1)(t) = 0, a.e. (10)

To obtain U(t), we solve the following optimal problem:

Ũ(t) = arg min{||T (S − U)||2 + λ||D(U)||2}, (11)

where D is an operator that regulates U. Minimizing the term ||T (S−U)||2 indicates

that S − U is a local narrow band signal with respect to the operator T . The

analytical solution of (11) is

Ũ = (T ∗T + λD∗D)−1 T ∗T S. (12)
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The procedure decomposes a signal into the local narrow band signal S1 = S − Ũ

and the residual Ũ , which becomes the signal at the next iteration. In the following

subsections, we analyze when a signal is decomposed into a superposition of the first

or second type of local narrow band signal.

3.1 First Type of Local Narrow Band Signal Decomposition

Given a signal S, to find Ũ with respect to the integral operator (2), we need to

determine the neighborhood Bt at each point t. In fact, if Bt is deduced from the

periodic function with a zero mean, such as cos(t), it is the local period of S −U at

point t.

Assume that S(t) is a compactly supported signal with support [a, b]. Let L0 =

{p0 < p1 · · · < pn−1 < pn} be the set of points where S(t) achieves the local maximal

values, and let L1 = {q0 < q1 · · · < qm−1 < qm} be the set of points where S(t)

achieves the local minimal values. We assume that the discrete extremal points in

L0 ∪ L1 are all extremal points of S(t). Except for boundary points, each point in

L0 must lie between two neighbors in L1. We make a similar assumption about the

points in L1. The points in L0 and L1 split the interval [a, b] into several smaller

intervals Ii, each of which has one bound in L0 and the other bound in L1; that is,

[a, b] = ∪Ii and Ii ∩ Ii+1 = pi or qi. We then define

Bt = [t− δt, t + δt], (13)

where

δt = (|Ii|+ (|Ii−1|+ |Ii+1|)/2)/2 for t lies in Ii. (14)

The estimation of Bt is valid for an inside interval of [a, b], but not for an end-

interval. Because we do not have any information about internals outside [a, b], we

use a prediction method to determine the interval at the boundary. For the left

end-interval of [a, b], we let

Bt = [a, a + η] for t ∈ [a, a + η], (15)

where

η = (|I2|+ |I3|)/2. (16)
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The right end-interval can be similarly defined. From Bt, we have an integral opera-

tor of the form in (2). In a discrete case, we use the average, instead of the integral,

in the computation. The input signal is a column vector S. The local integral op-

erator is approximated as a matrix A, where each row in A corresponds to a local

average with a window, determined from a local period of extremal points in S. To

solve (12), we must choose the operator D, which is defined as a derivative operator,

as in many regularization approaches. Therefore, Ũ is a smooth component of S.

The decomposition (9) must be performed many times until the norm of the

output is zero. We thus obtain a series of outputs Ui, with i = 1, . . . , N − 1. Let us

set U0 = S, and UN = 0; then the signal S can be written as the superposition of

the first type of local narrow band signal:

S =
N∑

i=1

Si(t), where Si(t) = Ui−1 − Ui. (17)

The step-by-step algorithm for signal decomposition is as follows.

Algorithm I:

Step 1. Set U0 = S and i = 1.

Step 2. Determine Bt at each point t.

Step 3. Construct the average matrix Ai and the difference matrix Di.

Step 4. Choose λi and solve the equation

Ui =
(
AT

i Ai + λiD
T
i Di

)−1
AT

i AiUi−1. (18)

Step 5. If ||Ui|| is smaller than a given threshold, the algorithm is terminated;

otherwise, set i = i + 1, and go to Step 2.

The following example illustrates the signal decomposition process.

Example 2. Decompose S(t) = sin(2t) + (sin(t) + 2) sin(10t) by Algorithm I. We

choose n = 2 in (3), which corresponds to choosing the assumption that S(t) can

be locally approximated as (c1t + c2) cos($t + c3). The decomposition results are

shown in Figure 1.

7



0 5 10 15 20 25
−4

−2

0

2

4
Multicomponent signal

0 5 10 15 20 25
−4

−2

0

2

4
Decomposition result

0 5 10 15 20 25
−4

−2

0

2

4
Residue

0 5 10 15 20 25
−4

−2

0

2

4
Difference from real component

0 5 10 15 20 25
−4

−2

0

2

4
Difference from  real component

Figure 1: Top left: Signal S(t) = sin(2t) + (sin(t) + 2) sin(10t). The extracted

component is shown in the middle left subfigure, while the residue is in the middle

right subfigure. Bottom Left: the difference between the extracted component in the

middle left subfigure and (sin(t)+2) sin(10t). Bottom Right: the difference between

the residue in the middle right subfigure and sin(2t). Except for the boundary

distortion, the maximal difference of the bottom two signals is less than 0.005. The

parameter λ is set at 100.
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3.2 Second Type of Local Narrow Band Signal Decomposi-

tion

To decompose a signal into a superposition of the second type of local narrow band

signal, we need to determine the operator in (4). In the following, we focus on the

operator of the form given in (6) with n = 2:

T2 =

(
1

$2

d2

dt2
+ 1

)2

. (19)

To characterize this operator, we only need to estimate the local frequencies, but it

is very difficult to do this without knowing the exact signal. However, if we assume

that the discrete extremal points are continuous and no other extremal points exist,

we can estimate the phase function φ(t) from the positions of the extremal points.

The local frequencies can then be obtained by taking the derivative of the phase func-

tion. Let {r0 < r1 · · · < rn−1 < rn} be the positions of the local extremal points of

S(t). We assume that the phase of S(t) varies smoothly, and use a local polynomial

function to fit the extremal points to obtain the estimated phase function φ(t). The

constraint on φ(t) is φ(rk) = kπ + b, where b is either π or 0, based on the assump-

tion that if rk is a local maximum, then φ(rk) = 2πl, where l is a natural number.

We now present the algorithm that decomposes a signal into a superposition of the

second type of local narrow band signal with respect to the singular operator in (19).

Algorithm II:

Step 1. Set U0 = S, i = 1.

Step 2. Find the local extremal points.

Step 3. Determine the value of b from the phase of a local maximum that satisfies

kπ + b = 2πl, where l is a natural number.

Step 4. Use interpolation to obtain the phase function φ(t) under the condition

that φ(rk) = kπ + b. The derivative of the phase function at any point tj is

the local frequency ωj at that point.

Step 5. Construct the matrix Ai as

Ai = (ΩiD + I)2, (20)
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where Ωi is a diagonal matrix, Ωi(j, j) = 1/$2
j , D is the discrete second order

derivative matrix, and I is the identity matrix.

Step 6. Use (12) to obtain Ui as follows:

Ui =
(
AT

i Ai + λiI
)−1

AT
i AiUi−1. (21)

Step 7. If ||Ui|| is smaller than a given threshold, the algorithm is terminated;

otherwise, set i = i + 1 and go to Step 2.

The signal in the following example is the same as that in Example 2. Here, we

explain how it is decomposed into a superposition of the second type of local narrow

band signal.

Example 3. Given the signal in Example 2, S(t) = sin(2t) + (sin(t) + 2) sin(10t),

we obtain the two-component decomposition results by using the operator in (19),

as shown in Figure 2.
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Figure 2: Top left: the extracted component. Top right: the residual signal. Bottom

left: the difference between the component extracted in the top left subfigure and

(sin(t) + 2) sin(10t). Bottom Right: the difference between the residue in the top

right subfigure and sin(2t). The maximal value of the bottom two signals is less

than 0.06. The parameter λ is set at 0.025.
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The proposed operator-based signal decomposition scheme can be used to extract

a signal from the null space of any singular local linear operator. In the next

subsection, we show that a special case of EMD decomposition can be formulated as

the proposed method and the IMF of the signal satisfying the case can be obtained

by our approach.

3.3 A Special Case of IMF Decomposition

An IMF must satisfy two conditions: (1) the number of extrema and the number

of zero-crossings can differ at most by one; and (2) the mean value of the envelopes

defined by the local maxima and the local minima must be zero. The EMD algorithm

decomposes a signal into a superposition of IMFs as follows:

S(t) =
∑

k

Ck(t) + P (t), (22)

where Ck(t) is an IMF, and P (t) is the residual. An IMF can be obtained by

applying the following sifting procedure. Given a signal s(t), the procedure first

finds the extremal points, and then computes the mean value m(t) of the envelopes

of the extrema . If the mean value is not zero, the procedure is applied to the new

signal s(t)−m(t). The sifting process is repeated many times until the mean value

of a signal is zero and the signal is an IMF.

We consider a special case of IMF computation in which the positions of the

local extrema of a signal are invariant during the sifting process. Therefore, the

calculation of the mean value during the sifting process can be represented as a

linear operator that does not change at each iteration. The EMD sifting procedure

for this case is rewritten as follows:

Step 1. Set S0 = S, and i = 1.

Step 2. Find the local extremal points.

Step 3. Construct a matrix A to compute the mean value of the upper and lower

envelopes. The matrix A can be written as MC+ND
2

, where M is an interpo-

lation matrix in which each column is a cardinal interpolating vector; and C

is a matrix in which each row has an element of value 1 corresponding to the

position of a maximum and 0 in the other elements. N and D are similar to

M and C respectively for minima.
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Step 4. Compute Si = Si−1 − ASi−1.

Step 5. If ||ASi|| is smaller than a given threshold, terminate the algorithm; oth-

erwise, go to Step 4.

Note that, in Step 5, we use ||ASi|| to determine when to terminate the algorithm.

When ||ASi|| is small enough, according to Step 4, we have Si+1 ≈ Si. Hence,

no further iteration is needed. To determine the convergence of Si, we study the

convergence of Ui = S − Si. From the procedure, we have

Ui =
i∑

k=0

(I − A)kAS. (23)

Because A is an interpolation matrix, it is a singular linear operator. For a signal

S, if (I − A)kAS is not zero for all k, then Ui does not converge. As in the EMD

algorithm, it is not clear whether the above procedure is convergent or not.

Note that, for the case under discussion, we can use the optimization method

proposed in (11) to extract an IMF, which is in the null space of the singular local

linear operator A.

4 Hybrid Signal Decomposition Algorithm

The proposed adaptive signal decomposition algorithm decomposes a signal into a

superposition of component signals in the null space of a singular local linear oper-

ator. The efficacy of our method is demonstrated by Examples 3 and 4. However,

there are signals that some of operators cannot correctly decompose into a super-

position of local narrow band signals, as illustrated by the following two examples.

First, the signal

S(t) = sin(2t)− cos(4t)/4− 1/4 (24)

has an interesting property in that its extremal points are the same as those of

sin(2t). Although the signal is composed of two monotone components, the local

average, calculated from the extremal points, is zero. Consequently, the first type

of singular operator can not decompose the signal. However, because the correct

frequency of sin(2t) can be estimated from the extremal points and the differen-

tial operator does not vanish the signal, the second type of singular operator can

correctly decompose the signal as the superposition of local narrow band signals.
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In the second example, neither the first nor the second type of operator can

correctly decompose the following signal into two monotone signals:

S(t) = sin(2t)− cos(4t)/3. (25)

The interesting property of this signal, shown in Figure 3, is that neither the local

frequency of sin(2t) nor that of cos(4t)/3 can be correctly determined from its ex-

tremal points. The second type of singular operator thus uses an operator with an

incorrect frequency to extract the component signal, while the first type of singular

operator uses an operator with incorrect neighborhoods.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

Figure 3: Signal sin(2t)− cos(4t)/3. The extremal points of the signal are different

from those of sin(2t) and cos(4t)/3.

The EMD algorithm provides another way of performing adaptive signal decom-

position. However, the solution of EMD decomposition lies in a larger class of signals

that, in general, cannot be characterized by the null spaces of the first and second

type of singular local linear operators. For the signals given in (24) and (25), EMD

cannot decompose the first signal into two monotone components, but it can suc-

cessfully decompose the second signal. From the extremal points of the first signal,

the EMD algorithm determines that the signal is an IMF and stops the decompo-

sition process. As indicated in [17], the values of a and f determine whether EMD

represents a signal of the following form, with 0 < f < 1,

cos(2πt) + a cos(2πft + φ)
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as the sum of two separate unmodulated tones, or as a single modulated waveform.

The first signal is the case discussed in [17] with af 2 = 1. For the second signal,

where the component signals can not be derived directly from the extremal points of

the signal, the EMD succeeds in decomposing the signal. The sifting process of EMD

varies the extremal points at each iteration and obtains the correct decomposition

of the signal after several iterations.

The first and second types of singular operator are constrained by the extremal

points of a signal. Although EMD is less constrained by the extremal points, it is

not specifically designed to extract local narrow band signals. The IMF is a larger

class of oscillatory signals that can not be characterized easily by a singular local

linear operator. Thus, we propose the following hybrid approach for local narrow

band signal extraction. We use EMD to extract an IMF, which may not be a local

narrow band signal, and then use the second type of singular operator to specifically

extract a local narrow band signal from the IMF.

However, the convergence of the EMD sifting algorithm is not reported in [9].

Therefore, before we can proceed with our approach, we must modify the EMD

algorithm so that it will always converge. Next, we present the modified algorithm.

Modified EMD Sifting Algorithm:

Step 1. Set S0 = S, i = 1.

Step 2. Find the local extremal points.

Step 3. Construct a matrix Ai, which is equivalent to computing the mean enve-

lope.

Step 4. Compute Si = Si−1 − µi−1AiSi−1, where µ < 1 is a given number.

Step 5. If ||Si − Si−1|| is smaller than a given threshold, terminate the algorithm;

otherwise, set i = i + 1 and go to Step 2.

Note that the only difference between our algorithm and the EMD algorithm is the

operation in Step 4, where the multiplier µi−1 ensures the convergence of our algo-

rithm. The following theorem proves that our algorithm is always convergent.

Theorem: The Modified EMD sifting Algorithm converges when µ < 1.

15



Proof:

First, we prove that ||Si|| < ∞. From the iterations, we observe that

Si =
i∏

k=1

(I − µk−1Ak) S. (26)

Because Ak is a matrix that performs interpolation and obtains the average of the

upper and lower envelopes, its norm is bounded by 1. Therefore,

||Si|| ≤
i∏

k=1

(1 + µk−1)||S||.

Moreover because ex ≥ 1 + x for x ≥ 0, we have

||Si|| ≤
i∏

k=1

(1 + µk−1)||S|| ≤
∞∏

k=1

(1 + µk−1)||S|| ≤ e
∑∞

k=1
µk−1||S||.

For a given µ < 1, we have ||Si|| ≤ C = e
1

1−µ ||S||. To confirm the convergence of Si,

we study the convergence of S − Si, which yields

S − Si =
i∑

k=1

µk−1Sk.

Since µ < 1 and ||Si|| ≤ C, we conclude that S − Si converges; therefore, Si

converges.

Because the modified EMD sifting algorithm always converges, we can combine it

with our second type of singular operator to decompose a signal into a superposition

of narrow band signals. First, we use the modified EMD sifting algorithm to decom-

pose a signal into a superposition of outputs, and then apply Algorithm II to obtain

the local narrow band signals of each output. The following example demonstrates

the efficiency of the proposed hybrid method.

Example 4: Individually, Algorithms I, II, and EMD can not correctly separate

the following signal:

S(t) = sin(2t)− (1 + cos(4t))/4 + sin(8t)− cos(16t)/3. (27)

The first two terms of the signal can not be separated by EMD or the first type of

singular operator, while the third and the fourth terms can not be correctly decom-

posed by the first and second types of singular operator. However, the proposed

hybrid method can decompose the signal correctly, as shown in Figure 4.
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Figure 4: The decomposition results of our hybrid approach for the signal sin(2t)−
cos(4t)/4 + sin(8t) − cos(16t)/3. The top left signal is cos(16t)/3, the top right is

sin(8t), the bottom left is −(1 + cos(4t))/4, and the bottom right is sin(2t). Here,

we set µ in the modified EMD sifting algorithm to 0.99, and λ in Algorithm

II to 0.025.
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5 Discussion and Application to Real-world Sig-

nals

The examples presented so far are constructed so that we can analyze and verify the

solutions of different algorithms. We now describe the application of the proposed

methods to two real-world signals, for which we do not have ground truths. Before

applying our methods to the signals, we consider three issues related to the efficacy

of the methods. First, we need to decide which decomposition method to use. We

have introduced two types of singular local linear operators and a hybrid method,

which combines a modified EMD algorithm and the second type singular operator.

Using the first type of singular operator, we assume that the local average of a

component signal is zero; while for the second type of singular operator, we assume

that a component signal can be approximated as a local harmonic function. The

class of signals of a zero local average is larger than the class of signals of the local

harmonic components. For example, stochastic signals of the autoregressive moving

average model are in the null space of the first type of singular operator, but the

signals do not contain a local harmonic component. Because our objective it to

extract the local narrow band components of a signal, we use either the second type

of singular operator or the hybrid method. The second type of singular operator

can be used effectively when the main frequencies of a signal are known, as shown in

Figure 5. For all other cases, the hybrid method should be used because it combines

the features of the EMD algorithm and the second type of singular operator. The

modified EMD algorithm extracts the oscillatory components from a signal, then

the second type of singular operator decomposes each oscillatory component into a

superposition of local narrow band signals.

The second issue is that we need to determine the parameter n in (6), which

models the local harmonic component of a signal. Our experiment results show that

signals can be separated properly by setting n to 2 (modeling a neighborhood of t as

(at+b) cos($t+c)). We also need to determine the parameter λ in (21). At present,

for all the examples, we choose the parameters based on the experiments. We are

currently investigating other approaches, such as that proposed in [7], for estimating

the parameter. The third issue relates to the complexity of our algorithm, which can

be determined by inverting the matrices in (18) and (21). Because our operators are
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local, the matrices are band diagonal. According to [15, 10], the inverse of a band

diagonal matrix can be solved with a complexity linear to the size of the signal.

Thus, the proposed algorithms can be executed efficiently.
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Figure 5: Left: A noisy signal from a gas detector. Right: The ”clean” signal. The

parameter λ is set to 0.9.

The left-hand subfigure of Figure 5 shows a noisy signal from a gas detector.

The amplitude indicates the density of the gas, and the non-stationary noise is from

the gas detector device. The main frequency of the signal was provided by the gas

company. We thus substituted the frequency in the second type of singular operator

to extract the “clean” signal, as shown in the right-hand subfigure of Figure 5.

Figure 6 shows the signal of Poland’s daily electricity consumption from 1990 to

1994 [8]. Using the EMD algorithm, we obtain the first and most important IMF

of the signal, as shown in Figure 7. The spectrum of the IMF, shown in Figure 8,

indicates that the IMF contains three main frequency components at 200, 400, and

600 respectively. We use the proposed hybrid algorithm to decompose the signal

into the three components, as shown in Figure 9. The spectrum of each component

contains only one main frequency component. They are at 600, 400, and 200 in

the spectra of the first, second, and third components respectively. Although, the

three main frequency components obtained by EMD algorithm and our algorithm

are match, the decompositions of the signal in Figure 6 by EMD and our algorithm

are different. For EMD, all the main peaks are in the same IMF, while the peaks

of our decomposition are in different components. This observation could lead to

different explanations of the consumption rules of the signal, but we do not have

sufficient knowledge about the signal to make an assessment.
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6 Conclusion

We propose an operator-based method for local narrow band signal decomposition

that uses two singular local linear operators: an integral operator and a differential

operator. Based on the operators, we develop two decomposition algorithms that

extract either the first or the second type of local narrow band signal at each de-

composition. We show that the EMD algorithm can be modified so that it always

converges, but the solution is not necessarily an IMF. Because the solution of the

modified EMD algorithm is a larger class of signals than the local narrow band sig-

nals, we propose a hybrid approach that combines the proposed method with the

modified EMD algorithm to correctly decompose a signal into a superposition of lo-

cal narrow band signals. In our future work, we will develop procedures to estimate

the regularization parameter in our algorithms and make our operator estimation

procedure more robust against the variations of local extremal points. It would also

be interesting to derive the null spaces of the proposed operators and the relation-

ships between the null spaces of different operators and the IMF space.
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Figure 6: Signal of Poland’s daily electricity consumption from 1990-1994.
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Figure 7: The first IMF obtained by the EMD algorithm for the signal in Figure 6.

The IMF is an oscillatory component containing three main frequency peaks.
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Figure 8: The spectrum showing the three main frequency peaks of the IMF in

Figure 7.
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Figure 9: Three components extracted by the proposed hybrid method. The left-

hand column shows the three components, and the right-hand column shows their

respective spectrums. Each component has one main frequency peak. The para-

meter λ is set to 0.005 when we use Algorithm II, and the parameter µ in the

modified EMD sifting algorithm is set to 0.9.
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