Automatic Microarray Spot Segmentation Using a
Snake-Fisher Model

Jinn Ho and Wen-Liang Hwang

Abstract—Inspired by Paragious and Deriche’s work, which circle [8]. However, the assumption is incorrect because a
unifies boundary-based and region-based image partition ap spot’s morphology is not always a circle. Other techniques
proaches, we integrate the snake model and the Fisher critem s pynothesis testing to segment the foreground and back-
to capture, respectively, the boundary information and regon - . . . L.
information of microarray images. We then use the proposed g_rou_nd _[9]’ but t_hIS _neces_S|_tates mOde"”Q the p'X_el intgns
algorithm to segment the spots in the microarray images, and distributions, which is a difficult task. Region growing bds
compare our results with those obtained by commercial soft- on the watershed algorithm proposedSpot[3] can segment
ware. Our algorithm is automatic because the parameters are regions of irregular shape and the technique does not need to
adaptively estimated from the data without human intervenion. model a region’s probability; however, the segmentaticults

are not necessarily an optimization of some class separatio

Index Terms—Microarray Image, Spot Segmentation. criteria. The objective of the intensity extraction tasktds
calculate and normalize the spot intensity in order to d@eriv
guality measurements [10]. The segmentation task is thesfoc
of the present study.

A S the DNA microarray can measure thousands of geneppjects or homogeneous regions can be segmented by
expression levels on the genomic scale simultaneousdy.region-based approach, which usually minimizes a class
it has enormous potential for biological, medical, and &duseparation criterion according to the statistics of theores
trial applications [1], [2]. Specific cDNA, or oligonucléde [11]. Another popular approach based on the boundary in-
fragments of genes, are spotted or printed on an array maf¥mation uses the gradients along a contour to segment ob-
as probes to detect gene expressions. Meanwhile, sampleggfs. The pioneering work in [12] integrated two approache
MRNAs are reverse transcribed to cDNAs, which are labellgglthin a minimization framework that finds the boundary of
with fluorescent dyes to act as targets. The labelled cDNfsformable objects in medical images. Related works that
targets are then hybridized to probes by complementatigitegrate boundary-based and region-based approaches for
After washing out the unhybridized targets, a laser scannffage partitioning can be found in [13], [14], [15]. Para-
is used to detect the fluorescent intensities, which are Pos and Deriche [16] proposed a systematic framework that
portional to the contents of hybridized pairs of targets angmpines the region-based and boundary-based segmentatio
probes. This process generates microarray images thaam‘jiapproaches. The model can be generalized by incorporating
the relative expression levels of the genes. Finally, imaggecific functions that can capture boundary and region-prop
processing techniques and statistical methods are apliedqyiies. For the spot segmentation task, we propose using the
determine the expression levels of the spots in the micagarr snake model to capture boundary information and the Fisher
in order to perform gene expression analysis. criterion to capture region information. The snake modé]| [1

According to Yang et al. [3], the processing of microarray very effective in segmenting objects whose boundaries ca
images involves spot gridding, segmentation, and intgnsige approximately delineated by a set of large gradient point
eXtraCtion. The SpOt gr|dd|ng task deteCtS the pOSitiOI"IS Qfong a contour. The Spot boundary iS SUCh an examp|e_
the spot centers and identifies their coordinates [4]. )Jst The Fisher criterion is based on discriminate analysis in
commercial software provides semi-automatic algorithms &tatistics, which uses between-class and within-clagistita
deal with the problem. An accurate and automatic algorithy§ form a criterion for class separation [18]. We adopt the
for the case where the spot centers are smoothly distorigdher criterion because it is simple and can be analyzed
is provided in [5]. The goal of segmentation is to classify fathematically.
pixel as either foreground inside the spot, or as backgroundrne solution of a snake model depends on the initial contour
outside the spot. A number of segmentation techniques haugy the parameter values selected. Because an image has
been proposed [6], [7], some of which assume that tR@rious signal-to-noise (SNR) levels, a good initial camto
geometry of a spot is either a fixed circle or an adaptiynd the parameter values must be determined manually. Even
after extensive study [19], [20], [21], these problems have
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Carlo-based Climber algorithm to find a good initial contourwhere (3) and (4) are respectively the snake energy model
[22], [23], and then estimate the values of our paramete}8d the Fisher criterion model. The latter can be written as
from that contour. Although the proposed approach does rigtesion fa{‘éﬁ?&/ tEh’)eetgg;?t’e‘p’g?;%m%’géh'ghﬂ%ssadrgﬁgce
resolve the problems theoretically, experiments on sévey ithin plesin 2

. _ _ : Reir expected values as follows:
synthesized and natural images show that it can find a good

initial contour and estimate quality parameters. Using th&.,nin = // (I—M1)2dxdy+// (I — Ma)?dady
proposed method, we segment the spots in microarray images B R2
with various SNR levels, and compare our results with those = // (I — M) dady + // (I — M) dxdy
of GenePix Pro 5.0 [8] and Spot 2.0 [3]. 1 R-Fy

The remainder of the paper is organized as follows. In = // (I—Ml)Qdmder// (I — Ms)*dady
the next section, we introduce our model. In Section Ill, we Ry R
present an automatic algorithm that finds a solution for our _ // (I — My)?dady
model. In Section IV, we validate the model by comparing it Ry
with other approaches. Finally, in Section V we present our _ {// (I — My dady — (I — M2)2dxdy]
conclusions. Ry

2
Il. DESCRIPTION OF THEMODEL +//R (I = M) dedy, ®)

For simplicity, we assume there are only two regions tquhile the between-class distané&,iwcen = (M; — M2)2 is
be delaminated. However, the proposed model can be easil¥ difference between the expected gray levelR ond R;.
extended to delaminate more than two regions simultangousl We propose an iterative algorithm to find the solution
For example, let us assume there are two non-overlappRptour of (2). The algorithm begins with an initial contpur

- ; - then, at each iteration, a new contour is obtained by altiextna
foreground regionsf’, and £, with a background regiom, o subsequent stages. In the first stage, by fixing the values

and that we have an algorithm that can delaminate both,a | .. een-class distan@.ucen (T), [, (I — Mo) dedy
. . . etween 1

foreground region and a background region. We can estimaige rightmost term in (5)), and the modars parameters,

Fy approximately and obtaitty, and then use the algorithmang 5, the algorithm finds the curvE that minimizes

to delaminateF, and B — F;. After that, we use the result

of estimating />, and the algorithm to delaminatg} and Eiwta(l) = /(%IFSIQJrgIFSSIQf | 7 I|1)ds

B — F;. Clearly, if we have an algorithm that can delaminate ro

a foreground and a background region, it can also delaminate 5 7 / (T = M1)? = (I — Ms)*]dady
an image with more than two regions. Hence, in the following e 2

analysis we focus on detecting the most significant foreggou + Ebezueen / /R (I — M)?dady. (6)

region in an image.
In the second stage, we updat&icipeen, and

A. Energy Form I (I - Mg)QdJ?dy with respect to I'. The parameter

We defineR = {I(x,y)} as an image of gray value pixels.values are then estimated by minimizing the mean square
A simple closed curv& = I'(s) on R divides the image into error (MSE) of the Euler equation in (6). Note that (6) can be
{R1,R2}, whereR = Ry U Ry andT' = 0R; N 0R,. We solved by using other methods, such as the level set approach
denoteM; and M, as the expected values of pixels By  [24], [25]. The Euler equation is derived as follows.
and R, respectively. The total energy induced by contbur
is defined as the sum of the snake’s energy and the regioR'SEuler Equation
energy. The former measures the properties along the apntoule&t us rewrite (6) as

while the latter measures the statistical differences betw o 2
: Eiota() = BE( I— M ,
the regions separated by the contour. The total en&kgy,; total(T') () + Ebetween //R( 2) dudy
is written as where
Eiotal = Esnake + '?E'region- (1) ET) = / (%|FS|2 + §|Fss|2 v I||2)ds
We use the two-class Fisher discriminate criterion to regmé 8 5
an E,..gion. In such cases, (1) can be expressed as +Eb - //R (I — My)? — (I — Ms)?|dzdy(7)
etween 1
Eiotal(T) = / (%|1“5|2 + §|FSS|2 — |7 I|*)ds Becausel/, is the mean value of regioR,, the region does
T ) not change much if the initial contour is good. Therefore,
gyffm (I — My) dwdy+ffR2 (I — M>)"dudy ) the value can be approximated as a constant and we can
(My — My)? omit the terMg—"— Ejrueen [ [ (1 — M,)?dxdy from the
in which following, analysis.
o . B , , Green'’s theorem states that
Esnael—‘: _Fs +_Fss - I dS, 3
welD) = [(GIP+ GIral = v 11P) ® R I
Ry Oz Oy dR;

_ S, (I = My)?dzdy + [, (I - Mg)Qdmdg‘)

Eregion(r) (M1 — M2)2

- / (Pzs + Qys)ds.  (8)
ORy



By applying the theorem to the last term in (7) and setting Initial point for @

Y=g t"Y , we obtain a climber
o B
Br) = [(GIf+ G = v 1as
Generate initial
+’Y/L(5§US7USS)d57 contour
r Larger than a
_ threshold Yes
= /FFds7 9 | VI >0
where Yes
. _ a 2 B 2 2
F(S,U,Us,l}gs) - (Elrsl + §|FSS| - H V[(U)H )
+7L(s; v, vs) (10) 1
in which v : [0,1] — R? v(s) = (x(s),y(s)) = I'(s); and Nendomly. Temperature
z,y € C2([0,1]). Using functional calculus with the detailed > ooepdate
deviations given in Appendix |, the Euler equation becomes Ccuup;d”aﬁz map
ol I
7% — QTss +ﬂmssss + ’Y[(I - M1)2 - (I - M2)2]ys - 07 T
8” v [H2 Move point in the
— L s + Byssss — (I — M1)? — (I — My)?)zs = 0. Move point in the normal direction
Oy Y Py g 2 ( 2] »| tangent direction » with a Hastings-
To evaluate the third term in each of the above equations randomly Metropolis
requires a fourth derivative. However, if that derivative i approach

implemented in the discrete domain, there may be a Iar'g
amount of numerical noise [26], [27]. Thus, we implement
our method in a special case of the above, whére- 0,

which has better numerical stability. The Euler equation fo . :
A. Initial Contour Detection

e
ig. 1. Block diagram of the Climber algorithm.

B=0Iis
) The snake-balloon approach tries to solve the initial conto
_olv il — amss +v[(I = My)? — (I — Ms)*]ys =0, (11) Pproblem by adding an external force to the snake model
Oz 5 [28]. We adopt a different approach based on the Climber
dl gyI” — ayss —[(I = M1)* — (I — M2)?|zs =0. (12) algorithm [22], [23], which is easy to implement and re-

markably robust against noise. The algorithm was origynall

The solution of the above two equations can be obtained B{PPOsed to stochastically estimate contours of ridgetpam

an iterative procedure similar to that in [17]; thus, we da n@ time-frequency plane by randomly placing a large number of

state it here. Because,; = [zss yss] = ri7i, Wherex is the independent climbers in a time-frequency plane. Each @mb

curvature, andi is parallel to[y, — ], (11) and (12) can moves with equal probability in the time direction; howevtsr

be written as one equation: movement in the frequency direction is restricted to clingpi

(I—M)*—(I— M2)2]~ _o. (3 the peaks ofa local energy function by a Hastings-Metrapoli
(M1 — M2)? ' penalization and a temperature schedule similar to that in

. . . . . the simulated annealing algorithm. Thus, as the temperatur
This equation requires that a point on the optimal contoustmu 9 alg P

satisfy (14) in the tangent directia), and (15) in the normal qpproaches zero, the cllr_nber stops and settles on a suitable
direction (77): ridge contour. By assuming that most movements can stop

9 close to a ridge, the points of concentrated occupation form
Vi 1 0, ) ) (14) ridges on the plane. The ridges of the plane are then detected
a4 (U= M)” == M2)") 150 by the occupation measure of the algorithm, which counts the

(My — Mz2)? number of times the climbers stop at each point in the time-

frequency plane.
Since our goal is to identify the contour of an image, instead
obtaining the smooth horizontal ridges in a time-freqren
ne, we need to modify the algorithm. Our modification
IS based on the observation that the contours of an image
are mostly concentrated on the edge points, which can be
[1l. SoLUTION OF OUR MODEL defined as the local maxima of the magnitude along the

To solve the Euler equation, we need the initial contour ajadient direction of an image. Thus, the movement of our
the model's parameters. First, we describe the methods u§éghber in the gradient direction is restricted by the uractor
to obtain the initial contour and estimate the parametees. W = %- However, each climber can move freely in the
then present an iterative algorithm that derives the smlutf tangent direction, defined by the unit vectEr), which is
our model. perpendicular to the gradient direction. The flowchart & th
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Equation (15) indicates that the optimal contour balanke=et
terms: the first term is provided by the normal component o
the gradients of the image, the second term is proportior?#l
to the curvature, while the last term measures the cl
separation.



algorithm is given in Figure 1. The steps are as follows:

Step 0.Let M be the number of climbers, ad: R?> — R
be the occupation measurement, with an initial value of zero
at any point.

Step 1l.Let¢t = 1 and7; = 1 be the initial temperature.
A climber randomly selects an initial poip{(7;) = (¢,7) in
image!.

Step 2.Let # to be a threshold. For a climber af7;) =
(i,7) with temperatureT;, if |VI|| < 6, the movement
of the climber is determined by randomly selecting one of
the 8-neighbor pixels op(7;) that have equal probability.
Otherwise, the movement of the climber is determined as
follows:

A. Free Movement
Move (i, j) to (i, 5): = (i, 7)4u (4, 7) in the tangent direction,
whereu (i, j) € {+?(z’,j), —T(i,j)} with equal probability.

B. Restricted Movement
Move (i, )¢ t0 (i, 7)n = (4, )t +un(i,j) in the normal direc-
tion, wherew,,(i,j) € {0, 7 (i,5), =7 (i,7)}. Let (4,5), =
(i,5)¢ +vn(i, ), Wwherewv, (i,5) € {n (i,5), -7 (i,5)}, Z =
|VI||?, andéZ = Z((i,).,) — Z((i, j):). The climber moves
to (¢, 7)n = (4, 4),, when the value of the functiof increases,
i.e, 0Z > 0; otherwise, iféZ < 0, the transition is made with
probabilityexp(‘;—f). Thus, in the case where the climber does
notmove, i.e.(i,j), = (4,4): the probability iSl—exp(%).

C. Update the temperature= ¢ + 1, T, = 1, and set (e)
p(Tt) = (i’ 3)" Fig. 2. The steps in the evolution of a climber’s contour:Thg input image;

Step 3. Stop the the climber when the temperature apb) The contour is superimposed on (a) to detect when thedsanhpe reaches
proaches zero, and go Step 4 If the temperature is lower TO/ZZ whereTy is the initial temperature; (c.) when the temperature remche
than a threshold’,, we record the movement of the cIimberT 0/4; (d) when the temperature reactiis/8; and (€) the final result.
at p(Ty) by letting C(p(T})) < C(p(Ty)) + 1. Go to Step 2

Step 4.M =M — 1. If M #0, go toStep 1

Having obtained the occupation measureméntwe as- applying different numbers of climbers to a synthesizedgyoi
sociate it with closed contours by setting a threshold for itnage. As illustrated in the figure, the initial contour does
and retaining the positions that accumulate larger valbas t change much because the number of climbers is large enough.
the threshold inC. The resultant image is denoted @ We Figure 4 shows a noisy synthesized image with different
then use the linking procedure in [29] to find the contours iimtensity levels. There are eight closed contours in thegena
C. Initially, we “unmark” all the points inC and apply the The climber algorithm can obtain the approximation of adl th
following procedure several times to find the contours. closed contours, as shown in the bottom subfigure.

« We select one “unmarked” point, and calculate its tangent.

« Then, along that tangent direction we mark the best
“unmarked” neighbor point that has the largest occupation
value.

« We then iterate the process from the newly marked poi
until only “marked” neighbor points exist, or the contour
is closed. After obtaining the initial contour, we need to determine

The result is a series of contours. We discard contours ti3¢ values of the parameters. A contour is the solution of
are not closed, or whose length is too small. Since our goalQdr model if we can find the values of the parameters such

to segment the foreground of a spot in an microarray imag@at the contour and the values satisfy the Euler equation. F
the t-test, according to [3], is a good criterion for measgri the case where there are no suitable values, we estimate the

the result. Thus, we apply the t-test to the remaining castouParameters .by mi_nimizing the mean-square-error (MSE)®f th
and retain the one with the largest t-test result as thealnitEUler equation with respect to the contour.

contour. Note that we can retain more than one contour as affo estimate(a,~) of a closed curve, we first select the
initial contour. Figure 2 illustrates the results of applyithe sample pixelsT'y. Let Ty = {(z(i),y(¢))| ¢ = 1,---,s}
Climber algorithm to a heart-shaped image. One can obsebe the sample points of the given contour, aidi) =
the evolution of the contour as the temperature approache&x(i),y(i)) — M1)? — (I(x(i),y(i)) — M2)?. The MSE
zero. Figure 3 shows the initial contour results derived by (T;) ande3(T) of (11) and (12) are, respectively,

rﬁ’s Parameter Estimation



(b)

Fig. 4. Top left: A192 x 192 image with different intensity levels and eight
closed contours. The SNR of the image58B and the noise is additive
white Gaussian noise. Top right: The occupation measureofehe Climber
algorithm. Bottom: The contours obtained by the occupatimasurement in
the top right subfigure.

detection, the algorithm estimates the optimal paraméiets
minimize the MSE of the contour, and then solves the Euler
equation by using the contour and the parameters to obtain
a new contour. The statistics of the region partitioned ke th
new contour are then updated, after which the parameters are
updated. Based on the obtained contour, and the updated sta-
Fig. 3. (a) A noisy image of siz€6 x 96 pixels; (b), (c), and (d) are (SticS and parameters, the algorithm solves the Eulertemua
the occupation measurements obtained by usif§ 196 and 100 climbers, at each iteration and generates a new contour. The process is
respectively; (e) and (f) are the initial contours derivedni measurements repeated until a certain stopping criterion is reached.
(b) and (c), respectively. Note that a closed contour is rerivdd from . . L
measurement (d). There are many ways to define the stopping criterion of our
algorithm. For example, we can define it as the point when the
change in the model’'s parameters in consecutive iterai®ns
smaller than a given threshold. We use the t-test of theiarter

2 1 - Lol I NNE and exterior regions separated by the contour as the oriteri
erl) = 3 ; { ass (i) 9(7) + Ky )| for stopping. The algorithm stops if the t-test value of the
1 ol 1| 2 current contour is smaller than that of the previous contour
es(l) = = Z [— oyss (i) — AVl f’yK(i)xs(i)] . We use t-test because it is a simple way to assess whether
5 & Oy(4) ; . . ; .
i the means of the interior and exterior regions are stagi$fic

The(a*,~*) that minimizes the MSE satisfié%ﬁi _ o 94 _ different. Also, the test provides a good result when it iscus
o oy as a criterion for segmenting spots in a microarray image.

de? de? . . H
0, 35 =0, and 2 = 0. We then obtain the following linear g, re 6 illustrates the results of applying our algoritoret
system: noisy synthesized image.
a(d wes(i)) = O K@)ys (i) + Y Alv I _ 0 IV. PERFORMANCE EVALUATION
7: SSs Z S Z ax(i) b .

v I|? We conduct experiments to evaluate the performance of
a(d yes (D) + 7O K(D)za (i) + Y N YOR 0. our algorithm on several images, including synthesized,dat
i i i Y medical images, and the microarray images of different man-
If the denominator of the above system is not zero, then théacturing techniques. The experiment parameted fisr15%
analytical solution of the parametens (I';) and+*(T';) can and the threshold for obtaining’ is the top 10% of the

be derived easily. occupation measure i’. We use the following numerical
_ _ _ approximations:z, (i) ~ (i + 1) — x(:) and xs:(i) ~
C. Alternative Refinement Algorithm z(i 4+ 1) — 22(i) + (i — 1). We sample at every four points

Figure 5 shows the flowchart of the proposed algorith@long a contour and use the sampled points to calculate the
used to find the solution of our model. After initial contouiterative algorithm numerically. The upper and lower bosind
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Fig. 6. (a) Noisy data of a6 x 96 pixel image with SNR =
5dB. (b) The initial contour obtained by the Climber algorithm,

Y

. where (My,M2) = (250.344,2.0756) and the t-test value is
Update Region 90.829. (c) The contour obtained after the first iteration, where
Statistics (a, 7, M1, M) = (3.0,0.8746, 249.5908, 1.9105) and the t-test value is

90.8930. (d) The result of the second iteration, whee, v, M1, M2) =
(0.8,1.2,249.2892,1.7105) and the t-test value i91.1054. Our algorithm
stops after two iterations.

Fig. 5. Block diagram of our approach. We use the Climber ritlgo to
find the initial contour. The parameters are then generated,the contour’s
energy is minimized. The process is repeated after thestitatiof the regions
have been modified in the minimizing energy step.

els, respectively), we cannot apply our algorithm dire¢tdy

for the values of the estimated parametetsand o™ are set segment the foreground and background of a spot. Therefore,
such that their values are truncated to the bound if they g enlarge each spot image by interpolation so that its size
out of range. is four times that of the original spot. We then apply our

Figures 7 and 8 illustrate, respectively, the step-by-stejyorithm to detect the contours of the enlarged spot image.
application of our algorithm to a synthesized image with Binally, the spot boundaries are obtained by down-sampling
dB of additive Gaussian noise and an image obtained frafie contours detected in the enlarged image to their ofligina
Internet. Figures 7(c) and 7(d) are the results of applyiie tsize. To evaluate the performance of the proposed algoyithm
snake algorithm (by setting = 0) with different o values. we compare it with the representative image analysis msthod
Figure 7(e) is the result of setting = 0 in our algorithm. and software inGenePiz Pro 5.0, which detects spots by
Figure 8(d) illustrates the result of the snake algorithihere circular boundary adjustment, asghot 2.0, which detects spot
the value of the parameteris the same as that obtained by ouregions by seed region growing. For the different segmiamtat
algorithm. Comparing the results in Figures 8(d) and 8(&), Wesults, we calculate the two-sample t-test value betwken t
observe that the proposed algorithm yields a better contaytay level pixels in the foreground and background, and use
for the image. Note that the Climber algorithm produces to assess the performance of a segmentation algorithm.
remarkably good initial results in all cases. The t-test assesses whether the means of two groups are

Finally, we evaluate and compare our spot segmentatistatistically different; the larger the t-test value, thedtér the
results with those obtained by other algorithms for thres sesegmentation result obtained. Figures 9 and 10 show the sub-
of microarray images. Two of the sets contain some poblocks, the initial contours obtained by the Climber alguori,
quality images from the Stanford Microarray Database (SMRnd the results of applying our algorithm to microarray iesg
[30], while the third contains Agilent0-mer oligonucleotide Note that each spot in Figure 9 contains a single connected
microarrays whose specifications are given on the relatedmponent, while some spots in Figure 10 may contain holes.
web pages [31]. The Agilent microarrays are some of tldgures 11 and 12 compare the t-test values of our methods
best quality oligonucleotide chips available commergidih and those of the other methods. As shown by the figures,
the experiments, we separate each spot region from adjadbet distributions of the t-values of our method are statdiy
regions manually, and process the segmentation algoritfenger than those of the other methods, which indicates that
inside each region. Because the spot centers between ttiee contours derived by our method generally yield better
SMD and oligonucleotide images are smadlb (and 10 pix- segmentation results.



(b)

Fig. 8. (a) An egg image of siz&29 x 153 pixels. (b) The occupation

(e) (f) measurmentC' of the Climber algorithm. (c) The initial contour of (d) and
(e) obtained from(b). (d) The snake algorithm’s result witk= 2.97. (e) Our

Fig. 7. (a) A192 x 192 noisy image of components with different shapesalgorithm’s result with(a, v) = (2.97,7.02).

(b) The initial contours obtained by the Climber algorithar the images in

subfigures (c),(d),(e), and (f). (c) The snake algorithre'suit witha = 1.5.

(d) The snake algorithm’s result with = 2.4. (e) Our algorihm’s result with

a = 0. (f) Our algorithm’s result with(c, v) = (0.8, 1). APPENDIXA

DERIVATIONS OF EULER EQUATION
Here, we derive the Euler equation for the energy function
in (6). For convenience, in the following derivations, and
92 denote the same notation’ (= 42). Using variational
calculus, for anyC? functionn : [0, 1] — R?, we let

We have integrated the snake model and the Fisher criterion  _ , .
to segment spots in microarray images. The initial conteur i E(e) = /FF(S;U +en,vs +en ,vss +en’ )ds,  (16)
obtained by the robust Climber algorithm. The segmentation

problem is then solved with an iterative algorithm, Whereand perform the following approximations:

V. CONCLUSION

the parameters of our model and the contour are modified F(s;v+en,vs +en’,vss +en’)

alternately until the t-value of the regions cannot be imprb ~ F(s30, 05, 0ss) + 6—Fen " 6_F€n, " oF o', (17)
further. We compare our results with those of the snake v Qv Ovss

algorithm for noisy s_ynthesized images gnd natu_ral images. diF(S;U'i-En,Us +en,ves + en”)

The proposed algorithm’s performance is superior because €

- - . OF oF , OF ,

it is automatic and can segment the spots of microarray ~—n+—n+ 7. (18)
. . . . . v Ovs Vs

images without human intervention. The experiment results ]

on microarray data manufactured by different techniquss al From (16), (17), and (18), we obtain

demonstrate that our algorithm outperforms other methodsE( ) = /F( - . +enVd

Although we use the Fisher criterion for class separatitmer <= ST U T Ve T €] )08

discriminate analysis terms can be used in our model after B / F(s;0, 05, 055) + oF n OF 4 OF 1| s
appropriate modifications. An interesting research dioect N A A R P
would be to analyze the properties and theoretical restilts @& (¢) B OF o9F , OF , J 19
the Climber algorithm. . = | lantann e | (19)



(1c) (2c)

Fig. 9. (1a) the spots in a subblock of the imag€23N085 in the SMD;  ; ; ; ; .

A ! I g. 10. (1a) the spots in a subblock of the imdg&23N 085 in the SMD;
(2a) the spots in a subblock of an oligonucleotide image) &thl (2b) are the - >3y the pots in a subblock of the imakye7004b in the SMD; (1b) and (2b)
respective initial contours of (1) and (2a); and (1c) amg) @e the results 50'the respective initial contours of (1a) and (2a); and &b (2¢) are the
of our algorithm derived by segmenting (1a) and (2a) resyyt results of our algorithm derived by segmenting (1a) and (2spectively.

The second and third terms on the right-hand side of the above obtain
equation can be extended as follows. For the second term,

_ / oF ’,__/ or \"

since o) T T v ) "

OF , _(0F \' (oFY oF , or\' OF \" oF \'

Bvsn N (8vsn> (8113) = 8vsn +/ <8vs> n=0, = /(Wss) 77"‘/ (8v35> n =0 (22)

we have

With the results of (21) and (22), we have

== ) & (2= (2 @

a’l}ss a'Uss
For the third term, since

Finally, we substitute (20) and (23) into (19) to obtain

oF , (oF )\ oF \' , i
avssn B avssn - Ovss T dE(G) = aF _/(aF—)l +/( or )’/
it is imolied th de - ov Ovs n OVss n
it is implied that or or.  or .
, = = —(5-) +(53—=)" [n=0.  (24)
8F 17 8F / 811 8’1)5 81135
— +/ n =0. (22)
Ovss Ovss

The above equation is zero for ajj hence,
The second term of (21) can be further developed as follows.
According to or _oF. OF .,

EN Ovg + Ovgs =0, (25)

OF N, _((oF\' \ [(oF\" ) ) )
Ovgs = Ovss " Ovgs " where F(S;’l),’l)s,’l)ss) = %|FS| + g|FSS| - || VI” +




(b)

100

(c) (d) (©) (d)

Fig. 11. Comparison of the t-test values of different methotihe data Fig. 12. Comparison of the t-test values of different methotihe data
set comprises the spots of subblotk 1) of the LC23N085 microarray set comprises the 400 spots of a subblock of an oligonudieatiicroarray
image, which containg84 = 28 x 28 spots. (a) The scattered plots of theimage. (a) The scattered plots of the t-test value, wherexinds represents
t-test values, where the x-axis represefifst, and the y-axis represents our Spot, and the y-axis represents our algorithm. (b) The histogodrthe t-
algorithm. (b) The histogram of the t-value difference tetw our algorithm value difference between our algorithm and thatS@kt. The distribution is
and that of Spot. The distribution is to the right of the origin, indicating to the right of the origin, indicating that our t-value iststtically larger than
that our t-value is statistically larger than that 8pot. The mean of the that of Spot. The mean of the difference isl.2 and the standard deviation is
difference is3.6 and the standard deviation 12.2. (c) The scattered plots 20.8. (c) The scattered plots of the t-values of our algorithnaxis) and those
of the t-values of our algorithm (y-axis) and those @énePiz Pro 5.0 of GenePix Pro 5.0 (x-axis). (d) The histogram of the t-value difference
(x-axis). (d) The histogram of the t-value difference betweour algorithm between our algorithm and that 6fene Piz Pro 5.0. Again the distribution
and that ofGene Piz Pro 5.0. Again the distribution is to the right of zero, is to the right of zero, and our t-values have a larger distiom. The mean
and our t-values have a larger distribution. The mean of ffierence is8.7  of the difference i20.1 and the standard deviation 1§.3.

and the standard deviation 14 .4.

. . From (6) and (8), we can writé&(s;v,vs) = Pxs + ..
~vL(v,vs). We re-write the force functio” as follows: Therefo(re),FQ :(,Y)L(S; 0,05) = ,y[p(:cs + Q)ys]. As a Cgﬁge_
guence, we have

F(S;v7vS7USS) = F(S;x7y7$57y57x557y55)
= g[m32 + y32] + ﬁ[$532 + y352] 8F‘Q " _ 0
2 2 Do .
|9 I|]? + 7 L(v, vs). 26 * ) /
|7 II° +vL(v,vs) (26) oR, om\  [oL oL "
Let F; and F, be defined such that = F; + F; with o \az.) Vo )| ©Y
Fi(s;0,0s,055) = %[xﬁ + %)+ g[xsf + 55 According to the definition of, we have
= V21 (27) oL a0
Fy(siv,05) = yL(s;0,05). (28) or oz [sz + st] =gt g ¥s (82
Now (25) can be re-written as (f% )/ _p (33)
O0xs
OF  (oF\' | (0F\"
9z \ Oxs + OTss Substituting the results of (32) and (33) into (31), we have
+ %7<8F2)+(8F2) —0, oF 8F2)/ _ a_L_(aL),
ox oxs 0T ss ox 0T =7 ox 0xs
OF, oF\’ oF\" oP aQ ]
=1 _ = x4+ —y.— P'|. 34
oy <8y3) +(6?/36) ’y|:axl’ +axy (34)
OF oF\'  (OF\" ;
g2 = Since
Ty <8ys) - (8ys> 0 (29)

, _dP 9P 9P

Then, from the definition of;, we have: = = oz 8—yys,

oFt  (9F\ | [(oF\" -
5 (01:3) + <8$ss> from (8) we can derive

all'o I2 oQ oP ) 5
_olv I gx I® — ey + Bases. (30) o oy~ M) (= M)



Therefore, (34) can be re-written as
o _ (o 9Q _op
ox oxs K Ys
V(I = Mi)* = (I = M2)*Jys. (35)

ox oy
Similarly, we apply the above calculations to theoordinate
and obtain

OF  OF .,  OF., _ OlvI|®

ay a/ys ) + (8yss) - 8y AYss + ﬁySSS\S? (36)
o0y 0F, ., 2 2
_— = —~[(I — M1)” — (I — M- 5 7
5 oy AN = M) (1 = D). (37)

Finally, we summarize (29), (30), (35), (36), and (37) tonder
the final formula of the Euler equation:

9l v I||?

_% — aTss + Bssss + V[T — M1)* — (I — Ma)?Jys =0,
a7 I

*Hgiyﬂ — QWss + Byssss — V(I — M1)* — (I — Ma)*|zs = 0.
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