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Automatic Microarray Spot Segmentation Using a
Snake-Fisher Model

Jinn Ho and Wen-Liang Hwang

Abstract—Inspired by Paragious and Deriche’s work, which
unifies boundary-based and region-based image partition ap-
proaches, we integrate the snake model and the Fisher criterion
to capture, respectively, the boundary information and region
information of microarray images. We then use the proposed
algorithm to segment the spots in the microarray images, and
compare our results with those obtained by commercial soft-
ware. Our algorithm is automatic because the parameters are
adaptively estimated from the data without human intervention.

Index Terms—Microarray Image, Spot Segmentation.

I. I NTRODUCTION

A S the DNA microarray can measure thousands of gene
expression levels on the genomic scale simultaneously,

it has enormous potential for biological, medical, and indus-
trial applications [1], [2]. Specific cDNA, or oligonucleotide
fragments of genes, are spotted or printed on an array matrix
as probes to detect gene expressions. Meanwhile, samples of
mRNAs are reverse transcribed to cDNAs, which are labelled
with fluorescent dyes to act as targets. The labelled cDNA
targets are then hybridized to probes by complementation.
After washing out the unhybridized targets, a laser scanner
is used to detect the fluorescent intensities, which are pro-
portional to the contents of hybridized pairs of targets and
probes. This process generates microarray images that indicate
the relative expression levels of the genes. Finally, image
processing techniques and statistical methods are appliedto
determine the expression levels of the spots in the microarrays
in order to perform gene expression analysis.

According to Yang et al. [3], the processing of microarray
images involves spot gridding, segmentation, and intensity
extraction. The spot gridding task detects the positions of
the spot centers and identifies their coordinates [4]. Existing
commercial software provides semi-automatic algorithms to
deal with the problem. An accurate and automatic algorithm
for the case where the spot centers are smoothly distorted
is provided in [5]. The goal of segmentation is to classify a
pixel as either foreground inside the spot, or as background
outside the spot. A number of segmentation techniques have
been proposed [6], [7], some of which assume that the
geometry of a spot is either a fixed circle or an adaptive
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circle [8]. However, the assumption is incorrect because a
spot’s morphology is not always a circle. Other techniques
use hypothesis testing to segment the foreground and back-
ground [9], but this necessitates modeling the pixel intensity
distributions, which is a difficult task. Region growing based
on the watershed algorithm proposed inSpot[3] can segment
regions of irregular shape and the technique does not need to
model a region’s probability; however, the segmentation results
are not necessarily an optimization of some class separation
criteria. The objective of the intensity extraction task isto
calculate and normalize the spot intensity in order to derive
quality measurements [10]. The segmentation task is the focus
of the present study.

Objects or homogeneous regions can be segmented by
a region-based approach, which usually minimizes a class
separation criterion according to the statistics of the regions
[11]. Another popular approach based on the boundary in-
formation uses the gradients along a contour to segment ob-
jects. The pioneering work in [12] integrated two approaches
within a minimization framework that finds the boundary of
deformable objects in medical images. Related works that
integrate boundary-based and region-based approaches for
image partitioning can be found in [13], [14], [15]. Para-
gios and Deriche [16] proposed a systematic framework that
combines the region-based and boundary-based segmentation
approaches. The model can be generalized by incorporating
specific functions that can capture boundary and region prop-
erties. For the spot segmentation task, we propose using the
snake model to capture boundary information and the Fisher
criterion to capture region information. The snake model [17]
is very effective in segmenting objects whose boundaries can
be approximately delineated by a set of large gradient points
along a contour. The spot boundary is such an example.
The Fisher criterion is based on discriminate analysis in
statistics, which uses between-class and within-class statistics
to form a criterion for class separation [18]. We adopt the
Fisher criterion because it is simple and can be analyzed
mathematically.

The solution of a snake model depends on the initial contour
and the parameter values selected. Because an image has
various signal-to-noise (SNR) levels, a good initial contour
and the parameter values must be determined manually. Even
after extensive study [19], [20], [21], these problems have
not been resolved completely. Thus, the snake operation is a
semi-automatic process. Since microarray images contain an
enormous number of spots, a semi-automatic process severely
degrades the throughput of microarray analysis. To resolve
these difficulties, we first modify the Markov chain Monte
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Carlo-based Climber algorithm to find a good initial contour
[22], [23], and then estimate the values of our parameters
from that contour. Although the proposed approach does not
resolve the problems theoretically, experiments on several
synthesized and natural images show that it can find a good
initial contour and estimate quality parameters. Using the
proposed method, we segment the spots in microarray images
with various SNR levels, and compare our results with those
of GeneP ix Pro 5.0 [8] and Spot 2.0 [3].

The remainder of the paper is organized as follows. In
the next section, we introduce our model. In Section III, we
present an automatic algorithm that finds a solution for our
model. In Section IV, we validate the model by comparing it
with other approaches. Finally, in Section V we present our
conclusions.

II. D ESCRIPTION OF THEMODEL

For simplicity, we assume there are only two regions to
be delaminated. However, the proposed model can be easily
extended to delaminate more than two regions simultaneously.
For example, let us assume there are two non-overlapping
foreground regions,F1 andF2, with a background regionB,
and that we have an algorithm that can delaminate both a
foreground region and a background region. We can estimate
F1 approximately and obtain̂F1, and then use the algorithm
to delaminateF2 and B − F̂1. After that, we use the result
of estimatingF2 and the algorithm to delaminateF1 and
B − F2. Clearly, if we have an algorithm that can delaminate
a foreground and a background region, it can also delaminate
an image with more than two regions. Hence, in the following
analysis we focus on detecting the most significant foreground
region in an image.

A. Energy Form
We defineR = {I(x, y)} as an image of gray value pixels.

A simple closed curveΓ = Γ(s) on R divides the image into
{R1, R2}, whereR = R1 ∪ R2 and Γ = ∂R1 ∩ ∂R2. We
denoteM1 and M2 as the expected values of pixels inR1

and R2, respectively. The total energy induced by contourΓ
is defined as the sum of the snake’s energy and the region’s
energy. The former measures the properties along the contour,
while the latter measures the statistical differences between
the regions separated by the contour. The total energyEtotal

is written as

Etotal = Esnake + γ̃Eregion. (1)

We use the two-class Fisher discriminate criterion to represent
an Eregion. In such cases, (1) can be expressed as
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where (3) and (4) are respectively the snake energy model
and the Fisher criterion model. The latter can be written as
Eregion = Ewithin/Ebetween, where the within-class distance
Ewithin measures the scatter of samples inR1 andR2 around
their expected values as follows:
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while the between-class distanceEbetween = (M1 −M2)
2 is

the difference between the expected gray levels ofR1 andR2.
We propose an iterative algorithm to find the solution

contour of (2). The algorithm begins with an initial contour;
then, at each iteration, a new contour is obtained by alternating
the subsequent stages. In the first stage, by fixing the valuesof
the between-class distanceEbetween(Γ),

∫∫
R

(I −M2)
2
dxdy

(the rightmost term in (5)), and the model’s parametersα, β,
and γ̃, the algorithm finds the curvêΓ that minimizes
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In the second stage, we updateEbetween and∫∫
R

(I −M2)
2
dxdy with respect to Γ̂. The parameter

values are then estimated by minimizing the mean square
error (MSE) of the Euler equation in (6). Note that (6) can be
solved by using other methods, such as the level set approach
[24], [25]. The Euler equation is derived as follows.

B. Euler Equation
Let us rewrite (6) as

Etotal(Γ) = E(Γ) +
γ̃

Ebetween
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where
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BecauseM2 is the mean value of regionR2, the region does
not change much if the initial contour is good. Therefore,
the value can be approximated as a constant and we can
omit the term γ̃

Ebetween

Ebetween

∫∫
R

(I −M2)
2
dxdy from the

following analysis.
Green’s theorem states thatZZ
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By applying the theorem to the last term in (7) and setting
γ = γ̃

Ebetween

, we obtain

E(Γ) =
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where
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in which v : [0, 1] → R
2; v(s) = (x(s), y(s)) = Γ(s); and

x, y ∈ C2([0, 1]). Using functional calculus with the detailed
deviations given in Appendix I, the Euler equation becomes

−
∂‖ ▽ I‖2
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− αxss + βxssss + γ[(I − M1)
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2]ys = 0,

−
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− αyss + βyssss − γ[(I − M1)

2 − (I − M2)
2]xs = 0.

To evaluate the third term in each of the above equations
requires a fourth derivative. However, if that derivative is
implemented in the discrete domain, there may be a large
amount of numerical noise [26], [27]. Thus, we implement
our method in a special case of the above, whereβ = 0,
which has better numerical stability. The Euler equation for
β = 0 is

−
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2]ys = 0, (11)
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The solution of the above two equations can be obtained by
an iterative procedure similar to that in [17]; thus, we do not
state it here. BecauseΓss = [xss yss] = κ~n, whereκ is the
curvature, and~n is parallel to[ys − xs], (11) and (12) can
be written as one equation:

−∇‖▽ I‖2 − ακ~n − γ
′[
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2 − (I − M2)

2

(M1 − M2)2
]~n = 0. (13)

This equation requires that a point on the optimal contour must
satisfy (14) in the tangent direction(~t), and (15) in the normal
direction(~n):

∇‖▽ I‖2 · ~t = 0, (14)

−∇‖▽ I‖2 · ~n = ακ + γ
′[

(I − M1)
2 − (I − M2)

2

(M1 − M2)2
]. (15)

Equation (15) indicates that the optimal contour balances three
terms: the first term is provided by the normal component of
the gradients of the image, the second term is proportional
to the curvature, while the last term measures the class
separation.

III. SOLUTION OF OUR MODEL

To solve the Euler equation, we need the initial contour and
the model’s parameters. First, we describe the methods used
to obtain the initial contour and estimate the parameters. We
then present an iterative algorithm that derives the solution of
our model.

Fig. 1. Block diagram of the Climber algorithm.

A. Initial Contour Detection

The snake-balloon approach tries to solve the initial contour
problem by adding an external force to the snake model
[28]. We adopt a different approach based on the Climber
algorithm [22], [23], which is easy to implement and re-
markably robust against noise. The algorithm was originally
proposed to stochastically estimate contours of ridge points in
a time-frequency plane by randomly placing a large number of
independent climbers in a time-frequency plane. Each climber
moves with equal probability in the time direction; however, its
movement in the frequency direction is restricted to climbing
the peaks of a local energy function by a Hastings-Metropolis
penalization and a temperature schedule similar to that in
the simulated annealing algorithm. Thus, as the temperature
approaches zero, the climber stops and settles on a suitable
ridge contour. By assuming that most movements can stop
close to a ridge, the points of concentrated occupation form
ridges on the plane. The ridges of the plane are then detected
by the occupation measure of the algorithm, which counts the
number of times the climbers stop at each point in the time-
frequency plane.

Since our goal is to identify the contour of an image, instead
of obtaining the smooth horizontal ridges in a time-frequency
plane, we need to modify the algorithm. Our modification
is based on the observation that the contours of an image
are mostly concentrated on the edge points, which can be
defined as the local maxima of the magnitude along the
gradient direction of an image. Thus, the movement of our
climber in the gradient direction is restricted by the unit vector
−→n = ∇I

‖∇I‖ . However, each climber can move freely in the

tangent direction, defined by the unit vector
−→
t , which is

perpendicular to the gradient direction. The flowchart of the
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algorithm is given in Figure 1. The steps are as follows:
Step 0.Let M be the number of climbers, andC : R2 →R

be the occupation measurement, with an initial value of zero
at any point.

Step 1. Let t = 1 and Tt = 1 be the initial temperature.
A climber randomly selects an initial pointp(Tt) = (i, j) in
imageI.

Step 2.Let θ to be a threshold. For a climber atp(Tt) =
(i, j) with temperatureTt, if ‖∇I‖ < θ, the movement
of the climber is determined by randomly selecting one of
the 8-neighbor pixels ofp(Tt) that have equal probability.
Otherwise, the movement of the climber is determined as
follows:

A. Free Movement
Move (i, j) to (i, j)t = (i, j)+ut(i, j) in the tangent direction,
whereut(i, j) ∈ {+

−→
t (i, j),−

−→
t (i, j)} with equal probability.

B. Restricted Movement
Move (i, j)t to (i, j)n = (i, j)t +un(i, j) in the normal direc-
tion, whereun(i, j) ∈ {0,−→n (i, j),−−→n (i, j)}. Let (i, j)′n =
(i, j)t + vn(i, j), wherevn(i, j) ∈ {−→n (i, j),−−→n (i, j)}, Z =
‖∇I‖2, andδZ = Z((i, j)′n)−Z((i, j)t). The climber moves
to (i, j)n = (i, j)′n when the value of the functionZ increases,
i.e., δZ > 0; otherwise, ifδZ ≤ 0, the transition is made with
probabilityexp( δZ

Tt

). Thus, in the case where the climber does
not move, i.e.,(i, j)n = (i, j)t, the probability is1−exp( δZ

Tt
).

C. Update the temperaturet = t + 1, Tt = 1

t
, and set

p(Tt) = (i, j)n.
Step 3. Stop the the climber when the temperature ap-

proaches zero, and go toStep 4. If the temperature is lower
than a thresholdTǫ, we record the movement of the climber
at p(Tt) by letting C(p(Tt))← C(p(Tt)) + 1. Go to Step 2.

Step 4.M = M − 1. If M 6= 0, go to Step 1.
Having obtained the occupation measurementC, we as-

sociate it with closed contours by setting a threshold for it
and retaining the positions that accumulate larger values than
the threshold inC. The resultant image is denoted asĈ. We
then use the linking procedure in [29] to find the contours in
Ĉ. Initially, we “unmark” all the points inĈ and apply the
following procedure several times to find the contours.

• We select one “unmarked” point, and calculate its tangent.
• Then, along that tangent direction we mark the best

“unmarked” neighbor point that has the largest occupation
value.

• We then iterate the process from the newly marked points
until only “marked” neighbor points exist, or the contour
is closed.

The result is a series of contours. We discard contours that
are not closed, or whose length is too small. Since our goal is
to segment the foreground of a spot in an microarray image,
the t-test, according to [3], is a good criterion for measuring
the result. Thus, we apply the t-test to the remaining contours,
and retain the one with the largest t-test result as the initial
contour. Note that we can retain more than one contour as an
initial contour. Figure 2 illustrates the results of applying the
Climber algorithm to a heart-shaped image. One can observe
the evolution of the contour as the temperature approaches
zero. Figure 3 shows the initial contour results derived by

(a) (b)

(c) (d)

(e)

Fig. 2. The steps in the evolution of a climber’s contour: (a)The input image;
(b) The contour is superimposed on (a) to detect when the temperature reaches
T0/2, whereT0 is the initial temperature; (c) when the temperature reaches
T0/4; (d) when the temperature reachesT0/8; and (e) the final result.

applying different numbers of climbers to a synthesized noisy
image. As illustrated in the figure, the initial contour doesnot
change much because the number of climbers is large enough.
Figure 4 shows a noisy synthesized image with different
intensity levels. There are eight closed contours in the image.
The climber algorithm can obtain the approximation of all the
closed contours, as shown in the bottom subfigure.

B. Parameter Estimation

After obtaining the initial contour, we need to determine
the values of the parameters. A contour is the solution of
our model if we can find the values of the parameters such
that the contour and the values satisfy the Euler equation. For
the case where there are no suitable values, we estimate the
parameters by minimizing the mean-square-error (MSE) of the
Euler equation with respect to the contour.

To estimate(α, γ) of a closed curve, we first select the
sample pixelsΓ1. Let Γ1 = {(x(i), y(i))| i = 1, · · · , s}
be the sample points of the given contour, andK(i) =
[(I(x(i), y(i)) − M1)

2 − (I(x(i), y(i)) − M2)
2]. The MSE

e2

1
(Γ1) ande2

2
(Γ1) of (11) and (12) are, respectively,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (a) A noisy image of size96 × 96 pixels; (b), (c), and (d) are
the occupation measurements obtained by using576, 196 and100 climbers,
respectively; (e) and (f) are the initial contours derived from measurements
(b) and (c), respectively. Note that a closed contour is not derived from
measurement (d).

e
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The(α∗, γ∗) that minimizes the MSE satisfies∂e2

1

∂α
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1
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=
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2

∂α
= 0, and ∂e2

2

∂γ
= 0. We then obtain the following linear

system:

α(
X

i

xss(i)) − γ(
X

i

K(i)ys(i)) +
X

i

∂‖ ▽ I‖2

∂x(i)
= 0,

α(
X

i

yss(i)) + γ(
X

i

K(i)xs(i)) +
X

i

∂‖ ▽ I‖2

∂y(i)
= 0.

If the denominator of the above system is not zero, then the
analytical solution of the parametersα∗(Γ1) andγ∗(Γ1) can
be derived easily.

C. Alternative Refinement Algorithm

Figure 5 shows the flowchart of the proposed algorithm
used to find the solution of our model. After initial contour

Fig. 4. Top left: A192×192 image with different intensity levels and eight
closed contours. The SNR of the image is5dB and the noise is additive
white Gaussian noise. Top right: The occupation measurement of the Climber
algorithm. Bottom: The contours obtained by the occupationmeasurement in
the top right subfigure.

detection, the algorithm estimates the optimal parametersthat
minimize the MSE of the contour, and then solves the Euler
equation by using the contour and the parameters to obtain
a new contour. The statistics of the region partitioned by the
new contour are then updated, after which the parameters are
updated. Based on the obtained contour, and the updated sta-
tistics and parameters, the algorithm solves the Euler equation
at each iteration and generates a new contour. The process is
repeated until a certain stopping criterion is reached.

There are many ways to define the stopping criterion of our
algorithm. For example, we can define it as the point when the
change in the model’s parameters in consecutive iterationsis
smaller than a given threshold. We use the t-test of the interior
and exterior regions separated by the contour as the criterion
for stopping. The algorithm stops if the t-test value of the
current contour is smaller than that of the previous contour.
We use t-test because it is a simple way to assess whether
the means of the interior and exterior regions are statistically
different. Also, the test provides a good result when it is used
as a criterion for segmenting spots in a microarray image.
Figure 6 illustrates the results of applying our algorithm to a
noisy synthesized image.

IV. PERFORMANCEEVALUATION

We conduct experiments to evaluate the performance of
our algorithm on several images, including synthesized data,
medical images, and the microarray images of different man-
ufacturing techniques. The experiment parameter forθ is 15%
and the threshold for obtaininĝC is the top 10% of the
occupation measure inC. We use the following numerical
approximations:xs(i) ≃ x(i + 1) − x(i) and xss(i) ≃
x(i + 1)− 2x(i) + x(i − 1). We sample at every four points
along a contour and use the sampled points to calculate the
iterative algorithm numerically. The upper and lower bounds
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Fig. 5. Block diagram of our approach. We use the Climber algorithm to
find the initial contour. The parameters are then generated,and the contour’s
energy is minimized. The process is repeated after the statistics of the regions
have been modified in the minimizing energy step.

for the values of the estimated parametersγ∗ andα∗ are set
such that their values are truncated to the bound if they are
out of range.

Figures 7 and 8 illustrate, respectively, the step-by-step
application of our algorithm to a synthesized image with 5
dB of additive Gaussian noise and an image obtained from
Internet. Figures 7(c) and 7(d) are the results of applying the
snake algorithm (by settingγ = 0) with different α values.
Figure 7(e) is the result of settingα = 0 in our algorithm.
Figure 8(d) illustrates the result of the snake algorithm, where
the value of the parameterα is the same as that obtained by our
algorithm. Comparing the results in Figures 8(d) and 8(e), we
observe that the proposed algorithm yields a better contour
for the image. Note that the Climber algorithm produces
remarkably good initial results in all cases.

Finally, we evaluate and compare our spot segmentation
results with those obtained by other algorithms for three sets
of microarray images. Two of the sets contain some poor
quality images from the Stanford Microarray Database (SMD)
[30], while the third contains Agilent60-mer oligonucleotide
microarrays whose specifications are given on the related
web pages [31]. The Agilent microarrays are some of the
best quality oligonucleotide chips available commercially. In
the experiments, we separate each spot region from adjacent
regions manually, and process the segmentation algorithm
inside each region. Because the spot centers between the
SMD and oligonucleotide images are small (15 and 10 pix-

(a) (b)

(c) (d)

Fig. 6. (a) Noisy data of a96 × 96 pixel image with SNR =
5dB. (b) The initial contour obtained by the Climber algorithm,
where (M1, M2) = (250.344, 2.0756) and the t-test value is
90.829. (c) The contour obtained after the first iteration, where
(α, γ, M1, M2) = (3.0, 0.8746, 249.5908, 1.9105) and the t-test value is
90.8930. (d) The result of the second iteration, where(α, γ, M1, M2) =
(0.8, 1.2, 249.2892, 1.7105) and the t-test value is91.1054. Our algorithm
stops after two iterations.

els, respectively), we cannot apply our algorithm directlyto
segment the foreground and background of a spot. Therefore,
we enlarge each spot image by interpolation so that its size
is four times that of the original spot. We then apply our
algorithm to detect the contours of the enlarged spot image.
Finally, the spot boundaries are obtained by down-sampling
the contours detected in the enlarged image to their original
size. To evaluate the performance of the proposed algorithm,
we compare it with the representative image analysis methods
and software inGeneP ix Pro 5.0, which detects spots by
circular boundary adjustment, andSpot 2.0, which detects spot
regions by seed region growing. For the different segmentation
results, we calculate the two-sample t-test value between the
gray level pixels in the foreground and background, and use
it to assess the performance of a segmentation algorithm.
The t-test assesses whether the means of two groups are
statistically different; the larger the t-test value, the better the
segmentation result obtained. Figures 9 and 10 show the sub-
blocks, the initial contours obtained by the Climber algorithm,
and the results of applying our algorithm to microarray images.
Note that each spot in Figure 9 contains a single connected
component, while some spots in Figure 10 may contain holes.
Figures 11 and 12 compare the t-test values of our methods
and those of the other methods. As shown by the figures,
the distributions of the t-values of our method are statistically
larger than those of the other methods, which indicates that
the contours derived by our method generally yield better
segmentation results.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. (a) A192× 192 noisy image of components with different shapes.
(b) The initial contours obtained by the Climber algorithm for the images in
subfigures (c),(d),(e), and (f). (c) The snake algorithm’s result withα = 1.5.
(d) The snake algorithm’s result withα = 2.4. (e) Our algorihm’s result with
α = 0. (f) Our algorithm’s result with(α, γ) = (0.8, 1).

V. CONCLUSION

We have integrated the snake model and the Fisher criterion
to segment spots in microarray images. The initial contour is
obtained by the robust Climber algorithm. The segmentation
problem is then solved with an iterative algorithm, where
the parameters of our model and the contour are modified
alternately until the t-value of the regions cannot be improved
further. We compare our results with those of the snake
algorithm for noisy synthesized images and natural images.
The proposed algorithm’s performance is superior because
it is automatic and can segment the spots of microarray
images without human intervention. The experiment results
on microarray data manufactured by different techniques also
demonstrate that our algorithm outperforms other methods.
Although we use the Fisher criterion for class separation, other
discriminate analysis terms can be used in our model after
appropriate modifications. An interesting research direction
would be to analyze the properties and theoretical results of
the Climber algorithm.

(a) (b)

(c) (d)

(e)

Fig. 8. (a) An egg image of size129 × 153 pixels. (b) The occupation
measurmentC of the Climber algorithm. (c) The initial contour of (d) and
(e) obtained from(b). (d) The snake algorithm’s result withα = 2.97. (e) Our
algorithm’s result with(α, γ) = (2.97, 7.02).

APPENDIX A
DERIVATIONS OF EULER EQUATION

Here, we derive the Euler equation for the energy function
in (6). For convenience, in the following derivations,a′ and
∂a
∂s

denote the same notation (a′ = ∂a
∂s

). Using variational
calculus, for anyC2 function η : [0, 1]→ R

2, we let

Ẽ(ǫ) =

Z
Γ

F (s; v + ǫη, vs + ǫη
′

, vss + ǫη
′′)ds, (16)

and perform the following approximations:

F (s; v + ǫη, vs + ǫη
′

, vss + ǫη
′′)

≈ F (s; v, vs, vss) +
∂F

∂v
ǫη +

∂F

∂vs

ǫη
′ +

∂F

∂vss

ǫη
′′

, (17)

d

dǫ
F (s; v + ǫη, vs + ǫη

′

, vss + ǫη
′′)

≈
∂F

∂v
η +

∂F

∂vs

η
′ +

∂F

∂vss

η
′′

. (18)

From (16), (17), and (18), we obtain

Ẽ(ǫ) =

Z
F (s; v + ǫη, vs + ǫη

′

, vss + ǫη
′′)ds

=

Z �
F (s; v, vs, vss) +

∂F

∂v
ǫη +

∂F

∂vs

ǫη
′ +

∂F

∂vss

ǫη
′′

�
ds

dẼ(ǫ)

dǫ
=

Z �
∂F

∂v
η +

∂F

∂vs

η
′ +

∂F

∂vss

η
′′

�
ds. (19)
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(1a) (2a)

(1b) (2b)

(1c) (2c)

Fig. 9. (1a) the spots in a subblock of the imageLC23N085 in the SMD;
(2a) the spots in a subblock of an oligonucleotide image; (1b) and (2b) are the
respective initial contours of (1a) and (2a); and (1c) and (2c) are the results
of our algorithm derived by segmenting (1a) and (2a) respectively.

The second and third terms on the right-hand side of the above
equation can be extended as follows. For the second term,
since

∂F

∂vs

η
′ =

�
∂F

∂vs

η

�
′

−

�
∂F

∂vs

�
′

η ⇒

Z
∂F

∂vs

η
′ +

Z �
∂F

∂vs

�
′

η = 0,

we have Z
∂F

∂vs

η
′ = −

Z �
∂F

∂vs

�
′

η. (20)

For the third term, since

∂F

∂vss

η
′′ =

�
∂F

∂vss

η
′

�
′

−

�
∂F

∂vss

�
′

η
′

,

it is implied thatZ
∂F

∂vss

η
′′ +

Z �
∂F

∂vss

�
′

η
′ = 0. (21)

The second term of (21) can be further developed as follows.
According to�

∂F

∂vss

�
′

η
′ =

��
∂F

∂vss

�
′

η

�
′

−

�
∂F

∂vss

�
′′

η,

(1a) (2a)

(1b) (2b)

(1c) (2c)

Fig. 10. (1a) the spots in a subblock of the imageLC23N085 in the SMD;
(2a) the spots in a subblock of the imagehp7004b in the SMD; (1b) and (2b)
are the respective initial contours of (1a) and (2a); and (1c) and (2c) are the
results of our algorithm derived by segmenting (1a) and (2a)respectively.

we obtain Z �
∂F

∂vss

�
′

η
′ = −

Z �
∂F

∂vss

�
′′

η

⇒

Z �
∂F

∂vss

�
′′

η +

Z �
∂F

∂vss

�
′

η
′ = 0. (22)

With the results of (21) and (22), we haveZ �
∂F

∂vss

�
η
′′ =

Z �
∂F

∂vss

�
′′

η. (23)

Finally, we substitute (20) and (23) into (19) to obtain

dẼ(ǫ)

dǫ
=

Z
∂F

∂v
η −

Z
(
∂F

∂vs

)′η +

Z
(

∂F

∂vss

)′′η

=

Z �
∂F

∂v
− (

∂F

∂vs

)′ + (
∂F

∂vss

)′′
�
η = 0. (24)

The above equation is zero for allη; hence,

∂F

∂v
− (

∂F

∂vs

)′ + (
∂F

∂vss

)′′ = 0, (25)

where F (s; v, vs, vss) = α
2
|Γs|

2
+ β

2
|Γss|

2
− ‖▽ I‖

2
+
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Fig. 11. Comparison of the t-test values of different methods. The data
set comprises the spots of subblock(2, 1) of the LC23N085 microarray
image, which contains784 = 28 × 28 spots. (a) The scattered plots of the
t-test values, where the x-axis representsSpot, and the y-axis represents our
algorithm. (b) The histogram of the t-value difference between our algorithm
and that ofSpot. The distribution is to the right of the origin, indicating
that our t-value is statistically larger than that ofSpot. The mean of the
difference is3.6 and the standard deviation is12.2. (c) The scattered plots
of the t-values of our algorithm (y-axis) and those ofGeneP ix Pro 5.0
(x-axis). (d) The histogram of the t-value difference between our algorithm
and that ofGeneP ix Pro 5.0. Again the distribution is to the right of zero,
and our t-values have a larger distribution. The mean of the difference is8.7
and the standard deviation is11.4.

γL(v, vs). We re-write the force functionF as follows:

F (s; v, vs, vss) = F (s; x, y, xs, ys, xss, yss)

=
α

2
[xs

2 + ys
2] +

β

2
[xss

2 + yss
2]

−‖▽ I‖2 + γL(v, vs). (26)

Let F1 andF2 be defined such thatF = F1 + F2 with

F1(s; v, vs, vss) =
α

2
[xs

2 + ys
2] +

β

2
[xss

2 + yss
2]

−‖▽ I‖2
, (27)

F2(s; v, vs) = γL(s; v, vs). (28)

Now (25) can be re-written as

∂F1

∂x
−

�
∂F1

∂xs

�
′

+

�
∂F1

∂xss

�
′′

+
∂F2

∂x
−

�
∂F2

∂xs

�
′

+

�
∂F2

∂xss

�
′′

= 0,

∂F1

∂y
−

�
∂F1

∂ys

�
′

+

�
∂F1

∂yss

�
′′

+
∂F2

∂y
−

�
∂F2

∂ys

�
′

+

�
∂F2

∂ys

�
′′

= 0. (29)

Then, from the definition ofF1, we have:

∂F1

∂x
−

�
∂F1

∂xs

�
′

+

�
∂F1

∂xss

�
′′

= −
∂‖ ▽ I‖2

∂x
− αxss + βxssss. (30)
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Fig. 12. Comparison of the t-test values of different methods. The data
set comprises the 400 spots of a subblock of an oligonucleotide microarray
image. (a) The scattered plots of the t-test value, where thex-axis represents
Spot, and the y-axis represents our algorithm. (b) The histogramof the t-
value difference between our algorithm and that ofSpot. The distribution is
to the right of the origin, indicating that our t-value is statistically larger than
that ofSpot. The mean of the difference is14.2 and the standard deviation is
20.8. (c) The scattered plots of the t-values of our algorithm (y-axis) and those
of GeneP ix Pro 5.0 (x-axis). (d) The histogram of the t-value difference
between our algorithm and that ofGeneP ix Pro 5.0. Again the distribution
is to the right of zero, and our t-values have a larger distribution. The mean
of the difference is20.1 and the standard deviation is17.3.

From (6) and (8), we can writeL(s; v, vs) = Pxs + Qys.
Therefore,F2 = γL(s; v, vs) = γ[Pxs + Qys]. As a conse-
quence, we have�

∂F2

∂xss

�
′′

= 0,

∂F2

∂x
−

�
∂F2

∂xs

�
′

= γ

�
∂L

∂x
−

�
∂L

∂xs

�
′
�
. (31)

According to the definition ofL, we have

∂L

∂x
=

∂

∂x

�
Pxs + Qys

�
=

∂P

∂x
xs +

∂Q

∂x
ys, (32)�

∂L

∂xs

�
′

= P
′

. (33)

Substituting the results of (32) and (33) into (31), we have

∂F2

∂x
− (

∂F2

∂xs

)′ = γ

�
∂L

∂x
− (

∂L

∂xs

)′
�

= γ

�
∂P

∂x
xs +

∂Q

∂x
ys − P

′

�
. (34)

Since

P
′ =

dP

ds
=

∂P

∂x
xs +

∂P

∂y
ys,

from (8) we can derive

∂Q

∂x
−

∂P

∂y
= (I − M1)

2 − (I − M2)
2
.
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Therefore, (34) can be re-written as

∂F2

∂x
−

�
∂F2

∂xs

�
′

= γ

�
∂Q

∂x
−

∂P

∂y

�
ys

= γ[(I − M1)
2 − (I − M2)

2]ys. (35)

Similarly, we apply the above calculations to they-coordinate
and obtain

∂F1

∂y
− (

∂F1

∂ys

)′ + (
∂F1

∂yss

)′′ = −
∂‖ ▽ I‖2

∂y
− αyss + βyssss, (36)

∂F2

∂y
− (

∂F2

∂ys

)′ = −γ[(I − M1)
2 − (I − M2)

2]xs. (37)

Finally, we summarize (29), (30), (35), (36), and (37) to derive
the final formula of the Euler equation:

−
∂‖ ▽ I‖2

∂x
− αxss + βxssss + γ[(I − M1)

2 − (I − M2)
2]ys = 0,

−
∂‖ ▽ I‖2

∂y
− αyss + βyssss − γ[(I − M1)

2 − (I − M2)
2]xs = 0.
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