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Abstract— The acquisition problem in wavelet-based modu-
lation is very important. We discuss the problem of the ML-
based method proposed in [1] for timing acquisition and then
we develop a novel acquisition algorithm. Our method uses
the properties of the scaling function in the derivation of the
acquisition function. We also show that the S-curve of our
acquisition algorithm is smooth and has a unique zero during
the signaling interval. Thus, we can acquire the correct symbol
timing without ambiguity. The performance of our acquisition
algorithm is evaluated by Monto-Carlo simulation using Meyer
wavelet.

I. INTRODUCTION

A transmission system that employs wavelets as signaling
waveforms result in a multirate environment [1]. A few
examples of the use of wavelets over time-varying channels are
shown in [2][3][4]. The implementations and performances of
multirate transmission systems operating over noisy channels
are discussed in [5].The important synchronization problem is
studied in [1], where the ML-based method was proposed by
using orthogonal wavelets to synchronize a multirate system.
However, the drawback of this ML-based approach lies in
that it can not be used for timing acquisition. Because of the
oscillation of wavelets, this approach produces many spurious
local maxima within a signaling interval in its ML-function.
As a consequence, a small jittering in acquisition process may
lead to a wrong timing point.

We propose a novel timing acquisition algorithm that can
acquire the correct timing of a multirate system. Our approach
is based on applying the ML-based method to the signal after
it is projected to the space spanned by the scaling function.
Because that the scaling function has less oscillations than a
wavelet and the orthogonality between the scaling function and
the wavelets, our synchronization function, given in (12), that
is derived from the signal projected onto the scaling function
space is a smooth curve with only one zero crossing within
a signal interval. Thus, we can use the traditional closed-loop
techniques in acquiring the correct timing point without any
ambiguity.

The paper is organized as follows. In section II, we review
the previous work [1], a popular synchronization technique by
means of ML methods using wavelets. We also discuss the
problems of this synchronization method if it were used for
timing acquisition. In section III, we introduce our acquisition
method and derive the function used for acquisition. We
also show the performance of our acquisition algorithm by

measuring the mean acquisition time. Finally, in section IV,
we give our conclusions.

II. SYSTEM DESCRIPTION AND TRADITIONAL

SYNCHRONIZATION TECHNIQUE

In this section, we review the synchronization technique
proposed in [1] for a wavelet-based multirate communication
systems. In the following, we limit ourselves to the aspect
of data symbol synchronization, assuming either that carrier
frequency and phase are exactly recovered prior to clock
extraction or that the transmission is baseband.

A. System Model

A multirate waveform is defined as the superposition of M
different signal components, each supporting a different data
rate and occupying a different spectrum segment (subband) as
follows

s(t) = A

M−1∑
m=0

∑
n

dm,nψm,n(t), (1)

where A is a positive amplitude factor, dm,n ∈ {±1} are
independent, identically distributed binary data symbols—the
translation and scale index n, m denote the nth symbol of the
mth subband—and ψm,n(t) is a scaled and translated version
of the real-valued mother wavelet ψ(u)

ψm,n(t) = 2m/2ψ(
2m

T0
t− n). (2)

The signaling interval T0/2m in the mth subband is related
to the signaling interval T0 at the slowest subband. The inner
product between ψm,n(t) and ψp,q(t) satisfies the orthogonal
property

1
T0

∫ ∞

−∞
ψm,n(t)ψp,q(t)dt = δm,pδn,q. (3)

We can write the received waveform for the additive white
Gaussian noise (AWGN) channel as

r(t) = s(t− τ) + w(t), (4)

where s(t) is given in (1), τ ∈ [0, T0) denotes the channel
delay to be estimated by a receiver, and w(t) is AWGN with
two-sided power spectral density σ2

w = 1/2N0. If there were
a timing error, the samples would be affected by inter symbol
interference (ISI) arising from different subbands, because the
orthogonality between bases would be lost.
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B. NDA-ML Synchronizer

Our aim in this section is to discuss the problems of the
nondata-aided (NDA) (or blind) clock recovery algorithm for
signal (4), based on ML estimation [1]. We will review this
clock-recovery algorithm at first. The ML function for the
estimation of the delay τ , based on the observation model
(4), is

Λ(r|τ̃ , d̃) = exp
(

2
N0

∫
Tobs

r(t)s(t− τ̃)dt
)
, (5)

where d̃ is the vector of data symbols belonging to all
subbands, τ̃ is the trial value of τ , and Tobs is the observation
interval.The NDA-ML synchronizer proposed by [1] is used
to maximize the ML function

F (τ̃) =
∑
m

Fm(τ̃) =
∑
m

∑
n

ym,n(τ̃)2, (6)

where
ym,n(τ̃) =

1
T0

∫
Tobs

r(t)ψm,n(t− τ̃)dt. (7)

The tracking of the clock timing of the received signal can be
achieved by means of a feedback loop, where the error signal
is

ek =
∑
m

d

dτ̃
[ym,k(τ̃)2]. (8)

The discrete-time loop operation is governed by the conven-
tional recursion

τ̂k+1 = τ̂k − γT0ek, (9)

where τ̂k denotes the timing estimate at the kth step, ek is the
loop error signal, and γ is the algorithm step size.

Fig.2 shows the simulation of the function Fm(τ̃) and F (τ̃)
without additive noise for three subbands modulation. Meyer
wavelet used in this simulation is shown in Fig.1. The top three
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Fig. 1. Meyer wavelet.

figures in Fig.2 show Fm(τ̃) in each subband and the bottom
of the figure shows F (τ̃). The scale in Fig.2 is normalized
by T0 such that the timing points for signal acquisition are
at the integer points. The circle mark at each subband is the
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Fig. 2. Three-subband NDA ML function.

correct timing point for the subband. We will now discuss the
problems with the ML-Based method. One can observe from
the figure F (τ̃) that there are many spurious local maxima
between any two consecutive integer points in F (τ̃). Since
the integer points are the locations for our acquisition, using
F (τ̃) for acquisition may lead to wrong timing points. One
can also observe that the function Fm(τ̃) in each subband
cannot be used for acquisition: either there are local maxima
between consecutive integer points or the maxima are not at
the integer points. The out-of-synchronization of Fm(τ̃) is due
to the inter-subband interference.

The problem cannot be solved by simply passing the func-
tion F (τ̃) through a low-pass filter since the values of the
spurious local maximum points are very close to the correct
timing point. Therefore, the acquisition algorithm in [1] can
not used for timing acquisition. We need a new acquisition
algorithm for wavelet-based multirate systems.

III. ACQUISITION USING SCALING FUNCTION

Here we will introduce a reliable method to acquire the
symbol timing. Our method uses the property of scaling
function in orthogonal wavelet theory. The scaling function
φm,n(t) of an orthogonal wavelet has the property that

1
T0

∫ ∞

−∞
φm,n(t)ψp,q(t)dt = 0, for m ≤ p. (10)

where φm,n(t) is the scaling function and m,n, p, q are
integers. The convolution between ψm,n(t) and filter φ0,q(−t)
is

Rm,n,0,q(
τ̂

T0
) =

1
T0

∫
Tobs

ψm,n(t)φ0,q(t− τ̂)dt. (11)

The mother scaling function used in our simulation is shown
in Fig.3.

By projecting the received signal r(t) into the space spanned
by the scaling functions φ0,n(−t), most of the self-noise in

GLOBECOM 2003 - 2209 - 0-7803-7974-8/03/$17.00 © 2003 IEEE



−15 −10 −5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized time t

M
ey

er
’s

 S
ca

lin
g 

fu
nc

tio
n 

 φ(
t)

Fig. 3. Meyer scaling function.

the received signal will be removed. This property and the
orthogonality between the wavelets and the scaling function at
integer translations allow us to derive an ML-based acquisition
function that is smooth and has the local maxima only at the
integer points. We summarize the procedure of deriving our
acquisition function as follows:

For simplicity, we define the normalized timing error

θ̂ = (τ̂ − τ)/T0.

We use the correlation function between wavelet function and
scaling function Rm,n,0,q. The function Rm,n,0,q is smooth
and have only one zero point in signal interval T0. The
function Rm,n,0,q together with its derivative, we define our
synchronization function to be

F (θ̂) =
∑

q

fq(θ̂)f ′q(θ̂), (12)

where fq(θ̂) is the response of the filter φ0,q(−t) to input r(t).
Although this function is given as the definition, the function
can be derived with a similar approach as that in [1] on the
received signal after it is projected to the space spanned by
the scaling functions. By using equations (2), (12) and (11),
we have

fq(θ̂) =
1
T0

∫
Tobs

r(t)φ0,q(t− τ̂)dt

=
1
T0

∫
Tobs

[s(t− τ) + w(t)]φ0,q(t− τ̂)dt

=
∑
m

∑
n

dm,nRm,n,0,q(θ̂) + zq(τ̂),

where

zq(τ̂)
�
=

1
T0

∫
Tobs

w(t)φ0,q(t− τ̂)dt.

By using eq.(10), if the timing is synchronized, the synchro-
nization function (12) at the integer point of θ̂ will be zero.
Then, we can seek the zeros of F (θ̂) to locate the correct
timing points. The symbol timing can be recovered by means

of a feedback loop where the error signal is generated. Let the
error signal for our synchronizer es(k) be defined as:

es(k)
�
= fk(θ̂k)f ′k(θ̂k). (13)

The discrete-time loop operation is governed by the conven-
tional recursion

τ̂k+1 = τ̂k − γT0es(k). (14)

where γ is the algorithm stepsize. Fig.4 shows the structure
of our method. The NCO is driven at the rate 1/T0. We note
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Fig. 4. Functional block diagram of clock synchronizer for slowest subband
using ψ0,0(t).

that (14) can be reformulated in terms of normalized timing
errors, i.e.,

θ̂k+1 = θ̂k − γes(k). (15)

A. Performance Evaluation

We use the S-curve [6] to evaluate the performance of
our method. The S-curve will show the dynamic acquisition
property. We consider the loop S-curve, defined as

S(θ)
�
= E[es(k)|θ̂k = θ]. (16)

The error es(k) can be written as the sum of the S-curve plus
a zero-mean disturbance:

es(k) = S(θ̂k) + νk(θ̂k). (17)

Let us consider the loop S-curve in (11) and (13) and derive

fq(θ̂) =
∑
m

∑
n

dm,nRm,n,0,q(θ̂) + zq(τ̂) (18)

f ′q(θ̂) =
∑
m

∑
n

dm,nR
′
m,n,0,q(θ̂) + z′q(τ̂), (19)

where R′
m,n,0,q(θ̂)

�
= dRm,n,0,q(θ̂)/dθ̂ is the response of r(t)

to the derivative filter of φ0,q(−t), and zq(τ̂) and z′q(τ̂) are
the respective responses of w(t) to the derivative filter of
φ0,q(−t). Hence, by substituting (18) (19) in (13) for τ̂k = τ̂
and rearranging yields

es(k) =

(∑
m

∑
n

dm,nRm,n,0,k(θ̂) + zk(τ̂)

)

·
(∑

m′

∑
n′
dm′,n′R′

m′,n′,0,k(θ̂) + z′k(τ̂)

)
. (20)

GLOBECOM 2003 - 2210 - 0-7803-7974-8/03/$17.00 © 2003 IEEE



To proceed further, assume zero-mean and independent sym-
bols so that

E{dp,qdm,n} =
{

1 if p = m, q = n
0 otherwise

(21)

Using (16)(21) and taking expectation of es(k), we have

S(θ) =
∑
m

∑
n

[
Rm,n,0,k(θ)R′

m,n,0,k(θ)
]
. (22)

Ignoring the recursion number k, the S-curve of our acquisition
algorithm is shown in Fig.5. The curve varies smoothly.
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Fig. 5. The curve shows that we can find the timing in integer for three
bands.

This means that the method we used will not have incorrect
points at those that occurred in the ML-based method in
[1]. The low-pass nature of filter φ0,q(−t) is the point of
the smoothness. The additional orthogonal relation between
wavelet and scaling function is why we can acquire the timing.
Using Meyer wavelet, the S-curve can be approximate to

S(θ) = Ds sin(2πθ) (23)

where Ds = 0.13462. For Daubechies 4th-order wavelet basis,
we have Ds = 0.3966.

B. Mean Acquisition Time

The mean acquisition time is a measurement of our acqui-
sition performance. The acquisition time is a random variable
whose outcome depends on the noise level and the initial error
θ̂0. Briefly, if we neglect the noise term in (17) the timing error
at the k-th step can be rewritten as

θ̂k+1 = θ̂k − γS(θ̂k). (24)

By using computer simulation, we find that the number of
iteration needed to acquire the right timing with errors smaller
then 10−3T0 has a simple relationship with initial timing error
θ̂0, which is shown in Fig.6. The number of iteration to acquire
timing depend on Dsγ. In other words the step size controls
the speed of acquisition process. If we assume that the initial
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Fig. 6. The number of iteration to locate timing in different initial error θ.

error θ̂0 is uniformaly in [0, T0), our simulation shows that the
mean acquisition time is

E[Tacq] ≈ ηT0

γDs
, (25)

where η will vary from 1.5 to 2.5 for Dsγ in the range
[10−1, 10−5].

C. Simulation Result

The performance of our method is evaluated by Monto-
Carlo simulation using Meyer wavelet. Now, we can acquire
the timing of each subband and then track the symbol timing
of the received signal. Fig.7 shows our method to acquire
the correct timing, and continue tracking the timing, where
Bn is the effective noise bandwidth. Fig.8 shows normalized
error deviation of our method for the three-subbands case in
different Eb/N0, where Eb is the energy of each data symbol.
After the signal is acquired, the method proposed in [1] can
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Fig. 7. The regression of normalized clock error θ̂ , γ = 300.
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clock synchronizer.

Slowest subband

Fastest subband

ML-method only tracking the fastest subband timing clock

The slowest subband timing clock

Using the slowest and fastest subband timing clock as reference

ambiguity timing
if no reference

m-th subband

Fig. 9. Find the timing clock of mth subband from the slowest subband.

then be applied for tracking or using the slowest-band timing
information to locate the timing for the next faster band by
dividing the timing of the slowest band by half. Note that
there is an ambiguity in selecting which points to drop when
the timing of a slower subband is obtained from that of a faster
subband. We construct a new structure to locate each subband
timing as shown in Fig.9.

IV. CONCLUSION

The acquisition problem in wavelet-based modulation is
very important. The ML-based method proposed in [1] cannot
be used in timing acquisition. Before it can be used for
tracking the symbol timing, we need to develop an acquisition
algorithm. We propose a novel acquisition method that uses ex-
plicitly the scaling function in the derivation of our acquisition
function. The S-curve of our acquisition function is smooth
and has a unique zero during the signaling interval. Thus, we
can acquire the correct symbol timing without ambiguity.
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