
AN AUTOMATIC EYE WINK INTERPRETATION SYSTEM FOR THE DISABLE

Che Wei-Gang', Chung-Lin Huang"2, and Wen-Liang Hwang3
1. E E Dept. National Tsing-Hua University, Hsin-Chu, Taiwan

2. Informatics Department, Fo-Guang University, I-Lan, Taiwan
3. Institute ofInformation Science, Academic Sinica, Taipei, Taiwan

ABSTRACT

This paper proposes an automatic eye wink interpretation
system for the severely handicapped people. First, we apply the
support vector machine (SVM) and template matching algorithm
to detect the eyes and then track the eye winks. Then, we convert
the sequence of eye winks into code (binary digit) sequence.
Finally, we use the dynamic programming to translate the eye
wink sequence to a certain command for human-machine
interface. In the experiments, our system demonstrates very good
performance and high accuracy.

1. INTRODUCTION

Eye detection is a crucial aspect in many useful applications
[1-6] such as driver behavior analysis and eye gaze estimation etc.
Here, we propose an eye-wink control interface for helping the
severely handicapped people to manipulate the household devices.
In [1], an eye wink control interface is proposed to provide the
severely disabled with increased flexibility and comfort. Systems
for analyzing human driver's alertness have been proposed [2, 3].
They rely on optical flow and color predicates to robustly track a
person's head and facial features. In [2], the system classifies
rotation of all viewing directions, detects eye/mouth occlusion,
detects eye blinking, and recovers the 3D gaze of the eyes. In [3],
an eye detection algorithm works on the whole image, looking for
regions that have the edges with a geometrical configuration like
the expected one of the iris. The algorithm uses mean absolute
error measurement for eye tracking and a neural network for eyes
validation.

No

ENOdtFaefoun

lEye dletecton

,No

checkQ eye open/dosed

No Eye mahed

Figure 1 Flowchart of the proposed system.
Most of the methods rely on the motion in the scene, image

color, and shape information. Our eye wink control interface aims
to provide the ability for user to control the computer-based
devices by using their eye winks. In the beginning, we use the

skin color information to find the possible face region. The face
region has a convex region larger than certain size. If the face
region is found then we define the possible eye region in which
we apply SVM to localize the precise location of eyes and create
the eye template from the identified eye image. In the next frame,
we apply the template matching to track the eyes based on the eye
template in the previous frame. The eye template is updated every
time the eye is successfully tracked. Then we apply SVM to
verify the tracked region is eye or non-eye, if it is eye then apply
SVM again to check whether the eye is open or closed and then
convert the eye winks to 1 or 0 codes. Finally, we apply the
dynamic programming to validate the code sequence and convert
the code sequence into a certain command. The flow chart of the
proposed system is illustrated in Figure 1.

2. EYE DETECTION AND TRACKING

Our eye detection and tracking method consists of three stages:
(1) face region detection (2) eye localization based on SVM, (3)
eye tracking using template matching. The three steps are
illustrated in the following sections.

2.1 Face Region Detection

To reduce the eye search region, we first locate the possible
face region. Human skin color distribution analysis has been
widely used for face detection. However, the face region in RGB
color space may be affected by the brightness, we convert RGB
color space to HSI color space to decrease the influence. The hue
component is applied to locate faces since human face colors
have approximate distribution range on the hue component of the
HSI model. From the testing face images, we observe that hue
value of skin color falls in the range of [0.175, 0.285] radian.

(b)

(c) (d)
Figure 2 (a) original image. (b) hue distribution of the image. (c)
skin color projection. (d) possible eye region.

As shown in Figure 2, we can see that the skin color is
distributed in a specified range (the blue color), and the z-axis is
the hue value which was normalized between 0 and 1. Thus, the

1-4244-1017-7/07/$25.00 C2007 IEEE 979 ICME 2007

skin area can be extracted by selecting a specific range of hue
values as shown in Figure 2(c). Performing the vertical projection
on skin pixels, the right and left boundaries can be determined
when the projecting value exceeds a given threshold. We define
the threshold as the half of average projection value of face area
and the face area is the set of pixels of which the hue is within the
corresponding range. Similarly, the up and down boundaries of
face area can also be determined. After the skin-color block
searching procedure, there may be more than one face-like region
in the block image. We select the maximum region as the face
region. We assume that eyes should be located in the upper half
face area as shown in the yellow rectangle in Figure 2(d). Thus
eyes are searched within the yellow rectangle area only.

2.2 Eye Localization using Support Vector Machine

The linear support vector machines. SVM [7] is a general
classification scheme that has been successfully applied to find a
separating hyper-plane by maximizing the margin between two
classes, where the margin is defined as the distance of the closest
point in each class to the separating hyper-plane.

Given a data set {xi, yi} ofN examples xi with labels yie {-1,
+1 }, we find the optimal hyper-plane by solving a constrained
optimization problem and using quadratic programming, where
the optimization criterion is the width of the margin between the
classes. The separating hyper-plane can be represented as a linear
combination of the training examples and classifying a new test
pattern x that is done by using the following expression:

N

f(x) = >ayk(x,xi)+b
i=l

(1)

We have tested one thousands of unlabeled data and pick up the
miss-labeled data, then put them into the correct training sets and
retrain the classifier. After performing this procedure on the
unlabeled data obtained from different conditions several times,
we can boost the accuracy of the learning machine. Through the
retraining process, we can significantly boost the accuracy of the
linear SVM.

The eye detection algorithm will search the every candidate
image block inside the possible eye region to locate the eyes.
Each image block is processed by Sobel edge detector and
converted to a feature extraction. With the feature vector, the
image block will be classified by the SVM as an eye block or
non-eye block.

2.3 Eye Tracking

Eye tracking find the eye in each frame by using template
matching. Given the detected eyes in the previous frame, the eyes
in subsequent frame can be tracked from frame to frame. After
eye localization, we get the eye templates (gray level image) for
the next frame's eye tracking. The search regions of next frame
extend 50% length in four directions in the region of original eye
bounding box. We individually normalize eye template width and
height into 20 pixels and 10 pixels because we catch different size
of candidate eye image. The candidate eye image also needs to be
normalized. Consider an eye template t(x, y) locating at (a, b) of
the image frame Ax, y). To compute the similarity between the
candidate image blocks and the eye template, we use

(2)rw h
M(p,q)=min),f(x+p,y+q)-t,(x,y)~

X=0 y=O

where k(x, xi) is a kernel function and the sign ofAx) determines
the class membership of x. Constructing the optimal hyper-plane
is equivalent to finding the nonzero o-. Any data point xi
corresponding to nonzero oa is termed "support vector." Support
vectors are the training patterns closest to the separating
hyper-plane.

First, the training data are required to obtain the optimal
hyper-plane of the SVM. The efficiency of SVM classification is
determined by the selected features. Here, we select the Sobel
edge of eye as feature vector. An eye image is represented by a
feature vector consisting of the edged pixel values. We manually
select the two classes: positive set (eye) and negative set
(non-eye). The eye images are processed by using histogram
equalization and their image size are normalized to 20X20. Figure
3 shows some training data consisting of open eye images, closed
eye images, and no-eye images.

(a)'

(c)

Figure 3. (a) open eye images. (b) closed eye images. (c) non-eye
images.

where f and t, are normalized image, and w, h are the width and
height of the eye template t,(x, y), and p, q are offsets of the
x-axis and y-axis in which a-O.5*w<p<a+O.5*w and
b-O.5*h<q<b+O.5*h. If M(p', q') is the minimum value within
the search area, the point (p', q') is defined as the best matched
position of the eye, and (a, b) is updated by the new position (p',
q'), i.e., (a, b)=(p', q'), Then, the new eye template is applied for
the eye tracking in the next frame.

Because people may blink their eyes unintentionally, it may
cause error propagation and thus make the eye tracking fail. To
avoid the error propagation, we process the binarized eye images
using Otsu algorithm [8]. For eye gray-level image, we can see
that the intensity of the pupil and iris pixels is darker than skin
and sclera colors. Using Otsu algorithm, we can segment iris and
pupil from eye image as shown in Figure 4. We may find that the
centroid of the region of iris and pupil should be at the center of
bounding box. Similarly, for the closed eye, the centroid is at the
center of eyelashes instead of the center of bounding box. So, we
can shift the bounding box center to the centroid of binary eye
image after tracking.

To reduce the errors, we apply the SVM again to classify the
tracked image to eye class (open or closed eye) or non-eye class.
If the tracked image is a non-eye region, the system will restart
the face and eye localization procedures.

Figure 1114. (a) original open eye._
Figure 4. (a) original open eye. (b) binarized open eye. (c)

980

original closed eye. (d) binarized closed eye.

3. THE COMMAND INTERPRETER

After eye tracking, we continue using SVM to distinguish
between the open eye and the closed eye. If eyes are open
exceeding a fixed duration, it represents a digit "1". Similarly, the
closed eye represents a digit "0". So we can convert the sequence
of eye winks to a sequence of 0 and 1. The command interpreter
validates the set of code sequences, and issues their respective
output actions. Each action is represented by the sequence of
codes (binary digits). The user issues a command by a sequence
of eye winks, starting from the base state. The base state is
defined as open eye for a long time without intentionally closing
eye. The input sequence of codes is then matched with the
predefined sets of codes by the command interpreter, and a valid
command may be issued.

First to avoid an unintentional and very short eye wink, we
determine a duration threshold 6tl. If the time interval of the
continuously opened or closed eye is longer than 6,t, then it can
be converted to a valid code, i.e., "1" or "0". However, we may
allow two contiguous "1" or "0", so we define another threshold
6th z26,/. If the time interval of the continuously opened or closed
eye is longer than 6h, then we may consider it as code 00 or 11.
The threshold 6(1 is user-dependent, and the user may select the
best suitable threshold for himself. Here, we may pre-define some
valid code sequences of which each one corresponds to a certain
command. Once the code sequence has been issued, we need to
validate the code sequence. To find a valid code sequence, we
need to calculate the similarity (or alignment) score between the
issued code sequence and each one of the predefined code
sequences. Because the code lengths are all different, we need to
align the two sequences and maximize their similarity. We use
dynamic programming to compare the two code sequences [9].
Our pre-defined codes are shown in Table 1.

Table 1. Code sequences
Code Length 1 3 4 5

0 010 0010 00100
0100 00110

A dynamic programming algorithm consists of four parts: a
recursive definition of the optimal score; a dynamic programming
matrix for remembering optimal scores, a bottom-up approach of
filling the matrix, and a trace back of the matrix to recover the
structure of the optimal solution that gave the optimal score. For
pair-wise alignment, these four steps are explained in the
following:

1) Recursive definition of the optimal alignment score. There
are only three conditions that the alignment can possibly be: (i)
residues XM and YN are aligned with each other; (ii) residue XM is
aligned to a gap character, and YN appears somewhere earlier in
the alignment; or (iii) residue Y is aligned to a gap character and
XM appears earlier in the alignment. The optimal alignment will be
the most preferred of these three cases. The optimal alignment
score of the prefix of sequence {x1 XM } to the prefix of
{y] *32JyN } is S(i, j) defined as:

(3)
SS(i- , j- 1)+ 07(Xiyj)

S(i,j)=max s(i-1,j)+r
s(i,j 1-)+r

Where i./M andj<NV. The score for case (i) is the score G(XM, YN)
for aligning XM to YN plus the score S(M- 1, N- 1) for an optimal
alignment of everything else up to this point. Case (ii) is the gap
penalty y plus the score S(M- 1, N); whereas case (iii) is the gap
penalty y plus the score S(M N- 1). This works because the
problem breaks into independently optimized pieces, as the
scoring system is strictly local to one aligned column at a time.
For instance, the optimal alignment of {x1, ,XM- 1 to {Yi, YN-1
is unaffected by adding on the aligned residue pair XM and YN. The
initial score S(O, 0) for aligning nothing to nothing is zero.

2) The dynamic programming matrix. For the pair-wise
sequence alignment algorithm, the optimal scores S(i, j) are
tabulated in a two-dimensional matrix, with i running from O...M
and j running from 0...N, as shown in Figure 5. As we calculate
solutions to sub-problems S(i, j), their optimal alignment scores
are stored in the appropriate (i, j) cell of the matrix.

3) A bottom-up calculation to get the optimal score. Once the
dynamic matrix programming matrix S(i, j) is laid out, it is easy
to fill it in a 'bottom-up' way, from the smallest problems to
progressively bigger problems. We know the boundary conditions
in the leftmost column and the topmost row (i.e., S(O, 0) =0; S(i,
0) =y*i; S(O, j)=y*j). For example, the optimum alignment of the
first i residues of sequence x to nothing in sequence y has only
one possible solution, which is to align to gap characters and pay i
gap penalties. Once we've initialized the top row and left column,
we can fill in the rest of the matrix by using the recursive
definition of S(i, j) to calculate any cell where we already know
the values we need for the three adjoining cells to the upper left
(i-1, j-1), above (i-1, j) and to the left (i, j-1). There are several
different ways we can do this; one is to iterate two nested loops, i
= 1... M andj = 1... N, so we're filling in the matrix left to right,
top to bottom.

--------- o. sequence y

0

-2.

-4

-6

-8

-4

0
0

-10

4

-4

1

-3

_5

6 S

5

I.,

1

-2

Optimum alignment score 2:

0 1 0 1 0
O -- O 1 0
+1 -2 +1 +1 +1

Figure 5. An example of the dynamic programming matrix.

4) A trace back to get the optimal alignment. Once we have
done filling in the matrix, the score of the optimal alignment of
the complete sequences is the last score, we calculate, S(M N).
We still do not know the optimal alignment itself, however. We
recover this by a recursive 'trace back' of the matrix. We start
from cell (M, N), determine which of the three cases we used to
get here (e.g., by repeating the same three calculations), record
that choice as part of the alignment, and then follow the
appropriate path for that case back into the previous cell on the
optimum path. We keep doing that, one cell in the optimal path at
a time, until we reach cell (0, 0), at which point the optimal
alignment is fully reconstructed. Figure 5 shows the dynamic

981

f

4D

x

programming matrix for two code sequences, x = 0010 and y =

01010 (0: closed eye, 1: open eye). The scores of match,
mismatch, and insertion or deletion are +1, -1, and -2 respectively.
The optimum path consists of the cells marked by red rectangles.

4. EXPERIMENT RESULTS

We use a Logitech QuickCam Pro3000 camera to capture users
video sequence, and the image resolution is 320x240. The eye
wink control system can achieve the speed of 13 frames per
second. We have tested 5131 frames of four people under normal
indoor lighting conditions.

Figure 6 shows that the eye classifier based on SVM correctly
identifies the real eye regions as marked. Pupil verification with
SVM works reasonably well. SVM can work under different
illumination conditions due to the intensity normalization for the
training images via histogram equalization. Before detecting the
eye, we separate the face region to the two parts to detect left eye
and right eye separately.

Figure 6. Some images with eyes detected correctly.

The results of eye tracking from four test videos are shown in
Table 2. "Total frames" indicates the total number of frames in
each video. "Tracking Failure" counts the number of eye tracking
failure frames. The correct rate of eye tracking is defined as

Correct Rate= Total Frames-Tracking Failure
Total Frames

Table 2 shows that the proposed system achieves 98 % correct
eye identification. Table 3 shows the result of user eye signals
detection on the four test videos. Our system contains nine signals.
Each signal is composed of a sequence of eye winks. Each
fraction represents the correct rate of each signal.

Table 2. Result of eye tracking
Video 1 Video 2 Video 3 Video 4

of Frames 1763 1544 583 1241
Failure 17 19 6 15

Correct Rate 99 % 98.7 % |98.9 % 1 98.7 %
Average Correct Rate 98.8 %0
Table 3. Result of eye signal detection

Video 1 Video 2 Video 3 Video 4
Signal 1 29/30 25/27 18/18 35/38
Signal 2 1515 13/13 5/7 15/17
Signal 3 13/13 15/18 12/13 18/20
Signal 4 14/15 10/12 6/7 14/17
Signal 5 13115 16/17 10/11 18/20
Signal 6 17/17 14/19 8/8 6/8
Signal 7 17/19 17/19 10/12 10/12
Signal 8 18/21 18/21 13/13 21/25
Signal 9 16/17 8/10 6/8 17/18

Correct Rate 95 % 90.7% 90.6% 88%
Average Correct Rate 90.1 %

Figure 7 shows the eye wink control interface of our system.
The red solid circle indicates that the eyes are open. Similarly, the
green solid circle indicates that the eyes are closed. There are nine
blocks at the right portion, where each number in the small block

represents a command. In the base mode, we design eight
categories: medical treatments, diet, TV, radio, air conditioning,
fan, lamp and telephone. There are two layer in the command
mode, so we can create at most 9*9(81) commands. Here, we
only have 8*8 + 1 (65) commands because each layer we have a
"Return" command. We illustrate layer 1 and one of the layer 2.

Figure 7. Program interface of layer 1 and layer2.

5. CONCLUSIONS

We propose an effective algorithm for eyewink control
interface. By integrating support vector machine and dynamic
programming, the eye wink control interface will enable user to
control household devices by using a sequence of eye winks.
Experimental results have illustrated the encouraging
performance of the current methods in both accuracy and speed.

REFERENCES

[1] R. Shaw, E. Crisman, A. Loomsi, and Z. Laszewski, "The Eye
Wink Control Interface: Using the Computer to Provide the
Severely Disabled with Increased Flexibility and Comfort", 3rd
IEEE Symposium on Computer-Based Medical Systems, 1990
[2] P. Smith, M. Shah, and N. da Vitoria Lobo, "Monitoring
Head/Eye Motion for Driver Alertness with One Camera', The
Fifteenth IEEE ICPR. Nov. 2000.
[3] T. D'Orazio, M. Leo, P. Spagnolo, C. Guaragnella, "A neural
system for eye detection in a driver vigilance application", IEEE
Conference on ITS, Washington DC, October 2004.
[4] P. W. Hallinan, "Recognizing human eyes", Geometric
Methods Comput. Vision, vol. 1570, pp. 214-226, 1991.
[5] S. Amamag, R. S. Kumaran and J. N. Gowdy, "Real Time
Eye Tracking For Human Computer Interfaces", ICME 2003.
[6] Z. Zhu and Q. Ji, "Robust real-time eye detection and tracking
under variable lighting conditions and various face orientations",
Computer Vision and Image Understanding 98 (2005) 124-154.
[7] V. Vapnik, The Nature of Statistical Learning Theory, New
York: Springer, 1995.
[8] N Otsu, "A threshold selection method from gray-level
histograms" IEEE Transactions on Systems, Man, and
Cybernetics. 1979
[9]S. R Eddy, "What is dynamic programming", Nature
Biotechnology Volume22 Number 7 July 2004.

982

