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ABSTRACT 
Image mosaic combines two or more images. It 

has found many applications in computer vision, image 
processing, and computer graphics. A common goal of 
the problem is to join two or more images such that 
there is an invisible boundary around the seam line 
and the mosaic image is as little distortion from the 
original images as possible. We propose a new image 
mosaic method by wavelet multiresolution analysis and 
variational calculus. We first project the images into 
wavelet spaces. The projected images at each wavelet 
space are then blended. In our approach, variational 
calculus techniques are applied to balance the quality 
between the smoothness around the seam line and the 
fidelity of the combined image relative to the original 
images in image blending. A mosaic image is finally ob- 
tained by summing the blended images at the wavelet 
spaces. Experimental results based on our method are 
demonstrated . 

1. INTRODUCTION 

The problem of image mosaic is to combine two or more 
images into a new one such that the mosaic image is 
as little distortion from the original images as possible. 
Also, the mosaic image should have a smooth transi- 
tion along the seam line. This problem has been seen 
in many fields such as photogrammetry, computer vi- 
sion, image processing, image synthesis, and computer 
graphics [SI. For examples, techniques of the problem 
has been used for building large aerial and satellite pho- 
tographs from sequences of images, and for building 
virtual environment [3], and for constructing 3D face 
model from several views of 2D photos [5].  

Burt et al [l, 21 proposed a multiresolution method 
using Laplacian pyramid for this problem. In their 
method, the two will-be-combined images are decom- 
posed into subband images by Laplacian pyramid; then 
a set of spline functions are used as the blending func- 
tions to smooth the boundary around the seam area 
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within the transition zones; and a final mosaic image 
is obtained by summing the blended subband images. 
Hsu et al [4] proposed a similar approach but based on 
discrete wavelet transform. 

In general, a multiresolution image mosaic method 
is completed by three stages: decomposition, blending, 
and reconstruction. First, the two will-be-combined 
images are decomposed by a set of subband filters. Sec- 
ond, the filtered subband images at each resolution are 
blended. This stage is referred to as i m a g e  blending. 
The resultant mosaic image is obtained by summing 
all the blended images. In i m a g e  blending, the mo- 
saic image needs to satisfy two criteria: being smooth 
around the seam line and being little distortion from 
the original images. However, these two criteria are 
conflicted with each other. Being without any distor- 
tion from original images tends to produce a visible 
boundary around the seam line. On the other hand, 
over smoothing along the boundary will degrade the 
fidelity of the mosaic image. As far as we know, there 
is no discussion of a proper formulation for the trade- 
off of the criteria in the multiresolution image blend- 
ing. In this manuscript, we formulate the multiresolu- 
tion image blending by a variational calculus approach 
and introduce an adjustable parameter to balance the 
trade-off between the above stated criteria. 

We divide our discussion into sections. In Section 2, 
we review the wavelet theory. In Section 3, we formu- 
late the criteria for the multiresolution image mosaic 
and discuss the solution of our formulation. Section 4 
gives our algorithm and experimental results, which is 
followed by the conclusions in Section 5. 

2. MULTIRESOLUTION ANALYSIS WITH 
WAVELET TRANSFORM 

Let 4(z), &z), $(z), and 4(z) be the scaling func- 
tions and the corresponding wavelet functions of a one- 
dimensional biorthogonal multiresolution analysis and 
the dilated and translated of the scaling functions and 



the wavelet functions be given as d ~ ; k ( x ) ,  6 ~ ; k ( x ) ,  

One can construct a 2D biorthogonal multiresolu- 
tion analysis by tensor product from two one-dimensional 
biorthogonal multiresolution analy_sis and obtain the 
scaling functions @~r;k,~(x)  and @ N ; ~ , ~ ( x )  and the 
wavelet functions !P$,;k,m(~) and !%g;k,m(x) with p E 
{ H ,  V, D}, respectively, where x denotes the column 
vector [x, yI1. 

Based upon the wavelet theory, an image f(x) can 
be projected into subband component images as fol- 
lows: 

d “ ; k ( x ) ,  and ‘$N;k(X:l- 

f j  ( x )  = 

where 

and 

with p E { H ,  V, D}. ”he original image can then be re- 
constructed by summing all of the subband component 
images such that 

N 

(4) 

3. MULTIR.ESOLUTION IMAGE 
BLENDING 

Let l(x) and ~ ( x )  be two component images to be joined 
at the line L such that l(x) and r(x) are respectively on 
the left and on the right of the line L of the resultant 
image f(x).  The images l(x), ~ ( x ) ,  and f(x) are of 
the same size. The irnages Z(x) and ~ ( x )  are projected 
as subband component images {li(x)li = 0, .., N }  and 
{rl(x)li = 0, .., N } ,  respectively. We choose a proper 
weight average function for each subband, ‘wj (x), such 
that 

(5) 

Clearly, the set OF weighting functions w3 (x) plays 
an important role in multiresolution image mosaic be- 
cause they determine how much weight the blending 
between the two will-be-combined images would be to 
produce a good mosidc. The strategy of choosing the 
set of weighting functions follows the compromise be- 
tween the two criteria: being smooth around the seam 

f, ( X I  = w, ( X I 4  ( X I  + (1 - WJ ( X ) ) T , ( X )  . 

line and being as little distortion from the original im- 
ages. However, these two criteria are conflicted with 
each other. On one hand, one should smooth around 
the seam line to compensate for the lighting variations 
between the pair of the images at each resolution for 
a smooth combination but the smoothness also tends 
to degrade the fidelity of the combined image. On the 
other hand, if one combines images without any dis- 
tortion of the original images, then the resultant mo- 
saic will tend to produce a visible boundary around the 
seam line. Therefore, we need to compromise between 
these two criteria in the following. 

Let Td(f;l,r) denote the penalty of the image dis- 
tortion generated by the difference between fj(x) and 
lj(x), rj(x) and let Ve(f;Z,r) denote the penalty of 
intensity variations falfing in the transition zone when 
combining the j th subband component images. The to- 
tal penalty function V(f ;  l , r )  can be written as follows: 

N 

The parameter set { X j }  is specified to provide a con- 
trollable tradeoff between little distortion or minimize 
{vjd(f; l , r ) }  and smooth boundary transition or mini- 
mize {y(f; 1, .)}. In other words, our multiresolution 
image mosaic is to find the image f(x) that minimizes 
the penalty function V(f ;  l , r )  with a specified { X j }  . 

3.1. Distortion Penalty Function 

In order to formulate Td(f; 1 ,  T ) ,  the cutoff projection 
operators PL>€ and PL,€ are introduced. We denote 
PL,€ the left-hand-side smooth cutoff operator. PL+f(x) 
means that the left-hand-side part of the function after 
cuting off f(x) along the line L with transition region 
Id(x,L)J 5 E ,  where d(x,L) is the signed distance be- 
tween the point x and the line L. Similarly, we denote 
P L , ~  as a right-hand-side smooth cutoff operator with 
cut positions along the line L with transition region 

We require that the left-hand-side of the resultant 
mosaic image f(x) produces as little distortion as possi- 
ble from the left-hand-side of image l(x). That is, the 
difference between f(x) and l ( x )  should be small af- 
ter applying the left-hand-side cutoff operator t o  both 
f(x) and l(x), and so is between f(x) and ~ ( x )  af- 
ter applying the right-hand-side cutoff operator respec- 
tively. There are various forms to define cutoff oper- 
ators [7]. For example, let p~ ,€ (x )  be a left-to-right 
monotonically decreasing function with transition zone 
Id(x, L)J 5 E ,  then the cutoff operators can be defined 

Id(x,L)I I E. 

as 

P L , ‘ f ( X )  = P L , a ( X ) f ( X )  (7) 
and P ~ , ~ f ( x )  = (1 - p d x ) ) f ( x )  , (8) 
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such that PL+ + P L , ~  = 1. We can express the distor- 
tion penalty for the jth subband as : 

(9) 

where ~j is the cutoff transition zone for the jth sub- 
band. 

v,d(f; I ,  T )  = IIPL'"f, (x)  - PL*EZ, (X)f + 
II'F'L,cfj(X) - PL,ETJ(X)II' 7 

3.2. Surplus Variation Penalty Function 

On the other hand, we require a measurement of sur- 
plus variation falling within the transition zone. We 
use the total variations for this measurement. The 
weighted gradient of the two will-be-combined images 
at the level j is [wj(x)VIJ(x) + (1 - W~(X))VT~(X) ] ,  
where w3(x) is a weight average function for the jth 
subband. Let the gradient of the resultant mosaic im- 
age be Vf,(x). Then, the total suplus gradient with 
the transition zone is defined as: 

(10) 

By minimizing Equation ( lo) ,  the surplus gradient in 
the transition zone will be reduced and at the same 
time a smooth joint of the images will be produced. 

Fe(!; 1,  T )  = 

Ilvf3 ( x )  - [w3 (x)v l3(x)  i- (1 - w3 (x) )vr~(x)111~ . 

3.3. Minimizing the Total Penalty Function 

When the Equations (5), (7),  (8), (9), and (10) are sub- 
stituted into Equation (6), the total penalty function 
becomes 

vu; 4 
N 

= C{IIPj(x) ( l  -wj(x) ) ( l j (x)  - Tj(x))I12 + 
j=O II(1 -Pj(x))wj(x)(lj(x) - Tj(x))I12 + 

A j  IIVwj(x)(lj(x) - Tj(x))I12 I .  

(11) 

The above equation is very hard to solve since the terms 
{rj(x),lj(x)} are data dependent, and the functions 
{wj(x),pj(x)) are unknown. However, by Schwartz 
inequality, a simpler form can be formulated as follows: 

N 

where the data independent term is 

uj (Pj 7 wj; A j  = 

IIPj(x)(l -wj(x))I12 + II(1 -P3(x))wj(x)I12 + 
Aj . ItVwj(x)IIz . 

(13) 

Then, we can find a simple solution of the total penalty 
function by minimizing U j ( p j ,  wj; A j ) .  This offers us an 
unper bound of V ( f ; I , r ) .  For simplicity, we suppose 
the seam line is z = 0. 

Because of the constrains pj(x) = 1, w3(x) = 1 
when d(x, L)  5 --E , and p3 (x) = 0, wj(x) = 0 when 
d ( x , L )  2 E ,  the Equation (13) can be further reduced 
to the following form: 

U,(P, ,w, ;4)  = I,/ [ P,2(X)(1 - w3(x))2 + (1 - PJ (X))"w,"(X) (14) 
I+,L)l5El + A, . IIvw3 (X)IIZ 1 dx. 

E3 = 23 . E ,  A, = 2'3 . A, 

If we further let 

a ( 2 - J  . x )  + 1 
Wj(X) = , 

2 
p(2-j ' x )  + 1 

2 '  
and pj(x)  = 

the constraint becomes p(x) = 1, u)(x) = 1 when 
d(x,L) 5 -~andp(x)  = -1, a(x) = -1 whend(x,L) 2 
E and Equation (14) becomes 

uj(pj ,wj;xj )  = U ( p , O ; A )  = 

Assuming w(x) is given, the p(x) that minimizes the 
first term of Equation (16) is 

2w(x) 
a ( x )  = 7 w"x) + 1 

The second term of the Equation (16) is independent 
of the function p(x) for different A. Therefore, in order 
to minimize Equation (16), we can minimize 6(x) first 
and then p(x). Figure 1 show the function w(x) and 
p(x) that minimize U ( p ,  w; A) for different A. 

4. ALGORITHM AND RESULTS 

Our algorithm is summarized as follows: 
1. Produce subband component images I j  (x) and rj (x). 
2. Choose the tradeoff parameter A. 
3. Find a(x) and p(x) from Equation (16) and (17). 
4. Obtain @j(x) and &(x) from (15). 
5. Blend images and obtain fj(x) from Equation (5). 
6.  Construct the mosaic image f(x) from Equation (4). 

Figure 2 compares the results of our algorithm with 
various A where E = 1 is fixed and the seam line is at 
the middle of the images. As shown in the figure, a 
smaller X gives less distortion from the original images 
but produces surplus variations around the seam line 
too. 
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Figure 1: (a) u(x), and (b) p(x) that minimize the 
term U @ ,  13; A) for different X 

5. CONCLUSIONS 

We have shown that, the multiresolution image mo- 
saic problem can be :solved by variational calculus ap- 
proach through formatting the compromise between 
two penalty function:s, the distortion penalty and the 
surplus variation penalty. By adjusting the tradeoff be- 
tween these two pensdty functions, image mosaic with 
different quality can 'be obtained. 
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Figure 2: (a), (b) show the left and right will-be- 
combined images respectively. (c) (d) (e) (f)  (g) show 
the result mosaic images using biorthogonal wavelet 
bases and E = 1 with X = 0, X = ( 0 . 1 ~ ) ~ ,  X = ( 0 . 2 ~ ) ~ ,  
X = ( O . ~ E ) ~ ,  and X = ( ~ . O E ) ~ ,  respectively. (h) is Burt's 
Laplacian Pyramid method. 
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