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Abstract

The main function of the operator-based signal separation approach is to

construct an operator from a signal and use it to decompose the signal into two

subcomponents. The procedure involves two steps: estimating the operator,

and decomposing the signal into two subcomponents. Existing approaches

estimate the operator’s parameters from the local extrema of a signal. In con-

trast, we show that the parameters can be estimated by adopting a variational

approach. Because the proposed approach imposes a global constraint on the

operator’s parameter, the estimated parameters are more robust than those

derived from the local extrema of the signal. We also compare the signal sepa-

ration results with those obtained by using the empirical mode decomposition

(EMD) method.

1 Introduction

Signal decomposition has been applied in many fields. The most widely used ap-

proach models a signal as a superposition of additive basic signals. For example, the

basic component of Huang et al.’s empirical mode decomposition (EMD) algorithm

is the intrinsic mode function (IMF) [7]. To separate signals, the operator-based

signal separation approach uses an adaptive singular local linear operator. A sin-

gular local linear operator is a singular linear operator whose support is compact.
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If a singular local linear operator is applied to a signal, the part of the signal in

the null space of the operator will be removed by the operator; and, the resultant

signal will not contain any information that is in the null space of the operator. In

other words, applying the operator to a signal decomposes the signal into two sub-

components, one is in the operator’s null space and the other is not. Implementing

the operator-based approach usually involves two steps: estimating the operator’s

parameters, and using the estimated operator to extract the null space component

of the signal in a variational formula.

To decompose a signal, Peng and Hwang [8] has proposed using several operators

to extract the local narrow band subcomponents of the signal. In a local narrow

band signal, the local interval of the signal at any point can be approximated as

a(t) cos(ωt + φ(t)), where a(t) is a band-limited signal whose maximal frequency is

much smaller than ω, and φ(t) is a slow-varying phase function. An operator can

be derived by applying differentiation or integration techniques. For example, the

local narrow band signal a(t0) cos($(t0)t + c) with t in the neighborhood of t0 is in

the null space of the operator d2

dt2
+ $2(t0):

a(t0)(
d2

dt2
+ $2(t0)) cos($(t0)t + c) = 0. (1)

Note that the operator parameter $(t0) is the instantaneous frequency of the signal

at point t0 and is to be estimated from the signal. A number of methods can be

used to derive the instantaneous frequency [3, 4, 6]. In [8], it is estimated from the

local extrema of a signal. However, we found that this method can be unreliable

if the signal is noisy because of spurious extrema caused by the noise. To resolve

the problem, we propose using a variational approach, which impose constraints

on the estimated instantaneous frequencies; as a consequence, it can derive reli-

able instantaneous frequency estimation results. A similar approach for estimating

instantaneous frequencies in the time-frequency representation of a noisy signal is

proposed in [5].

In this paper, we use the variational approach to estimate the instantaneous

frequency parameters of an operator as well as the null space component of a signal.

We compare the performance of the proposed signal separation method with that

in [8]. In addition, we compare our results with those derived by the EMD method.

The remainder of the paper is as follows. Section 2 contains a review of the

operator-based signal separation approach. In Section 3, we present our variational
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approach for instantaneous frequency estimation. In Section 4, we describe simu-

lations conducted using both synthetic and practical examples. Section 5 contains

some concluding remarks.

2 Operator-based Signal Separation

Operator-based signal separation decomposes a signal S(t) into additive sub-components

as follows:

S(t) =
M∑
i=1

Si(t) + RMS(t). (2)

This can be achieved iteratively by first decomposing the signal S(t) into the sum of

S1(t) and R1S(t) by an operator T1 derived from S(t). Then, R1S(t) is decomposed

by an operator T2 derived from R1S(t), which yields S2(t) and R2S(t). Subsequent

iterations are performed in the same way. Let R0S(t) = S(t). To obtain RiS(t) for

i = 1, · · · ,M , we solve the following optimization problem:

RiS(t) = arg min
U
{||Ti(R

i−1S − U)||2 + λi||D(U)||2}, (3)

where Ti is the operator derived from Ri−1S(t), D regulates U, and λi is a Lagrangian

parameter. Minimizing the term ||Ti(R
i−1S − U)||2 indicates that Ri−1S − U is in

the null space of Ti. The analytical solution of (3) is

RiS(t) = (T ∗
i Ti + λiD

∗D)−1 T ∗
i TiR

i−1S(t). (4)

Thus, at each iteration, the operator-based approach must estimate the operator Ti

and the parameter λi in order to obtain the residual signals RiS(t).

The operator Ti can be constructed by using a differentiation operator such as

Ti =
∑

k∈Z

αi(k)
dk

dtk
, (5)

where {αi(k)}, the parameters of the operator Ti, is a square summable sequence

belonging to l2(Z). In [8], a simpler form of the differential operator is proposed:

(
1

$2(t)

d2

dt2
+ 1

)2

, (6)

where $(t) is the instantaneous frequency parameter at point t, which is obtained

from a priori information about the signal or estimated from the signal itself. Be-
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cause operator-based signal separation is an iterative process, the algorithm’s para-

meters must be estimated correctly; otherwise, errors due to incorrect estimation of

the current parameters will be propagated to sequent iterations. In this paper, our

main objective is to derive a variational method that is capable of robust estimation

of the instantaneous frequency of the operator.

3 Estimation of Instantaneous Frequency Para-

meters

We assume that the coherent component of a signal S(t) is comprised of local narrow

band signals that can be approximated as cos($t + φ) in the neighborhood at any

point t. Thus, a coherent component can be extracted by using the operator

T =
d2

dt2
+ $2(t), (7)

where $(t) is the instantaneous frequency of the signal at t. To derive the operator,

we need to estimate its instantaneous frequency parameters.

Let the signal S(t) be decomposed into components R(t) and (S −R)(t), where

R(t) is called the residual signal. In addition, let α(t) = $2(t). Then, we search for

α̂(t) and R̂(t) such that

{α̂(t), R̂(t)} = arg min
α,R

{
||

(
d2

dt2
+ α(t)

)
(S −R)(t)||2 + µ||Dα||2

}
(8)

where D is a regularized operator on α, and µ is the Lagrangian parameter. Note

that D is the second differential operator, which ensures that α is a smooth function.

In a discrete case, S(t), R(t) and α(t) can be represented as column vectors of

length L, and D can be represented as the matrix of the second difference. The

optimization of (8) can be rewritten as

{α̂, R̂} = arg min
α,R

{|| (D + Pα) (S −R)||2 + λ||Dα||2}, (9)

where Pα is a diagonal matrix in which the diagonal is equal to α. Let

F(α,R) = || (D + Pα) (S −R)||2 + µ||Dα||2 (10)

then
∂F

∂α
= 2A′(Aα + D(S −R)) + 2µD′Dα,
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where A is a diagonal matrix in which the diagonal is equal to (S − R). Then,
∂F

∂α
= 0 leads to

α̂ = (A′A + µD′D)−1A′D(S −R)) (11)

Similarly,
∂F

∂R
= 0 leads to

Q′Q(S −R) = 0, (12)

where Q = D + Pα. Equation (12) indicates that S −R is in the null space of Q′Q.

If the rank of Q′Q is not full, then there are many solutions that would satisfy the

equation. Here, we choose the solution adopted in [8]

R̂ = (Q′Q + λD∗D)
−1

Q′QS, (13)

where λ is another Lagrangian parameter than µ. Thus, we can estimate the instan-

taneous frequency parameters and the residual signal by the following alternative

algorithm:

Algorithm

Step 1. Given S, µ, and D, initialize j = 0, Rj = 0;

Step 2. Estimate αj by solving

αj = (A′
jAj + µD′D)−1A′

jD(S −Rj)), (14)

where Aj is a diagonal matrix in which the diagonal is equal to (S −Rj).

Step 3. Choose the parameter λi. Estimating Rj by solving

Rj =
(
Q′

jQj + λiD
′D

)−1
Q′

jQjS, (15)

where Qj = D + Pαj
, Pαj

is a diagonal matrix in which the diagonal is equal

to αj.

Step 4. Set j = j + 1 and repeat Step 2 until ||Rj −Rj−1|| is smaller than a given

threshold.

Step 2 and Step 3 estimate the operator’s instantaneous frequency parameters

and the residual signal alternatively. When the stop criterion is satisfied, S − Rj

is taken as the desired component. In the algorithm, the parameter λi is extremely

important for correct signal separation. Until recently, its value had to be derived by
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trial and error, which was one of the drawbacks of operator-based signal separation

algorithm. However, the problem was resolved by the analysis reported in [9]. The

other Lagrangian parameter µ is a smoothing regularization of α. Its value can be

set as a small positive number.

4 Experiment Results

In this section, we describe several signal separation experiments that apply different

algorithms on synthetic and real-life data. We used the EMD algorithm presented

in [1]. In the first experiment, the signal S(t) = cos(t) + cos(4t + 0.2 ∗ t2), which is

the summation of a tone and a chirp signal. The decomposition results in Figure 1

shows that the tone and the chirp signals are well separated by our algorithm.

In the second experiment, we compare the separation results of our algorithm

with those derived by EMD for the harmonic signal S(t) = cos(4t) + 0.5 ∗ cos(6t) +

0.3∗cos(8t). Note that in the EMD algorithm, the extrema are used to calculate the

upper and lower magnitude envelopes of an oscillating signal. The subcomponents

and the residual signal extracted by our algorithm are shown in Figure 2. By select-

ing the correct values of µ and λ, our algorithm can separate the signal effectively.

As described in [10], the values of a and f determine whether the EMD algorithm

represents a signal of the following form, where 0 < f < 1,

cos(2πt) + a cos(2πft + φ)

as the sum of two separate unmodulated tones or as a single modulated waveform.

In this example, both cos(4t)+0.5∗cos(6t) and cos(6t)+0.3∗cos(8t) have a frequency

ratio f of larger than 0.67, which indicates that the EMD algorithm can not separate

any of the signal any further. Instead, as is shown in Figure 3, the EMD algorithm

separates the signal into two IMF sub-components: cos(4t) + 0.3 ∗ cos(8t) + 0.5 ∗
(cos(6t)− cos(2t)) and 0.5 ∗ cos(2t).

The third experiment is designed to separate a noisy signal, obtained by adding

a small amount of Gaussian random noise to the signal S(t) = cos(4t)+0.3∗cos(8t).

As shown in Figure 4, the locations of the local maxima are correct, but the locations

of the local minima are strongly affected by the noise, which creates several false

local minima. The false local extremal points make it difficult for both the EMD

algorithm and the operator-based algorithm in [8] to estimate the correct envelopes

6



and operators, respectively. The signal separation results of our algorithm, the EMD,

and the algorithm proposed in [8] are shown in Figures 5, 6, and 7, respectively. Note

that the EMD method can handle the small additive noise after the appropriate pre-

processing step [11].

Finally, we compare the decomposition results of the EMD algorithm and our

algorithm on airline passenger data obtained from [2]. Figure 8 shows the decompo-

sition results of deriving by applying our algorithm on the data. The first extracted

subcomponent is the trend, and the other three subcomponents are the narrow band

frequency signals. From the first component, we can conclude that the number of

passengers traveling by air increased during the twelve years covered by the data.

In the second component, there are twelve peaks, indicating that there is one peak

period for air travel each year. The third and fourth subcomponents are the vari-

ations in the number of passengers traveling. Figure 9 shows the decomposition

results obtained by applying the EMD algorithm to the same data. There are two

extracted subcomponents. The first is the variation of the traveling passengers. The

second subcomponent has twelve peaks, each of which indicates the peak travel pe-

riod in the respective year. The final residual signal is the trend of the signal, which

indicates that the number of air passengers increased progressively over the twelve

years covered by the data.

5 Conclusion

We have proposed a variational approach for estimating an operator’s instantaneous

frequency parameters in an operator-based signal separation method. The approach

allow us to derive more robust signal separation results than those obtained by using

the local extrema of a signal to estimate the operator’s instantaneous frequency

parameters. We also compare the decomposition results of the proposed algorithm

with those of the EMD algorithm.
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Figure 1: Separation results of the proposed algorithm. (a) the signal is composed

of a tone, cos(t), and a chirp signal, cos(4t + 0.2t2). (b and d) the two extracted

subcomponents, where (b) is the extracted tone signal and (d)is the chirp signal; (c

and e) the error signals obtained by subtracting the extracted subcomponents from

the corresponding correct subcomponents. The Lagrangian parameters used in the

processing are λ = 1e− 5 and µ = 5e− 2.
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Figure 2: The separation results derived by the proposed algorithm: (a) the input

signal S(t) = cos(4t) + 0.5 ∗ cos(6t) + 0.3 ∗ cos(8t); (b, d and f) the three extracted

components; (c, e, and g) the error signals obtained by subtracting the extracted

subcomponents from the corresponding correct subcomponents, which are cos(4t),

0.5 ∗ cos(6t), and 0.3 ∗ cos(8t) for (b), (d), and (f) respectively. The parameter

values used to obtain the first, second, and third components are, respectively, to

be λ = 5e− 5, 5e− 5, 3e− 3 and µ = 1e− 2, 1e− 3, 1e− 3.
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Figure 3: The separation results obtained by using the EMD algorithm: (a) the input

signal S(t) = cos(4t) + 0.5 ∗ cos(6t) + 0.3 ∗ cos(8t); (b,c,d, and e) the components

extracted by the EMD algorithm. The algorithm does not separate a signal into

three additive subcomponents, as explained by analysis in [10].
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Figure 4: (a) the signal is cos(4t) + 0.3 ∗ cos(8t); (b) the signal in (a) after added

a small amount of Gaussian noise; (c) the local maxima points of the signal in (b);

(d) the local minima points of the signal in (b). In (d), several false local minima

are created by noise.
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Figure 5: The signal separation results derived by the proposed algorithm; (a) the

input signal; (b and d) The two extracted subcomponents; (c and e) the error signals

obtained by subtracting the extracted components from the correct corresponding

subcomponents, which are cos(4t) in (b) and 0.3 ∗ cos(8t) in (d); and (f) the final

residual signal. For the extraction of the first subcomponent, the Lagrangian multi-

pliers of λ and µ are 5e− 4 and 1e− 3 respectively; and the second subcomponent,

they are 1e− 4 and 1e− 3 respectively.
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Figure 6: The signal separation results derived by the EMD algorithm: (a) the input

signal; (b,c, and d) the three extracted subcomponents; (e) the final residual signal.

The effects of a small amount of noise on the EMD decomposition results can be

clearly observed in (b), (c), and (d). The algorithm fails to separate the noise from

the clean signal.
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Figure 7: The signal separation results obtained by using the second type of oper-

ator in [8]: (a) the input signal. (b,c, and d) the three extracted subcomponents;

(e) the final residual signal. The decomposition result is not as good as that in

Figure 5 because the second type of operator uses the local extrema to derive the

instantaneous frequency parameters.
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Figure 8: Airline passenger data for a 12-year period (144 months). The proposed

algorithm decomposes the data into four subcomponents and a residual: (a) the

input signal; (b) the spectrum of the input signal; (c, e, g, and i) the four extracted

subcomponents; (d, f, h,and j) the spectra of the four extracted components, d, f, h,

and j correspond to c, e, g, and i, respectively; (k and l) the last residual signal and

its spectrum. To extract the first, second, third, and fourth subcomponents, the val-

ues of the Lagrangian parameter λ are 5e−3, 1e−1, 1e−1 and, 5e−2, respectively;

and the values of µ are 1e− 3, 5e− 5, 1e− 4, and 1e− 3 respectively. The first sub-

component indicates that the number of airline passengers increased progressively

over the 12-year period. The peaks in the second subcomponents represent the peak

season for air travel each year. The third and the fourth subcomponents are the

variations of traveling passengers over the period.
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Figure 9: Analyzing the airline passenger data with the EMD algorithm: (a) the

input signal; (b) the spectrum of the input signal; (c and e) the two extracted sub-

components. (d and f) The spectra of the corresponding extracted subcomponents,

where d and f correspond to c and e respectively; (g) the final residual signal; and

(h) the spectrum of the final residual signal. The first extracted component is the

variation of the passenger traveling. The peaks in the second component represent

the peak periods for air travel each year. The final residual signal is the trend,

which indicates that the number of airline passengers increased progressively over

the 12-year period.
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