
Optimal Algorithms for Cross-Rack Communication Optimization in MapReduce
Framework

Li-Yung Ho
Institute of Information Science

Academia Sinica,
Department of Computer Science and

Information Engineering
National Taiwan University

Taipei, Taiwan
Email: lyho@iis.sinica.edu.tw

Jan-Jan Wu
Institute of Information Science

Academia Sinica
Taipei, Taiwan

Email: wuj@iis.sinica.edu.tw

Pangfeng Liu
Department of Computer Science

and Information Engineering,
Graduate Intitute of

Networking and Multimedia,
National Taiwan University

Taipei, Taiwan
Email: pangfeng@csie.ntu.edu.tw

Abstract—MapReduce is a widely used data-parallel pro-
gramming model for large-scale data analysis. The framework
is shown to be scalable to thousand of computing nodes
and reliable on commodity clusters. However, research has
shown that there is room for performance improvement of
the MapReduce framework. One of the main performance
bottlenecks is caused by the all-to-all communication between
mappers and reducers, which may saturate the top-of-rack
switch and inflate job execution time. Reducing cross-rack
communication will improve job performance. In current
MapReduce implementation, the task assignment is based on
the pull-model, in which cross-rack traffic is difficult to control.
In contrast, the MapReduce framework allows more flexibility
in assigning reducers to the computing nodes.

In this paper, we investigate the reducer placement problem
(RPP), which considers the placement of reducers to minimize
cross-rack traffic. We devise two optimal algorithms to solve
RPP and implement the algorithms in the Hadoop system.
We also propose an analytical solution for this problem.
Our experiment results with a set of MapReduce applications
show that our optimization achieves 9% to 32% performance
improvement compared with the unoptimized Hadoop.

Keywords-cloud computing, MapReduce optimization, cross-
rack communication, optimal algorithm, network load balanc-
ing

I. INTRODUCTION

Data parallelism programming models, such as MapRe-
duce [1], Hadoop [2] and Dryad [3], have been widely used
in analyzing Tera-byte scale data as well as routine data
processing in cloud environment nowadays. In particular,
Hadoop, an open-source implementation of MapReduce, has
become more and more popular in organizations, business
companies and institutes. For example, the A9 of Ama-
zon [4] uses Hadoop to power search in goods and books,
New York Times uses Amazon EC2 to run Hadoop cluster
to convert images from Tiff to pdf [5], Terrier team of
University of Glasgow [6] uses Hadoop for information
retrieval research.

Although Hadoop has gained popularity for large-scale

Figure 1. intra-rack and inter-rack traffics

data processing, it still have room for improvement. Many
research efforts have been devoted to improving performance
and reliability of Hadoop, including intermediate data fault
tolerance, stage pipelining, in-memory store of intermediate
data, etc. This paper focuses on reducing cross-rack com-
munication, which is one of the critical factors that affect
the performance of Hadoop.

In Hadoop framework, user needs to provide two func-
tions, mapper and reducer, to process data. Mappers produce
a set of files and send to all the reducers, a reducer will
receive files from all the mappers, which is a all-to-all
communication model. Cross-rack communication happens
if a map and a reduce reside in different racks, which is
very often in today’s data center environment. Typically,
Hadoop runs in a datacenter environment in which machines
are organized in racks. Each rack has a top-of-rack switch
and each top-of-rack switch are connected to a root switch.
Every cross-rack communication needs to travel through the
root switch and hence the root switch becomes a bottleneck.
Figure 1 illustrates the intra-rack and inter-rack traffics in
a datacenter.

As the cross-rack communication saturates the root
switch, the packets sent by a mapper will be lost and have

to be re-sent, which increases data transfer time as well
as job completion time. The delay caused by saturation
will become more significant in large-scale data processing
because such application generates large-size intermediate
data that need be transferred between racks. Intermediate
data are usually larger than the input data in size. For
instance, in the wordcount application, the mapper will
generate extra tuple attributes in the intermediate data.

The location of a Mapper is decided by the location of its
input chunk, which means the mapper is dispatched to the
server that stores the input chunk (file is split into chunks).
The reason is to achieve data locality such that mappers do
not have to fetch the input data from other servers through
the network. In contrast, the location of a reducer is decided
randomly in current Hadoop implementation. However, it
has been reported that proper placement of reducers also
plays a crucial role in reducing cross-rack communication.

The distribution of reducers among racks should be depen-
dent on the distribution of mappers. In the extreme case, if all
mappers are in the same rack, the best strategy to eliminate
cross-rack communication is to place all reducers in the
same rack that the mappers reside in. However, in practice,
such case will not happen because (1) HDFS distributes data
chunks in datacenter more or less evenly to achieve load
balance. Hence the mappers are distributed across racks,
and (2) in large scale data processing, all mappers cannot be
placed in the same rack because of the computing capability
of a rack.

The main contributions of this paper are described as
follows. First, we formulate the placement of reducers to
reduce cross rack communication of mappers and reducers
as an optimization problem. We develop a linear-time greedy
algorithm to find the optimal solution for the problem.
We also propose an analytical solution to the optimization
problem. Second, we implement the optimal algorithm in
Hadoop, and our experiment results show that our algorithm
reduces cross-rack communication and achieves 9% to 32%
performance improvement on average for a set of bench-
mark/application programs.

The rest of the paper is organized as follows. Section II
surveys related works on optimization for MapReduce. Sec-
tion III introduce the background knowledge of MapReduce
framework. In Section IV, we formulate the reducer place-
ment as an optimization problem and present our algorithm
for finding the optimal solution in section V. In Section VI,
we report our experiment results on a server cluster spanned
over four racks. Section VII gives some concluding remarks.

II. RELATED WORK

Many approaches to optimization in Hadoop framework
have been proposed. Sandholm et al [7] presented a system
that improves the job scheduling in Hadoop in three way.
First, the system uses regulated and user-defined priorities
to offer service to jobs. Second, the system will dynamically

adjust resource allocation to jobs based on the different
job stages. Finally, the system automatically detects the
bottleneck and eliminates it within a job. Their experimental
results show a 11-31% improvement in completion time for
MapReduce jobs.

Condie et al [8] propose a modified version of Hadoop
to support stream processing, online aggregation and con-
tinuous queries. Their system, Hadoop Online (HOP), uses
a producer-consumer framework in tasks. Producer pushes
the results to consumer and this model leads task pipelining
naturally. Their system allows user to see the ”early returns”
from a job and can reduce the completion time of a MapRe-
duce job.

Hadoop assumes the cluster nodes are homogeneous
and tasks make progress linearly. With this assumption,
Hadoop can discover straggler tasks and speculatively re-
execute them. However, the assumption does not always
hold. Zaharia et al [9] proposed a speculative task scheduling
algorithm called Longest Approximate Time to End (LATE)
that improve the Hadoop response times by a factor of 2 in
a heterogeneous environment. LATE speculatively executes
the task first that is predicted to finish last. The completion
time of a task is predicted by tracking task progress instead
of percentage of work completed.

Seo et al [10]uses two optimization schemes, prefetching
and pre-shuffling, to improve the performance of Hadoop
and reduce the execution time by 73%. They use the idle
network resource to fetch the next key-value pair when
working on current key-value pair. On the other hand, the
current task can prefetch the data for next task in the queue
in its computation.

Ganesh Ananthanarayanan et al [11] develop a system
named Mantri to rein the stragglers in MapReduce clusters.
They proposed three main approaches to eliminate the effect
of stragglers and one of them is Network-Aware Placement,
which is related to our work. This approach balances the
network load by placing reduce tasks among racks. Its
algorithm computes the optimal value over all reduce tasks
placement permutations and minimize the maximum data
transfer time.

The major difference between Mantri and our work is
that Mantri uses exhausted search to find the optimal reduce
tasks placement, which requires very high time complexity
of O(NR), where N is the number of racks and R is
the number of reducers. In contrast, our greedy algorithm
finds the optimal solution with very low time complexity of
O(N ×R).

III. BACKGROUND

In this section, we give a brief overview of the MapRe-
duce framework. Most of our discussion focuses on Hadoop,
the open source implementation of MapReduce.

A. Hadoop Distributed File System

A Hadoop system runs on top of a distributed file system
called Hadoop Distributed File System (HDFS). The input
data of a Hadoop job is stored as files in HDFS. A file
in HDFS is split into chunks and stored dispersedly in the
system. Since the Hadoop system is designed to process
large volume of data, the size of chunk is typically 64 MB.
HDFS replicates the chunks to multi-nodes to achieve data
fault tolerance. The consistency of replicas is not considered
because the files in HDFS are assumed to be append-only
and the chunks are written once and read many times. HDFS
employs master-slave architecture. The master node stores
metadata of chunks in the memory and the slaves store the
chunks. As a client request a chunk, the master processes the
request, find out which slave stores the chunk and dispatches
the request to that slave. All the metadata of chunks are
stored in the memory of master node to ensure fast response
of chunk request.

B. MapReduce Framework

The MapReduce framework is a runtime system that
utilizes a set of machines to process large volume of data.
This framework employs the data-flow programming model
that data flow through multiple phases in parallel. There are
three phases in the MapReduce framework : map phase,
shuffle phase and reduce phase. Map task executes user-
provided map function and read a chunk as input data which
contains multiple key-value pairs records. The map task
combines the records with the same key as a tuple and write
it to an intermediate file on the local disk. The Map task
produces multiple intermediate files and each of them will
be forwarded to a recue task later. After the map phase, the
shuffle phase supported by the framework, sort the tuples
in a intermediate file by the key and transfer the file to a
reduce task. When a reduce task receives all intermediate
files from all map tasks, it applies user-provided reduce
function and process the tuples in all intermediate files and
finally write an output file on HDFS. As described above,
the shuffle phase heavily utilizes network due to its all-to-
all communication nature and is very likely the bottleneck
of performance, meanwhile, to reduce network traffic, the
map task is executed on the node which contains the input
chunk, that is, send the computation to the data. Moreover,
the intermediate files are stored on the local disk to eliminate
network traffic.

IV. MODEL

In this section, we define the cross-rack communication
model and formulate the reducer placement problem.

Suppose we run a MapReduce job in a data center which
consists of N racks and there are totally M mappers and R
reducers for the job. The size of intermediate data produced
by a mapper is k bytes. We consider the up and down traffics
of a rack.

Figure 2. Up and down traffic between two racks

For a rack Si, i ∈ {1, . . . , N}, the amount of data sent out
(up traffic) and in (down traffic) the rack are decided by the
number of mappers and reducers in the rack. Suppose there
are mi mappers and ri reducers on rack Si, the up traffic
is generated by the mappers in Si sending the intermediate
data to the reducers residing outside rack Si. Meanwhile, the
reducers in Si receive the intermediate data from mappers in
remote racks which causes the down traffics. Therefore, the
amount of data sent by up and down traffic can be computed
by

up : mi · (R− ri) · k down : ri · (M −mi) · k
Figure 2 illustrates the up and down traffics between two
racks.

To simplify our model, we set k to 1. Hence, the total
data traffic of rack Si is

mi · (R− ri) + ri · (M −mi)

To achieve input data locality, MapReduce framework
assigns mappers to machines which store the corresponding
input chunks, therefore, the number of mappers of a rack
Si (mi) is decided approximately by the number of input
chunks stored in the rack Si. However, it is only true when
the degree of replication of chunk is 1, since with degree of
replication larger than 1, we do not know which replica the
framework chooses as input. Here we assume the degree of
replication is 1.

Hence, with the knowledge of input chunks distribution
among racks, which can be obtained via metadata service
of Hadoop distributed file system (HDFS), we can know
each mi of rack Si ∀i ∈ {1, . . . , N}. In another way, this
information of number of mappers of each rack can also be
acquired from master node at run-time.

The total amount of data going in and out from a rack Si

is then a linear function of the number of reducers in the
rack.

fi(ri) = mi ·(R−ri)+ri ·(M−mi) = (M−2mi)·ri+R·mi

We want to minimize the cross-rack communications of
a data center, which is equivalent to placing the reducers

to minimize the maximum total traffic for all racks in the
data center when given the number of mappers in each rack.
This problem can be formulate as a min-max optimization
problem:

min{ argmax
ri,i∈{1,··· ,N},

∑
i
ri=R

{f1(r1), · · · , fN (rN)} }

where fi(ri) is the total traffic of rack Si, M =
∑

i mi and
R =

∑
i ri are predefined constants.

In conclusion, we propose the reducers placement prob-
lem. Given N racks, total number of reducers R and
a mapper configuration (m1,m2, . . . ,mN),

∑
i mi = M ,

we want to find a reducer configuration (r1, r2, . . . , rN)
such that the maximum of {f1(r1), f2(r2), . . . , fN (rN)} is
minimum, with the restriction

∑
i ri = R and fi(ri) =

(M − 2mi) · ri + R ·mi∀i ∈ {1, . . . , N}.
We describe an optimal algorithm and an analytical solu-

tion to this problem in next section.

V. ALGORITHMS

We devise two optimal algorithms to solve the reducer
placement problem, (RPP) in this section. We also develop
a mathematical method to obtain the analytical solution of
RPP.

A. Greedy Algorithm

Our greedy algorithm assigns one reduce task to a rack at
a time. When assigning a reduce task to a rack, it chooses
the rack which incurs minimum total traffic (up and down)
if the reduce task is assigned to that rack. That is

mini∈{1,...,N}fi(ri + 1), wherefi(ri) = (M−2mi)·ri+miR

The ri is the number of reducers currently assigned to rack
i. Here is an example. Suppose we have three racks, N = 3,
and the number of mappers of the first rack is 2, the second
rack is 3 and the third rack is 4, that is, m1 = 2, m2 = 3
and m3 = 4 and M = 9. We now have R = 4 reducers to
schedule. By our formulation, the traffic functions of these
three racks are 




5r1 + 8 (rack1)
3r2 + 12 (rack2)
1r3 + 16 (rack3)

(1)

We use a state tuple (r1, r2, r3) to represent the current
reducer assignment, initially, the tuple is (0, 0, 0). To assign
the first reducer, because 5∗1+8 = 13(rack1) < 3∗1+12 =
15(rack2) < 1 ∗ 1 + 16 = 16(rack3), we assign the first
reducer to rack 1. The state tuple now becomes (1, 0, 0).
In the second step, we assign next reducer to rack 2 due
to 3 ∗ 1 + 12 = 15(rack2) < 1 ∗ 1 + 16 = 16(rack3) <
5∗2+8 = 18(rack1). And the state tuple becomes (1, 1, 0).
The steps continue and finally we get the state tuple (2, 2, 0)
which means we place 2 reducers on rack1, 2 reducers on
rack2 and 0 reducer on rack3.

The following is the pseudo code of the greedy algorithm.

Algorithm 1 Greedy Algorithm for RPP
Require: The number of mappers on each rack :
{m1,m2, . . . ,mN}

Ensure: A reducer state tuple : {r1, r2, . . . , rN}
N ← number of racks
M ← number of total mappers
R← number of total reducers
state tuple[N]← {0, 0, . . . , 0}
for i = 1 to R do

minimal←∞
for j = 1 to N do

traffic = (M −2mj) · (state tuple[j]+1)+mjR
if traffic < minimal then

candidate = j
end if

end for
state tuple[candidate] + +

end for
return state tuple

We next prove that the greedy algorithm for RPP is
optimal.

Theorem 1: The greedy algorithm for RPP is optimal.
Proof: The proof is by induction. For R = 1, the

reducer is placed in the rack with minimum traffics by the
greedy algorithm, thus we minimize the maximum traffic.
Suppose R = k we have minimized the maximum traffic,
we prove that for R = k+1 we also minimize the maximum
traffic. For the (k + 1)th reducer, the algorithm places it in
the rack with minimum traffic by the linear equations and
hence for R = k+1 we also minimize the maximum traffic.

B. Binary Search

The second algorithm, called Binary Search, uses
binary search to find the minimum bound of the traffic
function for each rack, and then use that minimum bound
to find the number of reducers on each rack. Formally, we
represent the traffic of racks by a set of linear functions
bounded by B





(M − 2m1)r1 + m1R ≤ B

(M − 2m2)r2 + m2R ≤ B

. . .

(M − 2mN)rN + mNR ≤ B

(2)

where r1 + r2 + . . . + rN = R. We solve the linear
programming by binary searching the minimum bound B.
Once the bound B is found, we use B and the constrain
r1 + r2 + . . . + rN = R to solve ri for i ∈ 1, . . . , N . In the

above example, we use binary search to find that B is 18,
and then solve ri for i ∈ {1, 2, 3}.





r1 = (18− 8)/5 = 2
r2 = (18− 12)/3 = 2
r3 = R− r1 − r2 = 4− 2− 2 = 0

(3)

Hence the state tuple is {2, 2, 0}. The following is the
pseudo code of the binary search algorithm. To simplify
description, we define the linear system of equations(2) as
Γ(r1, r2, . . . , rN , B).

Algorithm 2 Binary Search Algorithm for RPP
Require: The number of mappers on each rack :
{m1,m2, . . . , mN}

Ensure: A reducer state tuple : {r1, r2, . . . , rN}
N ← number of racks
upper ←M ×R
lower ← 0
state tuple[N]← null
Γ(r1, r2, . . . , rN , B) : the target linear system
while upper 6= lower do

B = upper+lower
2

state tuple[N] =
solve linear programming(Γ(r1, r2, . . . , rN , B))
if state tuple[N] = null then

lower = B
else

upper = B
end if

end while
B = upper
state tuple =
solve linear programming(Γ(r1, r2, . . . , rN , B))
return state tuple

C. Analytical Solution

In this subsection, we introduce the analytical solution of
RPP. For a set of linear equations,





f1(r1) = (M − 2m1)r1 + m1R

f2(r2) = (M − 2m2)r2 + m2R

. . .

fN (rN) = (M − 2mN)rN + mNR

(4)

we want to minimize the maximum of f(ri) where i ∈
{1, . . . , N} with the constraint

∑
i ri = R. We first rewrite

the linear system as a set of N -dimension hyperplanes

according to the constrain of
∑

i ri = R.




z = f1(r1, r2, . . . , rN−1) = (M − 2m1)r1 + 0r2 + . . .

+ 0 · rN−1 + m1R

z = f2(r1, r2, . . . , rN−1) = 0 · r1 + (M − 2m2)r2 + . . .

+ 0 · rN−1 + m2R

. . .

z = fN−1(r1, r2, . . . , rN−1) = (M − 2mN)rN + mNR

= (M − 2mN)(R− r1 − r2 − . . .− rN−1) + mNR
(5)

And we have the matrix representation.



M − 2m1 0 · · · M − 2m1 −1
0 M − 2m2 · · · M − 2m2 −1

...
...

. . .
...

...
0 0 · · · M − 2mN−1 −1

−(M − 2mN) −(M − 2mN) · · · −(M − 2mN) −1


×




r1
r2

...
rN−1

z




=




−m1R
−m2R

...
−mN−1R

−(M −mN)R




(6)

To minimize the maximum of the linear system, it is
equivalent to find the minimum intersection point of all
hyperplanes. We next show the optimality and uniqueness
of the intersection point of all planes.

Theorem 2: The equation (5) of hyperplanes has unique
and minimum intersection point.

Proof: We begin with its matrix representation of equa-
tion (6). We transform the coefficient matrix by Gaussian
elimination process and show its determinant is not zero by
the assumption of mi < M

2 ∀i ∈ {1, . . . , N}.
∣∣∣∣∣∣∣∣∣

M − 2m1 0 · · · 0 −1
0 M − 2m2 · · · 0 −1
...

...
. . .

...
...

0 0 · · · M − 2mN−1 −1
−(M − 2mN) −(M − 2mN) · · · −(M − 2mN) −1

∣∣∣∣∣∣∣∣∣
∼

∣∣∣∣∣∣∣∣∣

M − 2m1 0 · · · 0 0
0 M − 2m2 · · · 0 0
...

...
. . .

...
...

0 0 · · · M − 2mN−1 0
0 0 · · · 0 4

∣∣∣∣∣∣∣∣∣
6= 0

(7)

where 4 =
M − 2mN

M − 2m1
· (−m1R) +

M − 2mN

M − 2m2
· (−m2R)

+ · · ·+ M − 2mN

M − 2mN−1
· (−mN−1R)− (M −mN)R

(8)

Hence, the matrix equation has unique solution and the
hyperplanes has only one intersection point.

The optimality is shown by partial differentiating at the
intersection point.

∂fi(r1, r2, · · · , rN−1)

∂ri
=

{
(M − 2mi)

− (M − 2mN)
i ∈ {1, · · · , N−1}

(9)

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10
 50

 60

 70

 80

 90

 100

 110

x

y

 50

 60

 70

 80

 90

 100

 110

Figure 3. An illustration of intersection of hyperplanes

The intersection point is an extreme because there are two
derivatives with different sign (+,-) of each direction.

For illustration, we take N = 3,M = (4, 7, 5), R = 7 for
an example. The set of hyperplanes is Γ(r1, r2, z) :





8r1 + 0r2 − z = −28
0r1 + 2r2 − z = −49
−6r1 − 6r2 − z = −77

(10)

Figure 3 shows the intersection point of three hyperplanes
is the minimum solution. The intersection point can be ob-
tained by solving equation(10) and we get r1 = 2.94, r2 =
1.28 and z = 51.58, which means the traffic load is 51.58
and the number of reducers of each rack {r1, r2, r3} is
{2.94, 1.28, 2.78}. This analytical method finds the global
minimum of the linear system, however, the solution solved
by this method may not be feasible. It provides a lower
bound of cross-rack traffics in the data center. We obtain the
feasible and optimal solution by using the greedy algorithm
or binary search.

VI. EXPERIMENT

The experiment are performed on a four-track cluster. The
racks are connected by a gigabits switch and the network
topology form a one-level tree. The CPU types of Rack A,
B, C and D are Intel Xeon E5504, E5520, E5620 and E5620
respectively. The memory of all nodes is 8 GB. The number
of nodes in rack A, B, C and D are 7, 5, 4, 4 respectively.
The nodes in a rack are homogeneous and the master node
resides in Rack A.

To evaluate our reducer placement algorithm, we need a
benchmark suite to be the testing programs. HiBench [12]
is a benchmark suite for Hadoop developed by Intel, China,
however, it is not open-source. Since there is no standard
benchmark for Hadoop evaluation, we choose five popular
MapReduce applications as our benchmark programs. These
applications are
• WordCount
• Grep
• PageRank

• K-mean Cluster
• Frequently Pattern Match
WordCount and Grep are included in the Hadoop dis-

tribution and are used widely in benchmarking Hadoop.
PageRank is an important and representative applications
in web searching, and we obtain the application from the
Cloud9 [13] library. K-mean cluster and frequent pattern
match applications are included in Mahout [14], an open-
source machine learning library to run on Hadoop. We
use these two applications because they are popular and
representative in machine learning areas.

Our Hadoop cluster is configured as eight mapper slots
and four reducer slots per node. The default value of
reducers of a job is set as 50 by the suggestion of Hadoop
(0.7x to 0.9x of total reducer capacity). We use the speedup
of elapsed time of total reduce tasks as our performance
metric. The metric is defined by

original − optimized

original
× 100%.

A. Result

Table I summarizes the performance improvement by
our algorithm on each benchmark. The improvement ratio
ranges from 2% to 32% by different benchmarks. The best
performance improvement is 32%, in the case of PageRank
10G. The frequent pattern matching application does not
have significant improvement. Other applications improve
about 10% in average. In the case of PageRank 10G, we
further investigate the source of improvement. Table II shows
the average execution time of shuffle, merge and reduce
phase of a reduce task compared with original Hadoop.
Moreover, Table III shows the comparison of distribution
of reducers among 4 racks. Our algorithm achieves a more
balanced reducer placement. Note that in PageRank 10G,
the application generates 101 reducers to be scheduled.

Benchmark Speedup (%)
Grep 9.35
WordCount 12.37
PageRank 32.84
K-mean 14.7
FPM 1.76

Table I
SPEEDUP OF BENCHMARKS

To compare with the result of network-aware reducer
placement in Mantri [11], they use exhausted search to find

Phase Hadoop Ours
Shuffle 105.5s 80.98s
Merge 6.2s 5.7s
Reduce 8.1s 7.5s

Table II
AVERAGE EXECUTION TIME OF PHASES

Rack Hadoop Ours
A 37 20
B 25 22
C 18 28
D 21 31

Table III
NUMBER OF REDUCERS ON EACH RACK

the optimal reducer placement and their experiment demon-
strates GroupBy can improve 32%. Our work achieves the
same improvement in PageRank by solving RPP optimally.

Our traffic model assumes the amount intermediate data
of each mapper sent to a reducer is a constant. This is
not the case in FPM application. As Figure 4(a) shows,
the amount of input data of each reducer is very different,
ranges from 7 GB to 50 MB. The elapsed time of reduce
tasks in FPM is dominated by the reducer with the largest
input. Our algorithm only decides the number of reducers in
each rack but does not consider the variation in data sizes.
However, in other four applications, the intermediate data
size is approximately the same. For example, in Figure 4(b)
in the case of PageRank 200G, the size is in a short range of
155 MB to 165 MB. Grep and WordCount use random text
writer as input and have similar distribution of intermediate
data size.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35 40 45 50

In
te

rm
ed

ia
te

 d
at

a
si

ze
 (

M
B

)

Index of reducer

(a) FPM

 140

 145

 150

 155

 160

 165

 170

 175

 180

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

In
te

rm
ed

ia
te

 d
at

a
si

ze
 (

M
B

)

Index of reducer

(b) PageRank

Figure 4. Intermediate Data Size

We next examine the effect of varied input data size on our
algorithm. The results are presented in Figure 5. WordCount
and K-means have similar trend, as the input data becomes

larger, the speedup improves. This is because when the input
data becomes larger, so does the intermediate data, and our
algorithm keep a balanced load of network. Note that the
number of reducers in WordCount and K-means are fixed at
50 when varying input data size.

The behavior of PageRank is very different. The reason is
that PageRank sets the number of reducers as the same with
the number of mappers, so the number of reducer becomes
larger as input size increases. Our algorithm calculates the
number of reducers of each rack and limits the number
of reducers running on a rack. As the number of reducers
becomes larger, more reducers wait for a specific rack to
run on, and some reduce slots in other racks are idle. This
lowers the utilization of reduce slots and inflates the job
execution time. On the other hand, Hadoop uses pull model
to assign reduce tasks to rack, so reduce slots never become
idle. As a result, the speedup decreases as the amount of
input increases.

The speedup of Grep fluctuates as varying input data size.
The reducer of Grep reads the selected lines by mappers
and writes them all into HDFS. This induces heavy I/O
operations and dominates the execution time of reducers.

Based on the above investigation, Our algorithm is suit-
able for the applications with constant intermediate data size
and heavy network traffics (shuffle bound), like PageRank.
Our algorithm achieves network load balancing by placing
reducers among racks and improves the performance of
shuffle phase.

VII. CONCLUSION

MapReduce employs all-to-all communication model be-
tween mappers and reducers. This results in saturation of
network bandwidth of top-of-rack switch in shuffle phase
and straggles some reducers and increases job execution
time. In this paper, we model the traffics in multiple-
racks environment and propose a Reducer Placement Prob-
lem(RPP) to balance cross-rack traffics by placing reducers
in racks. We propose two optimal algorithms to solve RPP
and an analytical method to find the minimum (may not
feasible) solution of RPP.

We select five MapReduce applications to be the eval-
uation benchmark. The experiment shows the performance
improvement by equipping our network load balancing al-
gorithm can achieve 32% performance improvement. We
also examine the relation between input data size and
performance, and we find the applications with approxi-
mately the same intermediate data size and heavy network
traffics is suitable for our algorithm, because our algorithm
keep a balanced network traffics and prevent reducers from
becoming stragglers.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” in Proceedings of the 6th

conference on Symposium on Opearting Systems Design and
Implementation, ser. OSDI 04, vol. 6. Berkeley, CA, USA:
USENIX Association, 2004, pp. 10–10.

[2] “Hadoop,” http://hadoop.apache.org/.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, ser. Eu-
roSys ’07. New York, NY, USA: ACM, 2007, pp. 59–72.

[4] “A9,” http://a9.com/.

[5] “Nytime,” http://open.blogs.nytimes.com/2007/11/01/self-
service-prorated-super-computing-fun/.

[6] “Terrier,” http://terrier.org/.

[7] T. Sandholm and K. Lai, “Mapreduce optimization using reg-
ulated dynamic prioritization,” in Proceedings of the eleventh
international joint conference on Measurement and modeling
of computer systems, ser. SIGMETRICS ’09. New York,
NY, USA: ACM, 2009, pp. 299–310.

[8] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears, “Mapreduce online,” in Proceed-
ings of the 7th USENIX conference on Networked systems
design and implementation, ser. NSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 21–21.

[9] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments,” in Proceedings of the 8th USENIX
conference on Operating systems design and implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 29–42.

[10] S. Seo, I. Jang, K. Woo, I. Kim, J.-S. Kim, and S. Maeng,
“Hpmr: Prefetching and pre-shuffling in shared mapreduce
computation environment,” in IEEE International Conference
on Cluster Computing, ser. CLUSTER ’09, 2009, pp. 1–8.

[11] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in
map-reduce clusters using mantri,” in Proceedings of the
9th USENIX conference on Operating systems design and
implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 1–16.

[12] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang,
“The hibench benchmark suite: Characterization of the
mapreduce-based data analysis,” in Data Engineering Work-
shops (ICDEW), 2010 IEEE 26th International Conference
on, ser. ICDEW’10, 2010, pp. 41 –51.

[13] “Cloud9 : Mapreduce library for
hadoop,” http://www.umiacs.umd.edu/ jim-
mylin/cloud9/docs/index.html.

[14] “Apache mahout : A scalable machine learning library,”
http://mahout.apache.org/.

 0

 2

 4

 6

 8

 10

 12

 14

100 200 300 400 500

S
pe

ed
up

 (
%

)

Data Size (GB)

(a) WordCount

 0

 2

 4

 6

 8

 10

10 15 20 25 30

S
pe

ed
up

 (
%

)

Data Size (GB)

(b) Grep

 0

 5

 10

 15

 20

 25

 30

 35

10 50 100 150 200

S
pe

ed
up

 (
%

)

Data Size (GB)

(c) PageRank

 0

 5

 10

 15

 20

10 50 100 150 200

S
pe

ed
up

 (
%

)

Data Size (GB)

(d) Kmean

Figure 5. Speedup with varying data size

