
Model Checking Differentially Private Properties

Depeng Liu1,2, Bow-Yaw Wang3, and Lijun Zhang1,2,4

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences ∗

2 University of Chinese Academy of Sciences ∗
3 Institute of Information Science, Academia Sinica †

4 Institute of Intelligent Software, Guangzhou ∗

Abstract. We introduce the branching time temporal logic dpCTL* for specify-
ing differential privacy. Several differentially private mechanisms are formalized
as Markov chains or Markov decision processes. Using our formal models, subtle
privacy conditions are specified by dpCTL*. In order to verify privacy properties
automatically, model checking problems are investigated. We give a model check-
ing algorithm for Markov chains. Model checking dpCTL* properties on Markov
decision processes however is shown to be undecidable.

1 Introduction

In the era of data analysis, personal information is constantly collected and analyzed
by various parties. Privacy has become an important issue for every individual. In order
to address such concerns, the research community has proposed several privacy pre-
serving mechanisms over the years (see [18] for a slightly outdated survey). Among
these mechanisms, differential privacy has attracted much attention from theoretical
computer science to industry [16, 24, 35].

Differential privacy formalizes the tradeoff between privacy and utility in data anal-
ysis. Intuitively, a randomized data analysis mechanism is differentially private if it
behaves similarly on similar input datasets [15, 17]. Consider, for example, the Laplace
mechanism where analysis results are perturbed by random noises with the Laplace
distribution [16]. Random noises hide the differences of analysis results from similar
datasets. Clearly, more noises give more privacy but less utility in released perturbed re-
sults. Under the framework of differential privacy, data analysts can balance the tradeoff
rigorously in their data analysis mechanisms [16, 24].

Designing differentially private mechanisms can be tedious for sophisticated data
analyses. Privacy leak has also been observed in data analysis programs implement-
ing differential privacy [26, 31]. This calls for formal analysis of differential privacy
on both designs and implementations. In this paper, we propose the logic dpCTL* for
specifying differential privacy and investigate their model checking problems. Data an-
alysts can automatically verify their designs and implementations with our techniques.
∗Partially supported by the National Natural Science Foundation of China (Grants No.

61532019, 61761136011, 61472473).
†Partially supported by the Academia Sinica Thematic Project: Socially Accountable Privacy

Framework for Secondary Data Usage.

Most interestingly, our techniques can be adopted easily by existing probabilistic model
checkers. Privacy checking with existing tools is attainable with minimal efforts. More
interaction between model checking [12, 2] and privacy analysis hopefully will follow.

In order to illustrate applicability of our techniques, we give detailed formalizations
of several data analysis mechanisms in this paper. In differential privacy, data analysis
mechanisms are but randomized algorithms. We follow the standard practice in prob-
abilistic model checking to formalize such mechanisms as Markov chains or Markov
decision processes [28]. When a data analysis mechanism does not interact with its envi-
ronment, it is formalized as a Markov chain. Otherwise, its interactions are formalized
by non-deterministic actions in Markov decision processes. Our formalization effec-
tively assumes that actions are controlled by adversaries. It thus considers all privacy
attacks from adversaries in order to establish differential privacy as required.

Two ingredients are introduced to specify differentially private behaviors. A reflex-
ive and symmetric user-defined binary relation over states is required to formalize simi-
lar datasets. We moreover add the path quantifier Dε,δ for specifying similar behaviors.
Informally, a state satisfiesDε,δφ if its probability of having path satisfying φ is close to
those of similar states. Consider, for instance, a data analysis mechanism computing the
likelihood (high or low) of an epidemic. A state satisfying Dε,δ(Fhigh) ∧ Dε,δ(Flow)
denotes similar states have similar probabilities on every outcomes.

We moreover extend the standard probabilistic model checking algorithms to verify
dpCTL* properties automatically. For Markov chains, states satisfying a subformula
Dε,δφ are computed by a simple variant of the model checking algorithm for Markov
chains. The time complexity of our algorithm is the same as those of PCTL* for Markov
chains. The logic dpCTL* obtains its expressiveness essentially for free. For Markov
decision processes, checking whether a state satisfies Dε,δφ is undecidable.
Related Work. An early attempt on formal verification of differential privacy is [32].
The work formalizes differential privacy in the framework of information leakage. The
connection between differential privacy and information leakage is investigated in [1,
20]. Type systems for differential privacy have been developed in [34, 19, 30]. A light-
weight technique for checking differential privacy can be found in [36]. Lots of formal
Coq proofs about differential privacy are reported in [6, 9, 10, 4, 7, 8, 5]. This work em-
phasizes on model checking differential privacy. We develop a framework to formalize
and analyze differential privacy in Markov chains and Markov decision processes.
Contributions. Our main contributions are threefold.

1. We introduce the logic dpCTL* for reasoning about differential privacy. The logic
is able to express subtle and generalized differentially private properties;

2. We model several differentially private mechanisms in Markov chains or Markov
decision processes; and

3. We show that the model checking problem for Markov chains is standard. For
Markov decision processes, we show that it is undecidable.

Organization of the paper. Preliminaries are given in Section 2. In Section 3 we discuss
how offline differentially private mechanisms are modeled as Markov chains. The logic
dpCTL* and its syntax are presented in Section 4. The semantics over Markov chains
and its model checking algorithm are given in Section 5. Section 6 discusses differen-
tial privacy properties using dpCTL*. More examples of online differentially private

2

mechanisms as Markov decision processes are given in Section 7. The semantics over
Markov decision processes and undecidability of model checking is given in Section 8.
Finally, Section 9 concludes our presentation.

2 Preliminaries

Let Z and Z≥0 be the sets of integers and non-negative integers respectively. We briefly
review the definitions of differential privacy, Markov chains, and Markov decision pro-
cesses [28]. For differential privacy, we follow the standard definition in [16, 21, 22].
Our definitions of Markov chains and Markov decision processes are adopted from [2].

2.1 Differential Privacy

We denote the data universe by X ; x ∈ Xn is a dataset with n rows from the data
universe. Two datasets x and x′ are neighbors (denoted by d(x, x′) ≤ 1) if they are
identical except at most one row. A query f is a function from Xn to its range R ⊆ Z.
The sensitivity of the query f (written ∆(f)) is maxd(x,x′)≤1 |f(x) − f(x′)|. For in-
stance, a counting query counts the number of rows with certain attributes (say, female).
The sensitivity of a counting query is 1 since any neighbor can change the count by at
most one. We only consider queries with finite ranges for simplicity. A data analysis
mechanism (or mechanism for brevity) Mf for a query f is a randomized algorithm
with inputs in Xn and outputs in R̃. A mechanism may not have the same output
range as its query, that is, R̃ 6= R in general. A mechanism Mf for f is oblivious if
Pr[Mf (x) = r̃] = Pr[Mf (x

′) = r̃] for every r̃ ∈ R̃ when f(x) = f(x′). In words,
outputs of an oblivious mechanism depend on the query result f(x). The order of rows,
for instance, is irrelevant to oblivious mechanisms. Let x, x′ be datasets and r̃ ∈ R̃. The
probability of the mechanism Mf outputting r̃ on x is (ε, δ)-close to those on x′ if

Pr[Mf (x) = r̃] ≤ eε Pr[Mf (x
′) = r̃] + δ.

A mechanismMf is (ε, δ)-differentially private if for every x, x′ ∈ Xn with d(x, x′) ≤
1 and r̃ ∈ R̃, the probability of Mf outputting r̃ on x is (ε, δ)-close to those on x′.

The non-negative parameters ε and δ quantify mechanism behaviors probabilisti-
cally; the smaller they are, the behaviors are more similar. Informally, a differentially
private mechanism has probabilistically similar behaviors on neighbors. It will have
similar output distributions when any row is replaced by another in a given dataset.
Since the output distribution does not change significantly with the absence of any row
in a dataset, individual privacy is thus preserved by differentially private mechanisms.

2.2 Markov Chains and Markov Decision Processes

Let AP be the set of atomic propositions. A (finite) discrete-time Markov chain K =
(S, ℘, L) consists of a non-empty finite set S of states, a transition probability function
℘ : S × S → [0, 1] with

∑
t∈S ℘(s, t) = 1 for every s ∈ S, and a labeling function

L : S → 2AP . A path in K is an infinite sequence π = π0π1 · · ·πn · · · of states with
℘(πi, πi+1) > 0 for all i ≥ 0. We write π[j] for the suffix πjπj+1 · · · .

3

A (finite) Markov decision process (MDP) ¶M = (S,Act , ℘, L) consists of a finite
set of actions Act , a transition probability function ℘ : S × Act × S → [0, 1] with∑
t∈S ℘(s, α, t) = 1 for every s ∈ S and α ∈ Act . S and L are as for Markov chains. A

path π inM is an infinite sequence π0α1π1 · · ·πnαn+1 · · · with ℘(πi, αi+1, πi+1) > 0
for all i ≥ 0. Similarly, we write π[j] for the suffix πjαj+1πj+1 · · · of π.

Let M = (S,Act , ℘, L) be an MDP. A (history-dependent) scheduler for M is a
function S : S+ → Act . A query scheduler for M is a function Q : S+ → Act such
that Q(σ) = Q(σ′) for any σ, σ′ ∈ S+ of the same length. Intuitively, decisions of a
query scheduler depend only on the length of the history. A path π = π0α1π1 · · · πn
αn+1 · · · is an S-path if αi+1 = S(π0π1 · · ·πi) for all i ≥ 0. Note that an MDP with
a scheduler S induces a Markov chain MS = (S+, ℘S, L

′) where L′(σs) = L(s),
℘S(σs, σst) = ℘(s,S(σs), t) for σ ∈ S∗ and s, t ∈ S.

3 Differentially Private Mechanisms as Markov Chains

To model differentially private mechanisms by Markov chains, we formalize inputs
(such as datasets or query results) as states. Randomized computation is modeled by
probabilistic transitions. Atomic propositions are used to designate intended interpreta-
tion on states (such as inputs or outputs). We demonstrate these ideas in examples.

3.1 Survey Mechanism

Consider the survey question: have you been diagnosed with the disease X? In order to
protect privacy, each surveyee answers the question as follows. The surveyee first flips
a coin. If it is tail, she answers the question truthfully. Otherwise, she randomly answers
1 or 0 uniformly (Figure 1a) [16].

Let us analyze the mechanism briefly. The data universe X is {+,−}. The mech-
anism M is a randomized algorithm with inputs in X and outputs in {1, 0}. For any
x ∈ X , we have 1

4 ≤ Pr[M(x) = 1] ≤ 3
4 . Hence Pr[M(x) = 1] ≤ 3

4 = 3 · 14 ≤
eln 3 Pr[M(x′) = 1] for any neighbors x, x′ ∈ X . Similarly, Pr[M(x) = 0] ≤
eln 3 Pr[M(x′) = 0]. The survey mechanism is hence (ln 3, 0)-differentially private.
The random noise boosts the probability of answering 1 or 0 to at least 1

4 regardless of
diagnoses. Inferences on individual diagnosis can be plausibly denied.

Figure 1b shows the corresponding Markov chain. In the figure, the states + and
− denote positive or negative diagnoses respectively; the states s and t denote answers
to the survey question and hence out1 ∈ L(s) and out0 ∈ L(t). States + and − are
neighbors. Missing transitions (such as those from s and t) lead to a special state † with
a self-loop. We omit such transitions and the state † for clarity.

3.2 Truncated α-Geometric Mechanism

More sophisticated differentially private mechanisms are available. Consider a query
f : Xn → {0, 1, . . . ,m}. Let α ∈ (0, 1). The α-geometric mechanism outputs f(x)+Y

¶The MDP we consider is reactive in the sense that all actions are enabled in every state.

4

output
1 0

in
p
u
t + 3

4
= 1

2
· 1
2

+ 1
2
· 1 1

4
= 1

2
· 1
2

+ 1
2
· 0

− 1
4

= 1
2
· 1
2

+ 1
2
· 0 3

4
= 1

2
· 1
2

+ 1
2
· 1

(a) Survey Mechanism

+

−
s

out1

t

out0
3
4

1
4

1
4

3
4

(b) Corresponding Markov Chain

Fig. 1: Survey Mechanism with ln 3-Differential Privacy

on a dataset x where Y is a random variable with the geometric distribution [21, 22] :

Pr[Y = y] =
1− α
1 + α

α|y| for y ∈ Z

The α-geometric mechanism is oblivious since it has the same output distribution on
any inputs x, x′ with f(x) = f(x′). It is (−∆(f) lnα, 0)-differentially private for any
query f with sensitivity ∆(f). Observe that the privacy guarantee (−∆(f) lnα, 0) de-
pends on the sensitivity of the query f . To achieve (ε, 0)-differential privacy using the
α-geometric mechanism, one first decides the sensitivity of the query and then com-
putes the parameter α = e−ε/∆(f).

The range of the mechanism is Z. It may give nonsensical outputs such as neg-
ative integers for non-negative queries. The truncated α-geometric mechanism over
{0, 1, . . . ,m} outputs f(x) + Z where Z is a random variable with the distribution:

Pr[Z = z] =

0 if z < −f(x)
αf(x)

1+α if z = −f(x)
1−α
1+αα

|z| if − f(x) < z < m− f(x)
αm−f(x)

1+α if z = m− f(x)
0 if z > m− f(x)

Note the range of the truncated α-geometric mechanism is {0, 1, . . . ,m}. The truncated
α-geometric mechanism is again oblivious; it is also (−∆(f) lnα, 0)-differentially pri-
vate for any query f with sensitivity ∆(f). The truncated 1

2 -geometric mechanism over
{0, 1, . . . , 5} is given in Figure 2a.

Similar to the survey mechanism, it is straightforward to model the truncated 1
2 -

geometric mechanism as a Markov chain. One could naı̈vely take datasets as inputs in
the formalization, but it is unnecessary. Recall that the truncated 1

2 -geometric mecha-
nism is oblivious. The mechanism depends on query results but not datasets. It hence
suffices to consider the range of query f as inputs. Let the state sk and tl denote the
input k and output l respectively. Define S = {sk, tk : k ∈ {0, 1, . . . ,m}}. The proba-
bility transition ℘(sk, tl) is the probability of the output l on the input k as defined in the
mechanism. Moreover, we have ink ∈ L(sk) and outk ∈ L(tk) for k ∈ {0, 1, . . . , n}.
If ∆(f) = 1, |f(x)− f(x′)| ≤ 1 for every neighbors x, x′ ∈ Xn. Subsequently, sk and
sl are neighbors iff |k − l| ≤ 1 in our model. Figure 2b gives the Markov chain for the
truncated 1

2 -geometric mechanism over {0, 1, . . . , 5}.

5

output
0 1 2 3 4 5

in
p
u
t

0 2/3 1/6 1/12 1/24 1/48 1/48
1 1/3 1/3 1/6 1/12 1/24 1/24
2 1/6 1/6 1/3 1/6 1/12 1/12
3 1/12 1/12 1/6 1/3 1/6 1/6
4 1/24 1/24 1/12 1/6 1/3 1/3
5 1/48 1/48 1/24 1/12 1/6 2/3

(a) 1
2

-Geometric Mechanism

s0

in0

...

...s5

in5

t0

out0

t1

out1

t2

out2

t3

out3

t4

out4

t5

out5

2/3

1/6

1/12

1/24

1/48

1/48

1/48

2/3

(b) Markov Chain

Fig. 2: A Markov Chain for 1
2 -Geometric Mechanism

3.3 Subsampling Majority

The sensitivity of queries is required to apply the (truncated) α-geometric mechanism.
Recall that the sensitivity is the maximal difference of query results on any two neigh-
bors. Two practical problems may arise for mechanisms depending on query sensitivity.
First, sensitivity of queries can be hard to compute. Second, the sensitivity over arbitrary
neighbors can be too conservative for the actual dataset in use. One therefore would like
to have mechanisms independent of query sensitivity.

Subsampling is a technique to design such mechanisms [16]. Concretely, let us con-
sider X = {R,B} (for red and blue team members) and a dataset d ∈ Xn. Suppose we
would like to ask which team is the majority in the dataset while respecting individual
privacy. This can be achieved as follows (Algorithm 1). The mechanism first samples
m sub-datasets d̂1, d̂2, . . . , d̂m from d (line 3). It then computes the majority of each
sub-dataset and obtains m sub-results. Let countR and countB be the number of sub-
datasets with the majorityR andB respectively (line 4). Since there arem sub-datasets,
we have countR + countB = m. To ensure differential privacy, the mechanism makes
sure the difference |countR−countB | is significantly large after perturbation. In line 6,
Lap(p) denotes the continuous random variable with the probability density function
f(x) = 1

2pe
−|x|/p of the Laplace distribution. If the perturbed difference is sufficiently

large, the mechanism reports 1 if the majority of the m sub-results is R or 0 if it is
B (line 7). Otherwise, no information is revealed (line 9).

Fix the dataset size n and privacy parameters ε, δ, the subsampling majority mech-
anism can be modeled by a Markov chain. Figure 3 gives a sketch of the Markov chain
for n = 3. The leftmost four states represent all possible datasets. Given a dataset,
m samples are taken with replacement. Outcomes of these samples are denoted by
(countR, countB). There are only m + 1 outcomes: (m, 0), (m − 1, 1), . . . , (0,m).
Each outcome is represented by a state in Figure 3. From each dataset, the proba-

6

Algorithm 1 Subsampling Majority
1: function SUBSAMPLINGMAJORITY(d, f)

Require: d ∈ {R,B}n, f : {R,B}∗ → {R,B}
2: q,m← ε

64 ln(1/δ)
, log(n/δ)

q2

3: Subsample m data sets d̂1, d̂2, . . . , d̂m from d where each row of d is chosen with prob-
ability q

4: countR, countB ← |{i : f(d̂i) = R}|, |{i : f(d̂i) = B}|
5: r ← |countR − countB |/(4mq)− 1
6: if r + Lap(1

ε
) > ln(1/δ)/ε then

7: if countR ≥ countB then return 1 else return 0
8: else
9: return ⊥

10: end function

bility distribution on all outcomes gives the transition probability. Next, observe that
|countR − countB | can have only finitely many values. The values of r (line 5) hence
belong to a finite set {rm, . . . , rM} with the minimum rm and maximum rM . For in-
stance, both outcomes (m, 0) and (0,m) transit to the state rM = 1/(4q) − 1 with
probability 1. For each r ∈ {rm, . . . , rM}, the probability of having r + Lap(1ε) >
ln(1/δ)/ε (line 6) is equal to the probability of Lap(1ε) > ln(1/δ)/ε − r. This is
equal to

∫∞
ln(1/δ)/ε−r

ε
2e
−ε|x|dx. From each state r ∈ {rm, . . . , rM}, it hence goes to

the state > with probability
∫∞
ln(1/δ)/ε−r

ε
2e
−ε|x|dx and to the state ⊥ with probability

1 −
∫∞
ln(1/δ)/ε−r

ε
2e
−ε|x|dx. Finally, the Markov chain moves from the state > to 1 if

countR ≥ countB ; otherwise, it moves to 0. Two dataset states are neighbors if they
differ at most one member. For example, rrb is a neighbor of rrr and rbb but not bbb.

rrr

rrb

rbb

bbb

m, 0

...

0,m

rm

...

rM

>

⊥

1

0

Fig. 3: Markov Chain for Subsampling Majority

4 The Logic dpCTL*

The logic dpCTL* is designed to specify differentially private mechanisms. We in-
troduce the differentially private path quantifier Dε,δ and neighborhood relations for

7

neighbors in dpCTL*. For any path formula φ, a state s in a Markov chain K satisfies
Dε,δφ if the probability of having paths satisfying φ from s is close to the probabilities
of having paths satisfying φ from its neighbors.

4.1 Syntax

The syntax of dpCTL* state and path formulae is given by:

Φ ::= p | ¬Φ | Φ ∧ Φ | PJφ | Dε,δφ
φ ::= Φ | ¬φ | φ ∧ φ | Xφ | φ U φ

A state formula Φ is either an atomic proposition p, the negation of a state formula,
the conjunction of two state formulae, the probabilistic operator PJ with J an interval
in [0, 1] followed by a path formula, or the differentially private operator Dε,δ with
two non-negative real numbers ε and δ followed by a path formula. A path formula
φ is simply a linear temporal logic formula, with temporal operator next (X) followed
by a path formula, and until operator (U) enclosed by two path formulae. We define
Fφ ≡ true U φ and Gφ ≡ ¬F (¬φ) as usual.

As in the classical setting, we consider the sublogic dpCTL by allowing only path
formulae of the form XΦ and ΦUΦ. Moreover, one obtains PCTL [23] and PCTL* [11]
from dpCTL and dpCTL* by removing the differentially private operator Dε,δ .

5 dpCTL* for Markov Chains

Given a Markov chain K = (S, ℘, L), a neighborhood relation NS ⊆ S×S is a reflex-
ive and symmetric relation on S. We will write sNStwhen (s, t) ∈ NS . If sNSt, we say
s and t are neighbors or t is a neighbor of s. For any Markov chain K, neighborhood
relation N on S, s ∈ S, and a path formula φ, define

PrKN (s, φ) = Pr[{π : K,N, π |= φ with π0 = s}].

That is, PrKN (s, φ) denotes the probability of paths satisfying φ from s on K with N .
Define the satisfaction relation K,NS , s |= Φ as follows.

K,NS , s |= p if p ∈ L(s)
K,NS , s |= ¬Φ if K,NS , s 6|= Φ

K,NS , s |= Φ0 ∧ Φ1 if K,NS , s |= Φ0 and K,NS , s |= Φ1

K,NS , s |= PJφ if PrKNS
(s, φ) ∈ J

K,NS , s |= Dε,δφ if for every t with sNSt,PrKNS
(s, φ) ≤ eεPrKNS

(t, φ) + δ and

PrKNS
(t, φ) ≤ eεPrKNS

(s, φ) + δ

Moreover, the relation K,NS , π |= φ is defined as in the standard linear temporal
logic formulae [25]. We only recall the semantics for the temporal operators X and U:

K,NS , π |= Xφ if K,NS , π[1] |= φ

K,NS , π |= φ U ψ if there is a j ≥ 0 such that K,NS , π[j] |= ψ and
K,NS , π[k] |= φ for every 0 ≤ k < j

8

Other than the differentially private operator, the semantics of dpCTL* is stan-
dard [2]. To intuit the semantics of Dε,δφ, recall that PrKN (s, φ) is the probability of
having paths satisfying φ from s. A state s satisfies Dε,δφ if the probability of having
paths satisfying φ from s is (ε, δ)-close to those from every neighbor of s. Informally, it
is probabilistically similar to observe paths satisfying φ from s and from its neighbors.

5.1 Model Checking

We describe the model checking algorithm for dpCTL. The algorithm follows the clas-
sical algorithms for PCTL by computing the states satisfying sub state-formulae induc-
tively [23, 2]. It hence suffices to consider the inductive step where the states satisfying
the subformula Dε,δ(φ) are to be computed.

In the classical PCTL model checking algorithm for Markov chains, states satis-
fying the subformula PJφ are obtained by computing PrKNS

(s, φ) for s ∈ S. These
probabilities can be obtained by solving linear equations or through iterative approxi-
mations. We summarize it in the following theorem (details see [2]):

Lemma 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood relation on
S, s ∈ S, and B,C ⊆ S. The probabilities PrKNS

(s,©B) and PrKNS
(s,BfC) are

computable within time polynomial in |S|.

In Lemma 1, we abuse the notation slightly to admit path formulae of the form©B
(next B) and B f C (B until C) with B,C ⊆ S as in [2]. They are interpreted by
introducing new atomic propositions B and C for each s ∈ B and s ∈ C respectively.

In order to determine the set {s : K,NS , s |= Dε,δφ}, our algorithm computes the
probabilities p(s) = PrKNS

(s, φ) for every s ∈ S (Algorithm 2). For each s ∈ S, it then
compares the probabilities p(s) and p(t) for every neighbor t of s. If there is a neighbor
t such that p(s) and p(t) are not (ε, δ)-close, the state s is removed from the result.
Algorithm 2 returns all states which are (ε, δ)-close to their neighbors. The algorithm
requires at most O(|S|2) additional steps. We hence have the following results:

Proposition 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood relation on
S, and φ a dpCTL path formula. {s : K,NS , s |= Dε,δφ} is computable within time
polynomial in |S| and |φ|.

Corollary 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood relation on
S, and Φ a dpCTL formula. {s : K,NS , s |= Φ} is computable within time polynomial
in |S| and |Φ|.

The model checking algorithm for dpCTL* can be treated as in the classical set-
ting [2]: all we need is to compute the probability PrKNS

(s, φ) with general path formula
φ. For this purpose one first constructs a deterministic ω-automaton R for φ. Then, the
probability reduces to a reachability probability in the product Markov chain obtained
from K and R. There are more efficient algorithms without the product construction,
see [13, 14, 3] for details.

9

Algorithm 2 SAT(K, NS , φ)
1: procedure SAT(K, NS , φ)
2: match φ with . by Lemma 1
3: case XΨ :
4: B ← SAT(K,NS , Ψ)
5: p(s)← PrKNS

(s,©B) for every s ∈ S
6: case Ψ U Ψ ′:
7: B ← SAT(K,NS , Ψ)
8: C ← SAT(K,NS , Ψ

′)
9: p(s)← PrKNS

(s,B f C) for every s ∈ S
10: R← S
11: for s ∈ S do
12: for t with sNSt do
13: if p(s) 6≤ eεp(t) + δ or p(t) 6≤ eεp(s) + δ then remove s from R

14: return R
15: end procedure

6 Specifying Properties in dpCTL*

In this section we describe how properties in the differential privacy literature can be
expressed using dpCTL* formulae.

Differential Privacy. Consider the survey mechanism (Section 3.1). For v with uNv, we
have PrKN (u,Xout1) ≤ 3PrKN (v,Xout1) for the probabilities of satisfying Xout1 from
u and v. The formula Dln 3,0(Xout1) holds in state u and similarly for Dln 3,0(Xout0).
Recall that differential privacy requires similar output distributions on neighbors. The
formula Dln 3,0(Xout1)∧Dln 3,0(Xout0) thus specifies differential privacy for states +
and −. The survey mechanism is (ln 3, 0)-differentially private.

For the 1
2 -geometric mechanism (Section 3.2), define the formulaψ = Dln 2,0(Xout0)∧

Dln 2,0(Xout1) ∧ · · · ∧ Dln 2,0(Xout5). If the state sk satisfies ψ for k = 0, . . . , 5, then
the 1

2 -geometric mechanism is (ln 2, 0)-differentially private. For the subsampling ma-
jority mechanism (Section 3.3), consider the formula ψ = Dε,δ(F0) ∧ Dε,δ(F1). If a
state satisfies ψ, its probability of outputting is (ε, δ)-close to those of its neighbor for
every outcomes. The subsampling majority mechanism is (ε, δ)-differentially private.

Compositionality. Compositionality is one of the building blocks for differential pri-
vacy. For any (ε1, δ1)-differentially private mechanism M1 and (ε2, δ2)-differentially
private mechanismM2, their combination (M1(x),M2(x)) is (ε1+ε2, δ1+δ2)-differentially
private by the compositional theorem [16, Theorem 3.16]. The degradation is rooted in
the repeated releases of information. To illustrate this property, we consider the ex-
tended survey mechanism which allows two consecutive queries. In this mechanism, an
input is either + or −; but outputs are out1out1, out1out0, out0out1, or out0out0.
The model is depicted in Figure 4.

Consider the formula Dln 9,0(X(out1 ∧ Xout1)). A path satisfies X(out1 ∧ Xout1)
if the second state satisfies out1 and the third state satisfies out1 as well. We verify

10

+

s1

out1

t1

out0

s2

out1

t2

out0
−

s̄1

out1

t̄1

out0

3
4

1
4

3
4

1
4

3
4

1
4

1
4

3
4

1
4

3
4

1
4

3
4

Fig. 4: Markov Chain of Double Surveys

that this formula is satisfied for states + and −. Moreover, the bound ε = ln 9 is tight
since the probability of satisfying X(out1 ∧ Xout1) from states + and − are 9

16 and
1
16 respectively. Finally, the formula ∧a1,a2Dln 9,0(X(a1 ∧ Xa2)) specifies differential
privacy for the model, where a1, a2 range over atomic propositions {out1, out0}.

Let us consider two slightly different formulae for comparison:

– Dln 3,0(XXout1). In this case we claim there is no privacy loss, even though there
are two queries. The reason is that the output of the first query is not observed at
all. It is easy to verify that it is indeed satisfied by + and −.

– Dln 3,0(X(out1 ∧Dln 3,0(Xout1))). This is a nested dpCTL formula, where the in-
ner state formulaDln 3,0(Xout1) specifies the one-step differential privacy. Observe
the inner formula is satisfied by all states. The outer formula has no privacy loss.

Tighter Privacy Bounds for Composition. An advantage of applying model checking is
that we may get tighter bounds for composition. Consider the survey mechanism, and
the propertyD0,.5(Xout1). Obviously, it holds in states + and− since PrKN (u, out1) =
3
4 , 1

4 for u = +,− respectively (Figure 1). A careful check infers that one cannot
decrease δ1 = .5 without increasing ε. Now consider the formula Dε2,δ2(X(out1 ∧
Xout1)) in Figure 4. Applying the compositional theorem, one has ε2 = 2ε1 = 0 and
δ2 = 2δ1 = 1. However, we can check easily that one gets better privacy parameter
(0, .5) using the model checking algorithm because PrKN (u, out1) = 9

16 , 1
16 for u =

+,− respectively. In general, compositional theorems for differential privacy only give
asymptotic upper bounds. Privacy parameters ε and δ must be calculated carefully and
often pessimistically. Our algorithm allows data analysts to choose better parameters.

7 Differentially Private Mechanisms as Markov Decision Processes

In differential privacy, an offline mechanism releases outputs only once and plays no fur-
ther role; an online (or interactive) mechanism allows analysts to ask queries adaptively
based on previous responses. The mechanisms considered previously are offline mech-
anisms. Since offline mechanisms only release one query result, they are relatively easy
to analyze. For online mechanisms, one has to consider all possible adaptive queries.
We therefore use MDPs to model these non-deterministic behaviors. Specifically, adap-
tive queries are modeled by actions. Randomized computation associated with different
queries is modeled by distributions associated with actions.

11

Consider again the survey mechanism. Suppose we would like to design an interac-
tive mechanism which adjusts random noises on surveyors’ requests. When the surveyor
requests low-accuracy answers, the surveyee uses the survey mechanism in Section 3.1.
When high-accuracy answers are requested, the surveyee answers 1 with probability 4

5
and 0 with probability 1

5 when she has positive diagnosis. She answers 1 with probabil-
ity 1

5 and 0 with probability 4
5 when she is not diagnosed with the disease X. This gives

an interactive mechanism corresponding to the MDP shown in Figure 5.

+

−

s

outY

t

outN

L, .75 L, .25

H, .8 H, .2

L, .25 L, .75

H, .2 H, .8

Fig. 5: Markov Decision Process

In the figure, the states +, −, s, and t
are interpreted as before. The actions L and
H denote low- and high-accuracy queries re-
spectively. Note that the high-accuracy sur-
vey mechanism is (ln 4, 0)-differentially pri-
vate. Unlike non-interactive mechanisms, the
privacy guarantees vary from queries with
different accuracies.

7.1 Above Threshold Mechanism

Below we describe an online mechanism
from [16]. Given a threshold and a series
of adaptive queries, we care for the queries
whose results are above the threshold; queries
below the threshold only disclose minimal in-
formation and hence is irrelevant. Let us assume the mechanism will halt on the first
such query result for simplicity. In [16], a mechanism is designed for continuous queries
by applying the Laplace mechanism. We will develop a mechanism for discrete bounded
queries using the truncated geometric mechanism.

Assume that we have a threshold t ∈ {0, 1, . . . , 5} and queries {fi : ∆(fi) = 1}.
In order to protect privacy, our mechanism applies the truncated 1

4 -geometric mecha-
nism to obtain a perturbed threshold t′. For each query fi, the truncated 1

2 -geometric
mechanism is applied to its result ri = fi(x). If the perturbed result r′i is not less than
the perturbed threshold t′, the mechanism halts with the output>. Otherwise, it outputs
⊥ and continues to the next query (Algorithm 3). The above threshold mechanism out-
puts a sequence of the form ⊥∗>. On similar datasets, we want to show that the above
threshold mechanism outputs the same sequence with similar probabilities.

It is not hard to model the above threshold mechanism as a Markov decision process
(Figure 6). In the figure, we sketch the model where the threshold and query results are
in {0, 1, 2}. The model simulates two computation in parallel: one for the dataset, the
other for its neighbor. The state tirj represents the input threshold i and the first query
result j; the state t′ir

′
j represents the perturbed threshold i and the perturbed query

result j. Other states are similar. Consider the state t0r1. After applying the truncated
1
4 -geometric mechanism, it goes to one of the states t′0r1, t′1r1, t′2r1 accordingly. From
the state t′1r1, for instance, it moves to one of t′1r

′
0, t′1r

′
1, t′1r

′
2 by applying the truncated

1
2 -geometric mechanism to the query result. If it arrives at t′1r

′
1 or t′1r

′
2, the perturbed

query result is not less than the perturbed threshold. The model halts with the output >
by entering the state with a self loop. Otherwise, it moves to one of t′1r0, t′1r1, or t′1r2

12

Algorithm 3 Input: private database d, queries fi : d → {0, 1, . . . , 5} with sensitivity
1, threshold t ∈ {0, 1, . . . , 5}; Output: a1, a2, . . .
1: procedure ABOVETHRESHOLD(d, {f1, f2, . . .}, t)
2: match t with . obtain t′ by 1

4
-geometric mechanism

3: case 0: t′ ← 0, 1, 2, 3, 4, 5 with probability 4
5

, 3
20

, 3
80

, 3
320

, 3
1280

, 1
1280

respectively
4: case 1: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

5
, 3
5

, 3
20

, 3
80

, 3
320

, 1
320

respectively
5: case 2: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

20
, 3
20

, 3
5

, 3
20

, 3
80

, 1
80

respectively
6: case 3: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

80
, 3
80

, 3
20

, 3
5

, 3
20

, 1
20

respectively
7: case 4: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

320
, 3
320

, 3
80

, 3
20

, 3
5

, 1
5

respectively
8: case 5: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

1280
, 3
1280

, 3
320

, 3
80

, 3
20

, 4
5

respectively

9: for each query fi do
10: ri ← fi(d)
11: match ri with . obtain r′i by 1

2
-geometric mechanism

12: case 0: r′i ← 0, 1, 2, 3, 4, 5 with probability 2
3

, 1
6

, 1
12

, 1
24

, 1
48

, 1
48

respectively
13: case 1: r′i ← 0, 1, 2, 3, 4, 5 with probability 1

3
, 1
3

, 1
6

, 1
12

, 1
24

, 1
24

respectively
14: case 2: r′i ← 0, 1, 2, 3, 4, 5 with probability 1

6
, 1
6

, 1
3

, 1
6

, 1
12

, 1
12

respectively
15: case 3: r′i ← 0, 1, 2, 3, 4, 5 with probability 1

12
, 1
12

, 1
6

, 1
3

, 1
6

, 1
6

respectively
16: case 4: r′i ← 0, 1, 2, 3, 4, 5 with probability 1

24
, 1
24

, 1
12

, 1
6

, 1
3

, 1
3

respectively
17: case 5: r′i ← 0, 1, 2, 3, 4, 5 with probability 1

48
, 1
48

, 1
24

, 1
12

, 1
6

, 2
3

respectively

18: if r′i ≥ t′ then halt with ai = > else ai = ⊥
19: end procedure

t0r1

· · ·t′0r1· · ·t′1r0t′1r1t′1r2

...
...

· · ·t′2r1· · ·

t′1r
′
0t′1r

′
1t′1r

′
2

t0r0

t′0r0· · ·t′1r0· · ·t′2r0t′2r1t′2r2

t′2r
′
0t′2r

′
1

...

t′2r
′
2

0
0
,0

1

10, 11, 12

21, 22

0
0
,1

0

00, 10

Fig. 6: Markov Decision Process for Above Threshold

13

non-deterministically (double arrows). The computation of its neighbor is similar. We
just use the underlined symbols to represent threshold and query results. For instance,
the state t′2r

′
1 represents the perturbed threshold 2 and the perturbed query result 1 in

the neighbor.
Now, the non-deterministic choices in the two computation cannot be independent.

Recall that the sensitivity of each query is 1. If the top computation moves to the state,
say, t′1r0, it means the next query result on the dataset is 0. Subsequently, the bottom
computation can only move to t′jr0 or t′jr1 depending on its perturbed threshold. This
is where actions are useful. Define the actions {mn : |m − n| ≤ 1}. The action mn
represents that the next query result for the dataset and its neighbor arem and n respec-
tively. For instance, the non-deterministic choice from t′1r

′
0 to t′1r0 is associated with

two actions 00 and 01 (but not 02). Similarly, the choice from t′2r
′
1 to t′2r0 is associated

with the actions 00 and 10 (but not 20). Assume the perturbed thresholds of the top
and bottom computation are i and j respectively. On the action 00, the top computa-
tion moves to t′ir0 and the bottom computation moves to t′jr0. Actions make sure the
two computation of neighbors is modeled properly. Now consider the action sequence
−,−, 01,−, 22,−, 21 from the states t0r1 and t0r0 (“−” represents the purely proba-
bilistic action). Together with the first query results, it denotes four consecutive query
results 1, 0, 2, 2 on the top computation, and 0, 1, 2, 1 on the bottom computation. Each
action sequence models two sequences of query results: one on the top, the other on
the bottom computation. Moreover, the difference of the corresponding query results
on the two computation is at most one by the definition of the action set. Any sequence
of adaptive query results is hence formalized by an action sequence in our model.

It remains to define the neighborhood relation. Recall the sensitivity is 1. Consider
the neighborhood relation {(tirm, tirm), (tirn, tirn), (tirm, tirn), (tirn, tirm) : |m−
n| ≤ 1}. That is, two states are neighbors if they represent two inputs of the same
threshold and query results with difference at most one.

8 dpCTL* for Markov Decision Processes

The logic dpCTL* can be interpreted over MDPs. Let M = (S,Act , ℘, L) be an MDP
and NS a neighborhood relation on S. Define the satisfaction relation M,NS , s |= Φ
for PJφ and Dε,δφ as follows (others are straightforward).

M,NS , s |= PJφ if PrMS

NS
(s, φ) ∈ J for every scheduler S

M,NS , s |= Dε,δφ if for all t with sNSt and query scheduler Q,PrMQ

NS
(s, φ) ≤ eε ·

PrMQ

NS
(t, φ) + δ and PrMQ

NS
(t, φ) ≤ eε · PrMQ

NS
(s, φ) + δ

Recall thatMS is but a Markov chain. The semantics ofMS,NS , π |= φ and hence
the probability PrMS

NS
(s, φ) are defined as in Markov chains. The semantics of dpCTL*

on MDPs is again standard except the differentially private operator Dε,δ . For any path
formula φ, Dε,δφ specifies states whose probability of having paths satisfying φ are
(ε, δ)-close to those of all its neighbors for query schedulers. That is, no query scheduler
can force any of neighbors to distinguish the specified path behavior probabilistically.

14

Justification of query schedulers. We use query schedulers in the semantics for the
differentially private operator. A definition with history-dependent schedulers might be

M,NS , s |= Dbad
ε,δ φ if for all t with sNSt and scheduler S,PrMS

NS
(s, φ) ≤ eε ·

PrMS

NS
(t, φ) + δ and PrMS

NS
(t, φ) ≤ eε · PrMS

NS
(s, φ) + δ.

A state satisfies Dbad
ε,δ φ if no history-dependent scheduler can differentiate the prob-

abilities of having paths satisfying φ from neighbors. Recall that a history-dependent
scheduler chooses actions according to previous states. Such a definition would allow
schedulers to take different actions from different states. Two neighbors could hence
be differentiated by different action sequences. The specification might be too strong
for our purposes. A query scheduler Q : S+ → Act , on the other hand, corresponds
to a query sequence. A state satisfies Dε,δφ if no query sequence can differentiate the
probabilities of having paths satisfying φ from neighbors. Recall query schedulers only
depend on lengths of histories. Two neighbors cannot be distinguished by the same
action sequence of any length if they satisfy a differentially private subformula. Our se-
mantics agrees with the informal interpretation of differential privacy for such systems.
We therefore consider only query schedulers in our definition.

8.1 Model Checking

Given an MDP M = (S,Act , ℘, L), a neighborhood relation NS , s ∈ S, and a path
formula φ, consider the problem of checking M,NS , s |= Dε,δφ . Recall the seman-
tics of Dε,δφ. Given s, t with sNSt and a path formula φ, we need to decide whether
PrMQ

NS
(s, φ) ≤ eεPrMQ

NS
(t, φ) + δ for every query scheduler Q. When φ is ©B with

B ⊆ S, only the first action in the query sequence needs to be considered. This can also
be easily generalized to nested next operators: one needs only to enumerate all actions
query sequences of a fixed length. The problem however is undecidable in general.

Theorem 1. The dpCTL* model checking problem for MDPs is undecidable.

The proof is in Appendix. We discuss some decidable special cases. Consider the
formula φ := FB with B ⊆ S and assume that states in B with only self-loops. For
the case ε = 0, the condition reduces to PrMQ

NS
(s, FB) − PrMQ

NS
(t, FB) ≤ δ. If δ = 0

it is the classical language equivalence problem for probabilistic automata [29], which
can be solved in polynomial time. However, if δ > 0, the problem becomes an approx-
imate version of the language equivalence problem. To the best of our knowledge, its
decidability is still open except for the special case where all states are connected [33].

Despite of the negative result in Theorem 1, a sufficient condition for M,NS , s |=
Dε,δφ is available. To see this, observe that for s ∈ S and query scheduler Q, we have

min
S

PrMS

NS
(s, φ) ≤ PrMQ

NS
(s, φ) ≤ max

S
PrMS

NS
(s, φ)

where the minimum and maximum are taken over all schedulers S. Hence,

PrMQ

NS
(s, φ)− eε · PrMQ

NS
(t, φ) ≤ max

S
PrMS

NS
(s, φ)− eε ·min

S
PrMS

NS
(t, φ)

for any s, t ∈ S and query scheduler Q. We have the following proposition:

15

Proposition 2. Let M = (S,Act , ℘, L) be an MDP, NS a neighborhood relation on S.
M,NS , s |= Dε,δφ if max

S
PrMS

NS
(s, φ)−eε·min

S
PrMS

NS
(t, φ) ≤ δ and max

S
PrMS

NS
(t, φ)−

eε ·min
S

PrMS

NS
(s, φ) ≤ δ for any s, t ∈ S with sNSt.

For s ∈ S, recall that max
S

PrMS

NS
(s, φ) and min

S
PrMS

NS
(s, φ) can be efficiently com-

puted [2]. By Proposition 2, M,NS , s |= Dε,δφ can be checked soundly and efficiently.
We model the above threshold algorithm (Algorithm 3) and apply Proposition 2 to

check whether the mechanism is differentially private using the classical PCTL model
checking algorithm for MDPs. Since concrete values of the parameters ε and δ are com-
puted, tighter bounds for specific neighbors can be obtained. For instance, for the state
t3r5 and its neighbor t3r4, we verify the property

∧
k∈Z≥0 D0,0.17((X

k⊥)>) is satis-
fied. Note the reachability probability goes to 0 as k goes to infinity. By repeating the
computation, we verify that the property

∧
k∈Z≥0 D1,0.74((X

k⊥)>) is satisfied for all
neighbors. Subsequently, the above threshold mechanism in Algorithm 3 is (1, 0.74)-
differentially private. Compared to the parameters for the neighbors t3r5 and t3r4, the
parameter δ appears to be significantly large. It means that there are two neighbors
with drastically different output distributions from our mechanism. Moreover, recall
that Proposition 2 is a sufficient condition. It only gives an upper bound of privacy pa-
rameters. Tighter bounds may be computed by more sophisticated sufficient conditions.

9 Conclusions

We have introduced dpCTL* to reason about properties in differential privacy, and in-
vestigated its model checking problems. For Markov chains, the model checking prob-
lem has the same complexity as for PCTL*. The general MDP model checking prob-
lem however is undecidable. We have discussed some decidable special cases and a
sufficient yet efficient condition to check differentially private subformulae. An inter-
esting future work is to identify more decidable subclasses and sufficient conditions. As
an example, consider the extended dpCTL* formula

∧
k∈Z≥0 Dε,δ(Xk>). For the case

ε = δ = 0, it reduces to a language equivalence problem for probabilistic automata. It is
interesting to characterize other cases as well. Another interesting line of further works
is to consider continuous perturbation (such as Laplace distribution used in [16]). We
would need Markov models with continuous state space.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: On the infor-
mation leakage of differentially-private mechanisms. Journal of Computer Security 23(4),
427–469 (2015)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
3. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and

unambiguous Büchi automata. In: CAV. LNCS, vol. 9779, pp. 23–42. Springer (2016)
4. Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Zanella-Béguelin, S.: Verified computational

differential privacy with applications to smart metering. In: CSF. pp. 287–301. IEEE (2013)

16

5. Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub, P.Y.: Dif-
ferentially private Bayesian programming. In: CCS. pp. 68–79. ACM (2016)

6. Barthe, G., Fong, N., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: Advanced probabilistic
couplings for differential privacy. In: CCS. pp. 55–67. ACM (2016)

7. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Kunz, C., Strub, P.Y.: Proving differential
privacy in Hoare logic. In: CSF. pp. 411–424. IEEE (2014)

8. Barthe, G., Gaboardi, M., Arias, E.J.G., Hsu, J., Roth, A., Strub, P.: Higher-order approxi-
mate relational refinement types for mechanism design and differential privacy. In: POPL.
pp. 68–79. ACM (2015)

9. Barthe, G., Gaboardi, M., Gregoire, B., Hsu, J., Strub, P.Y.: Proving differential privacy via
probabilistic couplings. In: LICS. IEEE (2016)

10. Barthe, G., Köpf, B., Olmedo, F., Zanella-Béguelin, S.: Probabilistic relational reasoning for
differential privacy. In: POPL. pp. 97–110. ACM (2012)

11. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems. In:
FSTTCS. LNCS, vol. 1026, pp. 499–513. Springer (1995)

12. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of

the ACM 42(4), 857–907 (1995)
14. Couvreur, J.M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking

of probabilistic systems. In: LPAR. LNCS, vol. 2850, pp. 361–375 (2003)
15. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private

data analysis. In: Halevi, S., Rabin, T. (eds.) TCC. LNCS, vol. 3876, pp. 265–284. Springer
(06)

16. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science 9(3–4), 211–407 (2014)

17. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP. LNCS, vol. 4052, pp. 1–12. Springer (2006)

18. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publish: A survey of
recent developments. ACM Computing Surveys 42(4), 14:1–14:53 (June 2010)

19. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent types for
differential privacy. In: POPL. pp. 357–370 (2013)

20. Gazeau, I., Miller, D., Palamidessi, C.: Preserving differential privacy under finite-precision
semantics. Theoretical Computer Science 655, 92–108 (2016)

21. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. In: STOC. pp. 351–360. ACM, New York, NY, USA (2009)

22. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. SIAM Journal of Computing 41(6), 1673–1693 (2012)

23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects
of Computing 6(5), 512–535 (1994)

24. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review.
CoRR abs/1412.7584 (2014), http://arxiv.org/abs/1412.7584

25. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems - specification.
Springer (1992)

26. Mironov, I.: On significance of the least significant bits for differential privacy. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS. pp. 650–661 (2012)

27. Paz, A.: Introduction to Probabilistic Automata (Computer Science and Applied Mathemat-
ics). Academic Press, Inc., Orlando, FL, USA (1971)

28. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
No. 594 in Wiley Series in Probability and Statistics, John Wiley & Sons, Inc. (2005)

29. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

17

30. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: A calculus for differential
privacy. In: ICFP. pp. 157–168. ACM (2010)

31. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in apple’s implementation
of differential privacy on MacOS 10.12. CoRR abs/1709.02753 (2017), http://arxiv.
org/abs/1709.02753

32. Tschantz, M.C., Kaynar, D., Datta, A.: Formal verification of differential privacy for interac-
tive systems (extended abstract). In: Mathematical Foundations of Programming Semantics.
ENTCS, vol. 276, pp. 61–79 (2011)

33. Tzeng, W.: A polynomial-time algorithm for the equivalence of probabilistic automata.
SIAM Journal on Computing 21(2), 216–227 (1992)

34. Winograd-Cort, D., Haeberlen, A., Roth, A., Pierce, B.C.: A framework for adaptive differ-
ential privacy. Proceedings of the ACM on Programming Languages 1(ICFP), 10:1–10:29
(2017)

35. WWDC: Engineering privacy for your users (2016), https://developer.apple.
com/videos/play/wwdc2016/709/

36. Zhang, D., Kifer, D.: LightDP: Towards automating differential privacy proofs. In: POPL.
pp. 888–901. ACM (2017)

18

A Proof of Theorem 1

Proof. The proof follows by a reduction from the emptiness problem for probabilistic
automata. A probabilistic automaton [29] is a tuple A = (S,Σ,M, s0, B) where

– S is a finite set of states,
– Σ is the finite set of input alphabet,
– M : S ×Σ × S → [0, 1] such that

∑
t∈SM(s, α, t) = 1 for all s ∈ S and α ∈ Σ,

– s0 ∈ S is the initial state,
– B ⊆ S is a set of accepting states.

Each input alphabet α induces a stochastic matrix M(α) in the obvious way. Let
λ denote the empty string. For η ∈ Σ∗ we define M(η) inductively by: M(λ) is the
identity matrix, M(xη′) = M(x)M(η′). Thus, M(η)(s, s′) denotes the probability of
going from s to s′ after reading η. Let vB denote the characteristic row vector for the
set B, and vs0 denote the characteristic row vector for the set {s0}. Then, the accepting
probably of η by A is defined as vs0 ·M(η) · (vB)c where (vB)

c denotes the transpose
of vB . The following emptiness problem is know to be undecidable [27]:

Emptiness problem: Given a probabilistic automaton A = (S,Σ,M, s0, B), whether
there exists η ∈ Σ∗ such that vs0 ·M(η) · (vB)c > 0?

Now we establish the proof by reducing the emptiness problem to our dpCTL*
model checking problem. Given the probabilistic automaton A = (S,Σ,M, s0, B),
assume we have a primed copy A′ = (S′, Σ,M ′, s′0, ∅).

Let AP := {atB}. Now we construct our MDP M = (S ·∪ S′, Σ, ℘, L) where
℘(s, a, t) equals to M(s, a, t) if s, t ∈ S and to M ′(s, a, t) if s, t ∈ S′. We define
the neighbor relation NS := {(s0, s′0), (s′0, s0)} by relating states s0, s′0. The labelling
function L is defined by L(s) = {atB} if s ∈ B and L(s) = ∅ otherwise.

Now we consider the formula Φ = D1,0(FatB). For the reduction we prove s0 |=
D1,0(FatB) iff for all η ∈ Σ∗ it holds vs0 ·M(η) · (vB)c ≤ 0.

First we assume s0 |= D1,0(FatB). By dpCTL* semantics we have that for all
query scheduler Q ∈ Σω , PrMQ

NS
(s0, FatB) ≤ e · PrMQ

NS
(s′0, FatB). Since the set of

accepting state in the primed copy is empty, we have PrMQ

NS
(s′0, FatB) = 0, thus we

have PrMQ

NS
(s0, FatB) ≤ 0. This implies vs0 ·M(η) · (vB)c ≤ 0 for all η ∈ Σ∗.

For the other direction, assume that all η ∈ Σ∗ it holds vs0 ·M(η) · (vB)c ≤ 0.
We prove by contradiction. Assume that s0 6|= D1,0(FatB). Since the relation NS =
{(s0, s′0), (s′0, s0)}, there exists (s0, s′0), and a query scheduler Q ∈ Σω such that

PrMQ

NS
(s0, FatB) 6≤ e · PrMQ

NS
(s′0, FatB)

which implies PrMQ

NS
(s0, FatB) > 0. It is then easy to construct a finite sequence

η ∈ Σ∗ with vs0 ·M(η) · (vB)c > 0, a contradiction.

19

