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Abstract. A modular formalization of the branching time temporal
logic CTL∗ is presented. Our formalization subsumes prior formalizations
of propositional linear temporal logic (PTL) and computation tree logic
(CTL). Moreover, the modularity allows to instantiate our formalization
for different formal security models. Validity of axioms and soundness
of inference rules in axiomatizations of PTL, UB, CTL, and CTL∗ are
discussed as well.

1 Introduction

The management of digital objects in modern information systems has become
very sophisticated during past years. In digital rights management, for instance,
a digital content may be accessible exclusively for a fixed period of time; if the
contract is expired or the content is currently in use, no access will be allowed.
Since traditional static usage control models could not express the dynamic
authorizations found in these applications, temporal logics are introduced in
recent models [19].

The introduction of temporal logics nevertheless induces new problems. Be-
cause of the complexity in the semantics of temporal operators, users often have
difficulties in writing correct requirements or verifying them. Moreover, speci-
fications of real-world usage control systems are rather complicated. Whether
one can analyze such temporal specifications correctly by hand is not without
questions.

One way to help users manage complicated specifications is to mechanize the
process. Indeed, fully automated approaches such as model checking are able to
analyze models against temporal logic specifications without user intervention.
But the expressiveness of formal security models deviates from the simplicity
of computation models in algorithmic approaches; various capability and com-
putability issues are subsequently arisen in fully automated techniques.
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In order to have expressive models and circumvent undecidability, semi-
automated approaches such as proof checking are used. In semi-automated tech-
niques, usage control models and their temporal logic specifications are formu-
lated in proof assistants. Security amounts to the entailment of respective tem-
poral logic specification. Since each step of the proof is checked by the proof
assistant, the correctness of analysis is therefore ensured.

But formulations of models and their specifications require domain knowl-
edge about formal models, temporal logics, and proof assistants. Inappropriate
formulations may result in ineffective or even faulty analysis. In this paper, we
address the formulation problem of temporal logics in the proof assistant Coq.
Specifically, the branching time temporal logic CTL∗ is formalized in Calcu-
lus of Inductive Constructions. We identify assumptions in formal models and
modularize our formalization based on these assumptions. Users will be able
to instantiate our formalization as long as their formal models conform to the
identified assumptions.

The branching time temporal logic CTL∗ is a proper super class of the propo-
sitional linear temporal logic (PTL) and the computation tree logic (CTL). Prior
formalizations of PTL and CTL are therefore subsumed by the present work.
The expressiveness of CTL∗ gives users more freedom to specify the require-
ments of their security models. To the best of our knowledge, ours is the first
formalization of CTL∗ in any proof assistant. Moreover, we have used the for-
malization to establish the validity of 31 (out of 33) axiom schemata, and the
soundness of 8 (out of 10) inference rules in four complete axiomatizations of
various temporal logics.

The modularity distinguishes our formalization from others as well. We iden-
tify assumptions needed in the formalization of CTL∗ and formally specify them
in a Coq module type. The formalization of CTL∗ is carried out in a functor
from modules of the aforementioned module type. Subsequently, any formal-
ization of security models can instantiate our CTL∗ formalization, provided it
is of the proper module type. In domains with versatile characteristics such as
security analysis, our modular formalization greatly reduces the adoption effort.

The branching-time temporal logic µ-calculus has been formalized in Coq [10,
16], LEGO [18], and ACL2 [8] with different intentions. A formalization of PTL
can be found in Coq [3, 2]. The temporal logic of actions TLA [7] has been
formalized in Isabelle [9]. A shallow embedding of CTL is also available [1].
None of these formalizations admits both state and path formulae. Although
µ-calculus is more expressive than CTL∗, it is not accessible to practitioners due
to its arcane syntax and semantics. CTL∗, on the other hand, is an accessible
generalization of both PTL and CTL. We feel our CTL∗ formalization would be
more useful in practice.

The paper is structured as follows. A brief review of the syntax and semantics
of CTL∗ is given in Section 2. Section 3 identifies assumptions in our formal-
ization of Kripke structures. Based on these assumptions, we formalize paths
and CTL∗ in Section 4 and 5 respectively. The validity of axiom schemata and



the soundness of inference rules are discussed in Section 6. Finally, Section 7
concludes the paper and highlights future works.

2 Preliminaries

Let AP be the set of atomic propositions. The syntax of CTL∗ is defined as
follows [4].

(S0) If p is an atomic proposition, p is a state formula;
(S1) If p and q are state formulae, p ∧ q and ¬p are state formulae;
(S2) If f is a path formula, Af and Ef are state formulae;
(P0) If p is a state formula, p is a path formula;
(P1) If f and g are path formulae, f ∧ g and ¬f are path formulae;
(P2) If f and g are path formulae, Xf and fUg are path formulae.

A Kripke structure K = (S,→, L) consists of a set of states S, a total tran-
sition relation → ⊆ S × S, and a labeling function L : S → 2AP . A path π in K
is an infinite sequence of states s0s1 · · · sn · · · such that si → si+1 for all i ≥ 0.
We use the notations π(i) = si and πi = sisi+1 · · · to denote the i-th state and
the i-th suffix of the path π respectively. Note that π = π0. The semantics of a
CTL∗ formula is defined as follows.

K, s |= P if P ∈ L(s), where P ∈ AP
K, s |= ¬p if not K, s |= p
K, s |= p ∧ q if K, s |= p and K, s |= q
K, s |= Af if K,π |= f for all π with π(0) = s
K, s |= Ef if K,π |= f for some π with π(0) = s
K, π |= p if K,π(0) |= p
K, π |= ¬f if not K,π |= f
K, π |= f ∧ g if K,π |= f and K,π |= g
K, π |= Xf if K,π1 |= f
K, π |= fUg if there is a k such that K,πk |= g and K,πj |= f for all 0 ≤ j < k

We will use p, q, r, . . . for state formulae, f, g, h, . . . for path formulae, and
φ, ψ, . . . for CTL∗ formulae. Derived operators such as φ ∨ ψ ≡ ¬(¬φ ∧ ¬ψ),
φ⇒ ψ ≡ ¬φ∨ψ, φ⇔ ψ ≡ (φ⇒ ψ)∧ (ψ ⇒ φ), Ff ≡ trueUf , and Gf ≡ ¬F¬f
are also used. The operators A and E are called path quantifiers; X, U, F, and
G are linear temporal operators.

Both propositional linear temporal logic (PTL) and computational tree logic
(CTL) are proper subclasses of CTL∗. PTL formulae are constructed by the
rules (P0) to (P2) where atomic propositions are the only state formulae. CTL
consists of state formulae with the restriction that all linear temporal operators
are prefixed by path quantifiers. That is, only the temporal operators AX, AG,
AF, AU, EX, EG, EF, and EU are allowed. The system UB is a subclass of
CTL, where only the temporal operators AX, AG, AF, EX, EG, and EF, are
allowed.



Observe that all subformulae of a PTL formula are themselves PTL for-
mulae, and PTL formulae in turn are path formulae. A formalization of pure
path formulae suffices for PTL. Similarly, a formalization of pure state formulae
would be sufficient for CTL. In comparison, the formalization of CTL∗ is greatly
complicated by admitting both state and path formulae. The techniques found
in [14, 12, 13, 16, 8, 10] are therefore not directly applicable.

3 Kripke Structures

One distinguished feature of our formalization is the use of Coq module system.
When this research was initiated, our goal was to build a unified verification
framework in Coq [17]. In addition to the temporal logic CTL∗, we also formalize
a model specification language in our framework. It is but natural to use Kripke
structures as the interface between both formalizations. Our formalization of
CTL∗ therefore assumes an abstract interface of Kripke structures. This can be
done by the following module type definition.

Module Type KRIPKE .

Parameter st : Set .

Prarmeter succ : st -> st -> Prop .

...

End KRIPKE .

Two parameters are assumed in the module type KRIPKE. The set st and the
predicate succ formalize the set of states and the transition relation in a Kripke
structure respectively. To formalize the totality of the transition relation, one
might add the following requirement in the module type KRIPKE.3

Axiom totality_alt : forall s : st, exists s’ : st, succ s s’ .

However, Calculus of Inductive Constructions does not allow the state s’

to be extracted from the axiom totality alt lest inconsistency would incur.
We therefore formalize the totality by the inductive type post and the axiom
totality.

Inductive post (s : st) : Set :=

| post_intro (s’ : st) : succ s s’ -> post s .

Axiom totality : forall s : st, post s .

For any state s, the set post s contains elements of the form post intro s’

where s and s’ satisfy the transition relation succ. The axiom totality simply
states that the set post s is not empty for all state s.

When a concrete Kripke structure is available, our formalization of CTL∗

can be instantiated to analyze properties on the Kripke structure. Note that
the semantics of a CTL∗ formula varies from different Kripke structures. Each
instantiation of our CTL∗ theory gives a specialized interpretation of formulae
in the given Kripke structure.
3 The keyword Axiom is perhaps a little misleading. These “axioms” need be estab-

lished in module definitions; they do not hold automatically.



4 Paths

A path in a Kripke structure is an infinite state sequence where successive states
satisfy the transition relation. Several formalizations of paths can be found in
literature. In [11], a path is a function of type nat -> st, while [14, 3, 2] use
coinductive data types. Although the coinductive formalization admits partiality
and is therefore more general than the functional one [14], we feel that the benefit
of generality would be better left for users to decide. Hence, we would rather not
commit to a particular formalization of paths in our CTL∗ formalization. Since
it is inessential to know exactly how paths are formalized, we can exploit the
Coq module system to isolate the formalization of paths from their interface.
Consider the following interface of paths.

Module Type PATH .

Parameters st path : Set .

Parameter succ : st -> st -> Prop .

Parameter hd : path -> st .

Parameter tl : path -> path .

Parameter cons : forall (s : st) (pi : path), succ s (hd pi) -> path .

...

End PATH .

The parameters st and succ inherit from a concrete KRIPKE module. Paths
are formalized as the set path. The parameters hd and tl retrieve the head and
tail of a path respectively. Additionally, the parameter cons constructs a new
path from a state and a path, provided that the state and the head of the path
satisfy the transition relation.

Of course, the typing information alone does not entail the intended seman-
tics. It is rather easy to impose semantic requirements on the parameters in the
Coq module system. For instance, we enforce the following semantic constraints
in the module type PATH.

Axiom hd_cons : forall (s : st) (pi : path) (H : succ s (hd pi)),

hd (cons s pi H) = s .

Axiom tl_cons : forall (s : st) (pi : path) (H : succ s (hd pi)),

tl (cons s pi H) = pi .

Axiom pi_succ : forall pi : path, succ (hd pi) (hd (tl pi)) .

The axioms hd cons and tl cons specify the relations among the parameters
hd, tl, and cons. The axiom pi succ states that the first and the second states
of any path satisfy the transition relation.

Another useful fact in our formalization is that each state has a path from
it. More formally, we have the following axiom in the module type PATH.

Axiom ex_path : forall s : st, exists pi : path, hd pi = s .

Due to the totality of the transition relation in the underlying Kripke struc-
ture, one would expect the axiom ex path in any reasonable formalization of



paths. Indeed, the axiom will be handy when we prove the validity of axiom
schemata in axiomatizations of various temporal logics in Section 6.

Our modular formalization of paths is a functor which takes modules of type
KRIPKE and generates a module of type PATH. Furthermore, the generated module
shares the formalizations of states (st) and the transition relation (succ) with
the input module.

Module Path (KS : KRIPKE) : PATH with Definition st := KS.st

with Definition succ := KS.succ .

...

End Path .

Similar to [14, 3, 2], our formalization of paths is based on coinductive data
types. We start with the conventional coinductive definition of lazy lists.

CoInductive stream : Set := scons : st -> stream -> stream .

Definition shd (str : stream) : st := match str with scons s _ => s end .

A stream is simply an infinite sequence of states. The constructor scons

takes a state and a stream to create a stream. The function shd retrieves the
head of a stream. Unlike paths, there is no restriction on successive states in a
stream. To assert the transition relation succ on successive states, the following
coinductively defined predicate on streams is used.

CoInductive is_path : stream -> Prop :=

| path_intro (s : st) (str : stream) :

succ s (shd str) -> is_path str -> is_path (scons s str) .

To check if the stream (scons s str) is a path, it suffices to verify that

1. the state s and the head of str (shd str) satisfies the transition relation
succ; and

2. the stream str is indeed a path.

Note that our definitions of stream and is path are coinductive. In comparison,
streams are defined by domain equations in [14]. The coinductively defined type
is path becomes a function on the stream domain.4

Fixpoint is_path_p (str : stream) : Prop :=

match str with scons s tl => succ s (shd tl) /\ is_path_p tl end .

But the function is path p should be evaluated lazily. Special care must be
taken to define it over the stream domain. Coinductive defined types in Calcu-
lus of Constructions greatly simplify our formalization. We therefore prefer our
purely coinductive formalization.

It is now easy to define the set path as follows.

Definition path : Set := { str : stream | is_path str } .

4 It is noted that the definition is ill-formed because stream is not an inductive type.



The set path consists of streams satisfying the predicate is path. The function
hd can now be defined.

Definition hd (pi : path) : st := let (str, _) := pi in shd str .

Since a path pi is merely a tuple of a stream str and its proof of “pathness,”
the head of pi can be computed by invoking the auxiliary function shd. Other
parameters are defined similarly.

To finish the definition of the functor Path, we have to establish the axioms
hd cons, tl cons, pi succ, and ex path with our definitions of hd, tl, and cons.
Except for ex path, all proofs are rather straightforward. The proof of ex path

requires the decomposition lemma in [2] and essentially defines a stream from
any given state coinductively.

5 CTL∗

Recall that CTL∗ formulae consist of two types of formulae: state and path
formulae describe properties about states and paths respectively. In our formal-
ization of CTL∗, state and path formulae are of type st -> Prop and path ->

Prop respectively, where st and path in turn inherit from modules of type PATH.
An atomic proposition specifies properties about states and is thus of type st

-> Prop.

Module CTLS (Path : PATH) .

Definition st := Path.st .

Definition path := Path.path .

Definition atomic_proposition : Type := st -> Prop .

Definition st_formula : Type := st -> Prop .

Definition path_formula : Type := path -> Prop .

...

End CTLS .

Since a state formula is also a path formula, we define the function st2path

to coerce state formulae.

Definition st2path (p : st_formula) : path_formula :=

fun (pi : path) => p (Path.hd pi) .

Coercion st2path : st_formula >-> path_formula .

To help users construct CTL∗ formulae, we formalize each linear temporal
operator and path quantifier in CTL∗ as an inductively defined type in Calculus
of Inductive Constructions. Each CTL∗ formula is therefore a type expression in
our formalization. To prove a CTL∗ formula amounts to building a term of the
corresponding type expression by constructors of respective inductively defined
types.



5.1 State Formulae

Given a state formula p, its negation corresponds to the type expression neg s p.
To construct a proof of its negation, it suffices to find a proof of ~ p s for any
state s.

Inductive neg_s (p : st_formula) : st_formula :=

| neg_s_intro : forall s : st, ~ p s -> neg_s p s .

Observe that the inductively defined type neg s p is of sort st formula as
well. It can thus be used to construct more complicated type expressions. For
instance, the corresponding type expression for the CTL∗ formula ¬¬p is neg s

neg s p. The following notation for the type expression neg s p is defined for
convenience.

Notation "! p" := (neg_s p) (at level 75, right associativity) .

Henceforth, we will write ! p for the type corresponding to the formula ¬p.
Other logical operators can be formalized similarly. We use the notations p &&

q, p || q, p ==> q, and p <==> q for the corresponding type expressions for the
formulae p ∧ q, p ∨ q, p⇒ q, and p⇔ q respectively.

It is as easy to formalize path quantifiers in CTL∗ as well. For instance,
proving the state formula Af on the state s is to demonstrate that all paths π
from s satisfy f . Hence the following type is used for the state formula Af .

Inductive A (f : path_formula) : st_formula :=

| A_intro : forall s : st,

(forall pi : path, s = Path.hd pi -> f pi) -> A f s .

We will use the notations A f and E f for the type expressions of the formulae
Af and Ef respectively.

5.2 Path Formulae

Logical operators for path formulae are similar to those of state formulae. The
inductively defined type and p f g, for instance, formalizes the conjunction of
path formulae f and g.

Inductive and_p (f g : path_formula) : path_formula :=

| and_p_intro : forall pi : path, f pi /\ g pi -> and_p f g pi .

The notations ‘! f, f ‘&& g, f ‘|| g, f ‘==> g, and f ‘<==> g are used for
the negation, conjunction, disjunction, implication, and logical equivalence re-
spectively. Note that the back quote (‘) distinguishes from the corresponding
types for state formulae.

Our formalization of linear temporal operators essentially follows those of
PTL in [3, 2]. Instead of using streams as in prior formalizations, our formaliza-
tion is based on paths in Kripke structures.

In order to show that a path π satisfies the path formula Xf , it is necessary
to show that the tail of π satisfies the formula f . Thus, the inductively defined
type X f is as follows.



Inductive X (f : path_formula) : path_formula :=

| X_intro : forall pi : path, f (Path.tl pi) -> X f pi .

Now consider the path formula Gf . The path π satisfies Gf if it satisfies f
and its tail satisfies Gf . Note that a proof term of π satisfying Gf is infinite for
π is infinite. We therefore use a coinductively defined type G f for the formula
Gf .

CoInductive G (f : path_formula) : path_formula :=

| G_intro : forall pi : path, f pi -> G f (Path.tl pi) -> G f pi .

For the path formula Ff , there are two ways to demonstrate the path π
satisfying the formula. If π satisfies f , we are done. Otherwise, the tail of π
must satisfy Ff . Therefore, a proof term of type F f is built by the constructors
F0 intro and F intro inductively.

Inductive F (f : path_formula) : path_formula :=

| F0_intro : forall pi : path, f pi -> F f pi

| F_intro : forall pi : path, F f (Path.tl pi) -> F f pi .

The definition of the type U f g is similar to F f. To show the path π sat-
isfying fUg is to show that π satisfies g, or it satisfies f and its tail satisfies
fUg.

Inductive U (f g : path_formula) : path_formula :=

| U0_intro : forall pi : path, g pi -> U f g pi

| U_intro : forall pi : path, f pi -> U f g (Path.tl pi) -> U f g pi .

We will write X f, G f, F f, and f U g for the corresponding type expressions
of formulae Xf , Gf , Ff , and fUg respectively. Observe that derived temporal
operators are also formalized. They allow us to carry out formal proofs more
intuitively.

To compare with the formalizations in [3, 2], recall that a stream is an infi-
nite sequence of states. There is no restriction imposed on successive states in
a stream. A path, on the other hand, is a stream satisfying the co-inductively
defined predicate is path; successive states in a path satisfy the transition rela-
tion succ. Hence the computation of the underlying Kripke structure is implicit
in our formalization.

In contrast, a stream filter path filter : stream -> Prop is needed in state-
ments about paths to witness the transition relation of the underlying compu-
tation model in [3, 2]. For instance, the following axiom states that the state
formula fair holds infinitely often along all paths from s.

Axiom fairness : forall (s : st) (str : stream),

s = shd str -> path_filter str -> (G F fair) str .

Since there is only one implicit universal path quantifier in any PTL formula,
adding path filter does not incur too much overhead in [3, 2]. However, it be-
comes rather cumbersome for CTL∗ where nested path quantifiers are allowed.



Moreover, the proofs in prior formalizations would move between streams and
paths for each path quantifier, even though paths are in fact of the main interest.
Our formalization, on the other hand, is solely based on paths. Users do not see
any reference to streams and can focus on key concepts in the our formalization.

6 Examples

With the formalization of CTL∗ in Section 5, we are able to prove validity of
axiom schemata and soundness of inference rules in axiomatizations of temporal
logics. Since PTL and CTL are subclasses of CTL∗, restrictions of our CTL∗ for-
malization suffice for the proofs of respective theorems in their axiomatizations.
It is unnecessary to have formal proofs in different formalizations. Moreover,
all axiom schemata and inference rules in our modular formalization can be in-
stantiated for different security models. In the following sections, we discuss the
validity and soundness of axiom schemata and inference rules in axiomatizations
of PTL, UB, CTL, and CTL∗ respectively.

6.1 PTL

Figure 1 shows the axiomatization of PTL in [6]. For each axiom schema, we
would like to show it is indeed valid in our formalization. We say a PTL formula
f is valid (denoted by |= f) if K,π |= f for any Kripke structure K and path π.
An instance of an axiom schema Ψ is a PTL formula obtained by substituting
all variables in Ψ with PTL formulae. For instance, suppose P ∈ AP . Then
X¬GP ⇔ ¬XGP is an instance of the axiom schema (ax1). We say an axiom
schema Ψ is valid if all instances of Ψ are valid.

To show the validity of the axiom schema (ax2) in Figure 1, we first formalize
the validity of path formulae as follows.

Definition model_p (f : path_formula) := forall pi : path, f pi .

Notation "‘|= f" := (model_p f) (at level 100, no associativity) .

(ax1) ` X¬f ⇔ ¬Xf
(ax2) ` X(f ⇒ g) ⇒ (Xf ⇒ Xg)
(ax3) ` Gf ⇒ (f ∧XGf)

(mp)
` f ` f ⇒ g

` g

(nex)
` f
` Xf

(ind)
` f ⇒ g ` f ⇒ Xf

` f ⇒ Gg

Fig. 1. An Axiomatization of PTL

It is now straightforward to state the validity of each axiom schema. For
example, the validity of the axiom schema (ax2) is as follows.



Theorem ax2 : forall f g : path_formula,

‘|= (X (f ‘==> g)) ‘==> (X f) ‘==> (X g) .

The soundness of inference rules can be similarly formalized. The theorem
ind, for instance, formalizes the soundness of the rule (ind).

Theorem ind : forall f g : path_formula,

(‘|= f ‘==> g) /\ (‘|= f ‘==> X f) -> (‘|= f ‘==> G g) .

Note that the theorem ax2 is in fact more general than the validity of axiom
schema (ax2) in the pure PTL setting. The theorem states that the axiom schema
(ax2) is valid not only for all PTL formulae, but also all path formulae in CTL∗.5

Similarly, the theorem ind is more general than the soundness of inference rule
(ind). The proofs of validity and soundness are carried out in the default Coq
environment. We are able to prove the validity of all axiom schemata and the
soundness of all inference rules in Figure 1 with our formalization.

6.2 UB

As for the PTL axiomatization, we would like to prove the validity and soundness
theorems of the axiomatization of UB in Figure 2 formally. Specifically, we say
a state formula p is valid if K, s ` p for any Kripke structure K and state s. An
axiom schema is valid if all its instances are valid. The validity of state formulae
is formalized as follows.

Definition model_s (p : st_formula) := forall s : st, p s .

Notation "|= p" := (model_s p) (at level 100, no associativity) .

(A1) ` AG(p⇒ q) ⇒ (AGp⇒ AGq)
(A2) ` AX(p⇒ q) ⇒ (AXp⇒ AXq)
(A3) ` AGp⇒ AXp ∧AXAGp
(A4) ` AG(p⇒ AXp) ⇒ (p⇒ AGp)
(E1) ` AG(p⇒ q) ⇒ (EGp⇒ EGq)
(E2) ` EGp⇒ p ∧EXEGp
(E3) ` AGp⇒ EGp
(E4) ` AG(p⇒ EXp) ⇒ (p⇒ EGp)

(R1)
` p ` p⇒ q

` q (R2)
` p

` AGp

Fig. 2. An Axiomatization of UB

The validity of the axiom schemata and the soundness of inference rules are
formalized similarly. For instance, the validity of axiom schema (A3) is stated in
the following theorem.
5 As an anonymous reviewer points to us, it is even valid for path predicates which

are not expressible in CTL∗ because of the shallow embedding.



Theorem A3 : forall p : st_formula, |= (A G p) ==> (A X p && A X A G p) .

As in PTL, the theorem A3 is more general than the validity of the axiom
schema (A3) in the pure UB setting. Unlike PTL, however, the proofs of validity
and soundness require switching between state and path formulae. Since our
formalization is in fact for CTL∗, each temporal operator in a UB formula has
to be decomposed as a path quantifier followed by a linear temporal operator.
Consider the validity of the axiom schema (E3).

Theorem E3 : forall p : st_formula, |= (A G p) ==> (E G p) .

A simple proof is to demonstrate a path from any given state satisfying
AGp and show it indeed satisfies Gp. We therefore use the axiom Path.ex path

to construct an arbitrary path from the given state, and show that the path is
indeed a witness of Gp by the assumption AGp.

We are able to prove the soundness of all inference rules in Figure 2 formally.
We also establish the validity of all axiom schemata but (E4) in Calculus of
Inductive Construction. To explain the difficulty in proving the validity of (E4),
recall its formulation.

Theorem E4 : forall p : st_formula, |= (A G (p ==> E X p)) ==> p ==> E G p .

One possible proof of E4 is to construct a path satisfying Gp. But eliminating
the assumption A G (p ==> E X p) of sort Prop is not allowed in the construction
of paths of sort Set. Alternatively, we fail to demonstrate the existence of a path
satisfying Gp in classical logic. The assumption suggests that any path can be
modified to admit p in one more state. But the existence of a path satisfying
Gp in the limit eludes us. Currently, we do not know how to prove it with the
present formalization.

6.3 CTL

The axiomatization of CTL in [5, 4] is shown in Figure 3. The validity and sound-
ness of axiom schemata and inference rules follow the same style in Section 6.2.
The proof techniques used in the previous section are carried over without diffi-
culties. Indeed, the axiomatization of UB in Figure 2 can be obtained from the
axiomatization of CTL in Figure 3 [5]. It is not surprising to prove the validity
and soundness of axiom schemata and inference rules for CTL by generalizing
the proof techniques used for UB.

We have succeeded in proving the validity of all axiom schemata in Figure 3.
Unlike the proofs for the system UB, classical reasoning is used in a couple of
axiom schemata. Specifically, contraposition and De Morgan’s law are used in
the proofs of (Ax4) and (Ax6) respectively. As for the soundness of inference
rules, an obstacle similar to the axiom schema (E4) in UB is encountered in
the inference rule (R2). For other inference rules, we are able to prove their
soundness formally.



(Ax1) ` EFp⇔ E[trueUp]
(Ax2) ` AFp⇔ A[trueUp]
(Ax3) ` EX(p ∨ q) ⇔ EXp ∨EXq
(Ax4) ` AXp⇔ ¬EX¬p
(Ax5) ` E(pUq) ⇔ q ∨ (p ∧EXE(pUq))
(Ax6) ` A(pUq) ⇔ q ∨ (p ∧AXA(pUq))
(Ax7) ` EXtrue ∧AXtrue

(R1)
` p⇒ q

` EXp⇒ EXq
(R2)

` r ⇒ (¬q ∧EXr)

` r ⇒ ¬A(pUq)

(R3)
` r ⇒ [¬q ∧AX(r ∨ ¬E(pUq))]

` r ⇒ ¬E(pUq)
(R4)

` p ` p⇒ q

` q

Fig. 3. An Axiomatization of CTL

(C1) ` F¬¬f ⇔ Ff
(C2) ` G(f ⇒ g) ⇒ (Gf ⇒ Gg)
(C3) ` Gf ⇒ (f ∧Xf ∧XGf)
(C4) ` X¬f ⇔ ¬Xf
(C5) ` X(f ⇒ g) ⇒ (Xf ⇒ Xg)
(C6) ` G(f ⇒ Xf) ⇒ (f ⇒ Gf)
(C7) ` (fUg) ⇔ (g ∨ (f ∧X(fUg)))
(C8) ` (fUg) ⇒ Fg
(C9) ` A(f ⇒ g) ⇒ (Af ⇒ Ag)

(C10) ` Af ⇒ AAf (C11) ` Af ⇒ f
(C12) ` f ⇒ AEf (C13) ` A¬f ⇔ ¬Ef
(C14) ` p⇒ Ap (C15) ` AXf ⇒ XAf

(LC) ` AG(Ef ⇒ EX((Eg)U(Ef))) ⇒ (Ef ⇒ EG((Eg)U(Ef)))

(AA)
` θ ⇒ ψ

` ψ C

Fig. 4. An Axiomatization of CTL∗



6.4 CTL∗

Figure 4 shows the sound and complete axiomatization of CTL∗ in [15]. The side
condition C in the axiom schema (AA) is syntactic and somewhat complicated.
It requires pairwise inconsistency of atomic propositions in finite sets, and a
function choosing atomic propositions to hold at the next state along a path
(Definition 4 in [15]).

Unlike the axiomatizations in previous sections, both path and state formulae
are present. The validity of path formulae is used in the axiom schemata (C1)
to (C8), (C11), and (C15). The axiom schemata (C9), (C10), and (C12) to
(C14) are valid as state formulae. Their formal proofs can be carried out in our
formalization of CTL∗. Prior formalizations, in comparison, would not even be
able to formulate axiom schemata (C12) nor (C15). A CTL∗ formalization is
therefore needed in establishing validity of axiom schemata formally.

Except the axiom schemata (LC), we have proved the validity of all axiom
schemata in Figure 4. The axiom schema (LC) is another generalization of the
axiom schema (E4) in UB and the inference rule (R3) in CTL. The side condition
C in the inference rule (AA) is too complicated to formulate in our current
formalization. The other axiom schemata but (C1) are proved in the default Coq
environment. The axiom schema (C1), apparently, requires classical reasoning
and is proved by importing the Classical theory.

7 Conclusion and Future Work

A modular formalization of CTL∗ is presented in the paper. The formalization
subsumes prior works of PTL and CTL. We have succeeded in proving validity
and soundness of an axiomatization of PTL formally. For the branching-time
temporal logics UB, CTL, and CTL∗, almost all validity of axiom schemata and
soundness of inference rules have also been established in the new formalization.
Furthermore, the modularity of our formalization allows to be instantiated for
different security models, provided they satisfy certain assumptions. Theorems
proved in this paper are reusable in any instantiation.

One possible way to resolve the difficulties in the validity of the axiom
schemata (E4) in UB, (LC) in CTL∗, and the soundness of the inference rule
(R3) in CTL is by strong specification [2]. We are working on a new formal-
ization based on strong specification to address the problem. For the syntactic
side condition of the inference rule (AA) in CTL∗, a formalization with syntac-
tic representations of CTL∗ formulae would be necessary. A generalized version
of the deep embedding of CTL∗ in [17] could be useful in formulating the side
condition in (AA).
Acknowledgment. We would like to thank Yih-Kuen Tsay and anonymous
reviewers for their constructive comments in improving the paper.
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