
Toward Unbounded Model Checking
for Region Automata?

Fang Yu and Bow-Yaw Wang

Institute of Information Science, Academia Sinica
Taipei 115, Taiwan, Republic of China
{yuf, bywang}@iis.sinica.edu.tw

Abstract. The large number of program variables in a software verifica-
tion model often makes model checkers ineffective. Since the performance
of BDD’s is very sensitive to the number of variables, BDD-based model
checking is deficient in this regard. SAT-based model checking shows
some promise because the performance of SAT-solvers is less dependent
on the number of variables. As a result, SAT-based techniques often
outperform BDD-based techniques in discrete systems with a lot of vari-
ables. Timed systems, however, have not been as thoroughly investigated
as discrete systems. The performance of SAT-based model checking in
analyzing timing behavior – an essential task for verifying real-time sys-
tems – is not so clear. Moreover, although SAT-based model checking
may be useful in bug hunting, their capability in proving properties has
often been criticized. To address these issues, we propose a new bounded
model checker, xBMC, to solve the reachability problem of dense-time
systems. In xBMC, regions and transition relations are represented as
Boolean formulae via discrete interpretations. To support both property
refutation and verification, a complete inductive algorithm is deployed,
in addition to the requirement of reaching an intrinsic threshold, i.e. the
number of regions. In an experiment to verify the client authentication
protocol of Cornell Single Sign-on systems, xBMC outperforms the ef-
ficient model checker, RED [35], even if no bugs exist. We believe that
xBMC may provide an effective and practical method for timing behavior
verification of large systems.

Keywords: Induction, Verification, Model checking, Region automata , Real-
time systems, BMC.

1 Introduction

Successful model checking for software verification mandates the ability to han-
dle a large number of program variables. Because the size of binary decision
diagrams (BDDs) may grow rapidly as the number of variables increases, soft-
ware verification remains a difficult problem for conventional BDD-based model
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checkers. On the other hand, satisfiability (SAT) solvers are less sensitive to the
number of variables and SAT-based model checking, i.e. bounded model check-
ing (BMC), is showing some promise in this regard [9][13]. As Nierbert et al. [30]
suggested, BMC has benefits in terms of bug hunting, especially for systems too
large for complete verification, even though it is less efficient in guaranteeing the
correctness of software systems.

A recent comparison [5] of the two techniques shows that BDD-based model
checkers require more space, but SAT-based model checkers require more time.
As a result of numerous proposals for improving the efficiency of SAT solvers
[23][26], the performance of BMC’s has improved automatically. Consequently,
BMC has recently gained acceptance in the research community, especially for
software verification [14][18]. However, for the analysis of timing behavior, which
is considered essential for verifying embedded systems, protocol implementations
and many other types of software, the advantages of SAT-based BMC are less
clear. A fundamental problem with BMC is its lack of support for timing be-
havior modeling. We have addressed this issue in [38], where we applied BMC
techniques to region automata and encoded the implicit simulation of a region-
based state exploration algorithm as Boolean formulae. In that project we not
only characterized regions as combinations of discrete interpretations, but also
precisely encoded the settings of these interpretations as Boolean formulae. We
proved that the satisfiability of these Boolean formulae is equivalent to solving
the forward reachability problem of dense-time systems, within steps bounded
by the number of regions.

Although SAT-based verification techniques are very useful in bug hunting,
their capability in proving properties has often been criticized. An inductive
method offers SAT-based verification an opportunity to prove safety properties
efficiently. The basic idea, just like mathematical induction, is to prove the safety
property for all steps by assuming the properties of the previous steps. Previous
research has been devoted to this issue [10][15][28][33], but none of it supports
timing behavior.

In this paper, we extend the above research to timed systems. By applying a
loop-free inductive method to BMC, we implement xBMC for inductive reacha-
bility analysis of region automata. When the inductive method is effective, it can
verify the given safety property within a handful of steps, regardless of the diam-
eter of the reachability graph. Compared to research on the encoding of timing
behavior [7][25][29][31][31], discretization in [38] allows us to deploy the induc-
tive method rather straightforwardly. Compared to conventional model checkers
[11][22][35], we provide a more effective and practical method to alleviate state
explosion, especially for those systems too large to verify.

Our experiments verify the correctness of the client authentication protocol
of Cornell Single Sign-on systems(CorSSO) [19]. The experimental results show
that xBMC is more efficient than RED [35] for correctness guarantee, as well as
for bug hunting.

The rest of this paper is organized as follows. In Section 2 we briefly de-
scribe timed automata having both discrete and clock variables. In Section 3



we describe our previous effort that encodes the behavior of region automata as
Boolean formulae. An inductive algorithm is given in Section 4. An inductive
reachability analysis is given in Section 5, and experimental results are summa-
rized in Section 6. After discussing related works in Section 7, we present our
conclusions in Section 8.

2 Timed Automata

A timed automaton (TA) [1][2][4][37] is an automaton with a finite set of clock
variables. Its behavior consists of a) alternating discrete transitions that are
constrained by guarded conditions on discrete and clock variables and b) time
passage in which the automaton remains in one state, while clock values increase
at a uniform rate. For clarification of discretization purposes, we use a TA that
contains both discrete and clock variables, rather than one that models the
discrete parts as locations.

2.1 Constraint and Interpretations

For a set D of discrete variables and a set X of clock variables, set Φ (D,X) of
both constraints ϕ is defined by: ϕ := ff |d = q|x/c|¬ϕ|ϕ1∨ϕ2, where d ∈ D and
q ∈ dom (d), x ∈ X, / ∈ {<,=,≤}, and c ∈ IN is a non-negative integer. Typical
short forms are:tt ≡ ¬ff , ϕ1∧ϕ2 ≡ ¬ ((¬ϕ1) ∨ (¬ϕ2)) and ϕ1 → ϕ2 ≡ ¬ϕ1∨ϕ2.
A discrete interpretation s assigns each discrete variable a non-negative integer
that represents one value from its predefined domain, i.e. s : D 7→ IN. A clock
interpretation ν assigns a non-negative real value to each clock, i.e. ν : X 7→ IR+.
We say that an interpretation pair (s,ν) satisfies constraint ϕ if and only if ϕ is
evaluated as true, according to the values given by (s,ν).

2.2 Timed Automata

A TA is a tuple of 〈D,X,A, I, E〉, where:

1. D is a finite set of discrete variables, with each d ∈ D having a predefined
finite domain denoted by dom (d),

2. X is a finite set of clock variables,

3. A is an action set with each τ ∈ A consisting of a finite series of discrete
variable assignments,

4. I specifies an initial condition, and

5. E ⊆ Φ (D,X) × A × 2X is a finite set of edges. An edge e : 〈ϕ, τ, λ〉 ∈ E
represents the transition consisting of:ϕ ∈ Φ (D,X) as a triggering condition
which specifies when the transition can be fired, τ ∈ A as the action that
changes the current discrete interpreatation into the next one, and λ ⊆ X
as the set of reset clocks.



For an action , s [τ ] denotes the discrete interpretation after applying τ ∈ A to s.
For δ ∈ IR+, ν+δ denotes the clock interpretation that maps each clock x to the
value ν (x)+δ. For λ ⊆ X, ν [λ] denotes the clock interpretation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clocks. The essence of a TA is
a transition system 〈Q,→〉, where Q is the set of states and → is the transition
relation. A state of a TA is a pair (s, ν) such that s is a discrete interpretation
of D and ν is a clock interpretation of X. We say (s, ν) is an initial state, where
s maps discrete variables to values that satisfy I and ν (x) = 0 for all x ∈ X.

There are two types of →, i.e.
δ→ and

e→:

1. For a state (s, ν) and an increment δ ∈ IR+, (s, ν)
δ→ (s, ν + δ).

2. For a state (s, ν) and an edge e : 〈ϕ, τ, λ〉 such that (s, ν) satisfies ϕ, (s, ν)
e→

(s [τ ] , ν [λ]).

A run r : (s0, ν0)→ (s1, ν1)→ · · · of a TA is an infinite sequence of states and
transitions, where for all i ∈ IN, (si, νi) ∈ Q. An arbitrary interleaving of the two
transition types is permissible. A state (s′, ν′) is reachable from (s, ν) if it belongs
to a run starting at (s, ν). Let Run (s, ν) denote the set of runs starting at (s, ν).
We define Reach (s, ν) : {(s′, ν′) |∃r ∈ Run (s, ν) and i ∈ IN, (si, νi) = (s′, ν′)} as
the set of states reachable from (s, ν).

3 Boolean Encoding of Region Automata

System states change as time progresses, but some changed states are not dis-
tinguishable by constraints. Based on this observation, Alur et al. [2] defined the
equivalence of clock interpretations and proposed region graphs for the verifica-
tion of timed automata. We represent the set of clock assignments of an equiv-
alence class as (νd, νγ), a pair of discrete interpretations mapping integral parts
and fraction orderings of clock assignments respectively. Given an equivalence
class [ν], integral parts of the clock assignments stand for the discrete interpre-
tation νd in (1), which maps each clock x ∈ X, assuming ν (x) = t and t = btc+
frac (t), into an integer representing an interval from {[0, 0] , (0, 1) , [1, 1] , · · · ,
(cx − 1, cx) , [cx, cx] , (cx,∞)}.

νd (x) =





2 btc , if btc ≤ cx ∧ frac (t) = 0
2 btc+ 1, if btc ≤ cx ∧ frac (t) 6= 0
2cx + 1, otherwise

(1)

Given a discrete interpretation νd, we define Inv (νd) : {x|∃k ∈ IN, k < cx,
νd (x) = 2k+1} as the set of clocks having non-zero fractions. Then, the discrete
interpretation νγ in (2) maps each clock pair (x, y), where x, y ∈ Inv (νd) and
x < y, into a relation from {≺,�,≈}. Note that νγ stands for the fraction
ordering of an equivalence class [ν].



νγ (x, y) =




≺, if frac (ν (x)) < frac (ν (y))
�, if frac (ν (x)) > frac (ν (y))
≈, if frac (ν (x)) = frac (ν (y))

(2)

It’s clear that (νd, νγ) exactly represents [ν], while νd and νγ are defined in (1)
and (2) respectively. For example, an equivalence class (1 < x < y < 2) ∧ z = 1
is represented by the pair (νd, νγ), where νd (x) = 3 ∧ νd (y) = 3 ∧ νd (z) =
2∧νγ (x, y) =≺. Accordingly, a region, (s, [ν]), can be precisely represented as an
interpretation state, (s, νd, νγ), where three discrete interpretations s : D 7→ IN,
νd : X 7→ IN and νγ : Inv (νd)× Inv (νd) 7→ {≺,�,≈} are involved.

A TA’s transition system then can be represented by a finite discrete inter-

pretation graph
〈
Q∼=,

∼=→
〉

, where Q∼= is the set of interpretation states and
∼=→ is

the interpretation transition relation. There are two types of
∼=→, i.e.

δ∼=→ and
e∼=→:

1. Given a state (s, νd, νγ), (s, νd, νγ)
δ∼=→
(
s′, ν′d, ν

′
γ

)
if and only if ψtime is eval-

uated as true, according to the values given by
(
s, νd, νγ , s

′, ν′d, ν
′
γ

)
.

2. Given a state (s, νd, νγ) and an edge e : 〈ϕ, τ, λ〉, (s, νd, νγ)
e∼=→
(
s′, ν′d, ν

′
γ

)

if and only if ψtran is evaluated as true, according to the values given by(
s, νd, νγ , s

′, ν′d, ν
′
γ

)
.

ψtime defines the successor relation formula for capturing a region moving
into a subsequent region due to time passage, while ψtran defines the discrete
transition formula for triggering an edge using discrete interpretations. Then the
transition relation formula T is ψtran∨ψtran. In [38], we proposed formal defini-
tions and encoding methods of these formulae, and proved that these encodings
represent the exact behavior of region automata.

Our state variables B are given in (3), in which a set of Boolean variables
is used to encode interpretation states. Given each discrete variable’s domain
and each clock’s largest constraint value, the number of state variables, i.e. |B|,
equals

∑ dlg |dom (d)|e +
∑ dlg (2cx + 2)e + |X| |X − 1|. To perform BMC, we

add a copy of B to the set of state variables at each iteration.

B =
{bdk |d ∈ D, 0 ≤ k ≤ dlg |dom (d)|e} ∪
{bxk |x ∈ X, 0 ≤ k ≤ dlg (2cx + 2)e} ∪{
bxyk |x, y ∈ X,x < y, k ∈ {0, 1}

} (3)

Finally, we build a circuit representation to translate a bit-vector logic (used
to build the equation for a concrete transition relation) into conjunctive normal
form (CNF).



4 Induction

Although SAT-based model checking is very useful for bug hunting [9][13][38], its
ability to prove properties is often criticized. The inductive method offers SAT-
based model checking an opportunity to prove safety properties efficiently. The
basic idea, like mathematical induction, is to prove the safety property for all
steps by assuming the property on previous steps. Here, we briefly illustrate the
technique. Interested readers are referred to [10][15][28][33] for further discussion.
Let q0 ∈ Q where q0 is the initial state and P (•) a predicate over states in Q.
We would like to prove that for any state q reachable from q0, P (q) holds by
induction. Firstly, we verify if P (q0) holds. If not, an error is reported for q0.
If P (q0) holds, we check whether P (q) ∧ (q → q′) ∧ ¬P (q′) can be satisfied, i.e.
whether it is possible to reach a state q′ that does not satisfy P (•) from any state
q satisfying P (•). If it is impossible, we know that P (•) must hold for any state
in Reach(q0). To see this, recall that P (q0) holds. We argue that all successors
of q0 must satisfy P (•). If not, P (q) ∧ (q → q′) ∧ ¬P (q′) must be satisfiable for
some successor q′, which is a contradiction. Similarly, we can prove all states
reachable from q0 in two steps must satisfy P (•), and so on. Hence we conclude
all reachable states must satisfy P (•).

In the example, the depth of the inductive step is one. We call it the simple
induction. However, the capability of simple induction is very limited. Just like
mathematical induction, it may be necessary to assume several previous steps in
order to prove the property. In the literature, induction with arbitrary depths has
been proposed. Unfortunately, the inductive technique cannot prove all safety
properties, even with arbitrary depths. In [10][15][28][33], various mechanisms
are proposed to make induction complete. Here, we use loop-free induction. In
loop-free induction, additional constraints are applied to prevent loops. Consider
a self-loop transition, followed by a state that does not satisfy P (•). The prob-
lematic state can always be reached by an inductive step of arbitrary depth. It
suffices to consider a short path leading to the problematic state and still prove
the soundness and completeness of the induction. By requiring all previous states
to be distinct, loop-free induction eliminates unsubstantial paths. Based on the
discretization scheme in Section 3, we can deploy loop-free induction to speed
up the verification of safety properties. In Figure 1, which shows the flow of the
inductive method, Bi represents the state variables of ith step and P (B) is true
when the valuation of B satisfies the predicate P (•).

The flow tries to establish the loop-free inductive step within a given bound.
The inductive step essentially checks whether it is possible to reach any bad state
following several safe states. If it is impossible, we stop; otherwise, the length is
increased and the algorithm repeats the loop.

5 Reachability Analysis

In this section, we describe how we deal with the reachability problem by solving
the satisfiability problem of an expanding Boolean formula iteratively. Moreover,
we show how to apply loop-free induction in BMC efficiently.



Induction(P, MaxBound)
var i:0..MaxBound;

begin
i:=0;
loop forever

if (¬SAT ((P (B0) ∧ (B0 → B1) ∧ . . . ∧ P (Bi) ∧ (Bi → Bi+1)∧
¬P (Bi+1)) ∧ (

∧
j<iBi 6= Bj))) return “success”;

if (i=MaxBound) return “fail within MaxBound steps”;
i:=i+1;

end.

Fig. 1. Flow of Inductive Method

5.1 Bounded Reachability Analysis

Given an initial condition, a risk condition, a transition condition and an inte-
ger bound, we solve the bounded reachability problem by iteratively calling the
SAT solver. We unfold the interpretation transition relation until the SAT solver
returns a truth assignment, or reaches the bound. Let I(Bi) and R(Bi) respec-
tively denote the CNF formulae of the given initial and risk conditions over Bi.
The implementation of BoundedFwdReach() is given in Figure 2. By conjoining
the formula with the negation clause of the risk condition, each intermediate
result is saved for use in later iterations to speed up the decision procedure of
the SAT-solver. In the next section, we also show that this conjunction can be
used directly to apply the inductive method.

If the risk state is reachable, the formula will be satisfied at the ith step, and
a truth assignment will be returned by the SAT solver. The procedure will then
terminate and generate a counterexample. The formula will keep on expanding
if a risk state is not reached. Therefore, if the risk state is unreachable, the pro-
cedure terminates when either MaxBound is reached, or memory is exhausted.
Given a TA having nregions, the final formula will contain

BoundedFwdReach(I, R, MaxBound)
var i:0..MaxBound;

begin
i:=0; F:=I(B0);
loop forever

if (SAT(F∧ R(Bi))) return “reachable”;
if (i=MaxBound) return “unreachable within MaxBound steps”;
F:=F∧¬ R(Bi)∧(Bi → Bi+1);
i:=i+1;

end.

Fig. 2. Bounded Forward Reachability Analysis



5.2 Toward Unbounded Reachability Analysis

Since the number of regions is exponential to the number of clocks, as well
as each clock’s largest constant, the threshold is usually prohibitively high. In
IndFwdReach(), we combine loop-free induction() with BoundFwdReach() and
obtain a complete inductive algorithm for forward reachability analysis. Note
that, in Fig. 3, we denote the released formula as F/I, i.e. removing the clauses
of I from F . Two extra checks for the loop-free requirement and the induction are
used to help determine completeness in early steps. If the loop-free requirement
is not satisfied, which means no new states can be reached in the next step, the
procedure can terminate and the risk state is unreachable. For the induction, we
regard P (•) as ¬R(•), i.e. the negation of the risk condition. Once the induction
succeeds, we can conclude that all reachable states must satisfy ¬R(•), which
implies that the risk state is unreachable.

One limitation of this inductive method is that we can not predict in which
step it can terminate with “success” returned. Although regions are finite and
we can guarantee success when MaxBound exceeds the number of regions, in
the worst case, the inductive method may not determine termination ahead,
but only induce overhead. However, when the inductive method is effective, it
can verify the given safety property within a handful of steps, regardless of the
diameter of the reachability graph. In Section 6, we conduct an experiment to
show the effectiveness of induction.

IndFwdReach(I, R, MaxBound)
var i:0..MaxBound;

begin
i:=0; F:=I(B0);
loop forever

if (¬SAT(F)) return “unreachable by loop-free”;
else if (SAT(F∧R(Bi))) return “reachable”;
else if (¬SAT((F/I)∧R(Bi))) return “unreachable by induction”;
else if (i=MaxBound) return “unreachable within MaxBound steps”;
else

F:=F∧¬ R(Bi)∧(Bi → Bi+1)∧(
∧
j<iBi 6= Bj);

i:=i+1;
end.

Fig. 3. Inductive Forward Reachability Analysis

6 Experiment

6.1 Cornell Single Sign-On

Cornell Single Sign-On (CorSSO) [19] is a distributed service for network au-
thentication. It delegates client identity checking to multiple servers by threshold



Authentication Access

4

2

1

3

3.y<TE ∧ ((p=1 ∧ a>TH1) ∨ (p=2 ∧ a>TH2))

1.p = 0, p:={1,2};a:=0;reset{x,y};
2.p 6= 0 ∧ x>TA, a:=a+1;reset{x,y};

4.p:=0;

Fig. 4. Each client in the CorSSO protocol has two discrete variables and two
clocks: p recording the chosen sub-policy, a for the number of collected authen-
tications, x used to constraint the time spent collecting a certificate, and y
used to constraint the expired time of the authorized sub-policy. There is also
an auxiliary discrete variable to record locations. Initially, all processes are in
Authentication with all variable values equaling zero.

cryptography. In CorSSO, there are three kinds of principles, namely, authenti-
cation servers, application servers and clients. For a client to access the services
provided by an application server, he has to identify himself by the authen-
tication policy specified by the application server. The authentication policy
consists of a list of sub-policies each specifying a set of authentication servers.
A client is allowed to access the application server if he had complied with any
sub-policy, i.e. obtaining sufficient certificates from the specified authentication
servers within a specified time.

Unlike monolithic authentication schemes where the server is usually over-
loaded with authentication requests, the authentication policies in CorSSO allow
a client to prove her identity by different criteria. With threshold cryptography,
each criterion is divided into requests to multiple authentication servers. The au-
thentication process is therefore distributed, so the load of each authentication
server is more balanced.

In our experiments, we model client behavior. In the simplified client model
shown in Figure 4, a client has only two locations: Authentication and Access.
In Authentication, he firstly chooses one of the two policies by setting the value
of p non-deterministically. If the first policy is chosen, i.e. p = 1, he needs to
collect more than TH1 certificates from the authentication servers. Similarly, more
than TH2 certificates are needed if the second policy is chosen. Then he starts
to collect certificates. If he had obtained sufficient certificates within the time
limit, he can then move to Access. Finally, he can discard the certificates and
reset the policy, i.e. p := 0, and then return to Authentication.

To model timing constraints, we use two clock variables x and y. Let us sup-
pose that it spends at least TA to acquire a certificate. Then one new certificate
can be added until x exceeds TA, and once it collected, x is reset for the next
certificate. Furthermore, all certificates for a sub-policy must be collected within
TE, which is modeled by y. Note that y is reset each time the client choosing a
new sub-policy.



6.2 Experimental Results

We compare the performance of our model checker with RED [35], a full TCTL
model checker for timed systems. In the experiments, we first verify the safty
property that all clients in Access have acquired sufficient certificates necessi-
tated by the chosen policy. Then we implant a bug by mistyping TH2 for TH1 in
the transition 3 in Figure 4. This may raise a violation against the safty property
once TH1 < TH2. Systems with two to eleven clients are checked by both xBMC
and RED. It is noted that we did not turn on the symmetry reduction option
in RED, even though the systems under test are highly symmetric1. Since the
present technique does not take symmetry into consideration, we think it would
be unfair to compare it with other heuristics. Both RED and xBMC report the
safety property is satisfied for normal cases, and the manually-inserted bugs are
detected by both tools as expected. The performance results2 are shown in Table
1. Instead of exploring all regions in the system, xBMC guarantees the correct-
ness by induction at the third step. On the other hand, the traditional reach-
ability analysis in RED has to explore all representatives of equivalent states.
Consequently, the time spent by xBMC is only a fraction of that required by
RED3. For all bug inserted cases, xBMC reports that the property is falsified at
the 12th step. Since SAT-based BMC is efficient for finding defects in design, the
performance of xBMC is in accord with our expectations. Compared to RED,
xBMC spends only 3.33% time cost to find a counterexample in the system with
11 clients. Note that xBMC stops once a bug is detected, which means that the
performance in bug hunting may not necessarily depend on system size.

Correctness Guarantee Bug Hunting
# of clients RED 5.0 XBMC 2.1 RED 5.0 XBMC 2.1
2 0.25s 0.03s 0.24s 10.00s
3 2.71s 0.03s 2.64s 29.11s
4 18.24s 0.11s 17.50s 50.55s
5 89.25s 0.26s 85.23s 99.81s
6 338.86s 0.41s 316.28s 153.97s
7 1076.37s 0.59s 990.16s 278.96s
8 2960.56s 0.94s 2734.60s 554.69s
9 7169.19s 4.94s 6545.04s 739.46s
10 15950.74s 5.87s 14727.29s 582.09s
11 33201.08s 12.38s 30722.57s 746.34s

Table 1. Experimental Results of xBMC and RED

1 Symmetry reduction is not activated by default.
2 All experiments were performed on a Pentium IV 1.7 GHz computer with 256MB of

RAM running the Linux operating system.
3 RED performs much better if symmetry reduction is used. In fact, it outperforms

xBMC almost universally with the heuristic.



7 Related Work and Discussion

Due to the success of hardware verification by SAT-based techniques, SAT-based
model checking has recently gained considerable attention among software ver-
ification researchers. Clarke et al. [14] developed a SAT-based bounded model
checker for ANSI C, and the present authors used xBMC to verify Web applica-
tion code security in an earlier project [18]. Although both projects focused on
software verification, neither supported timing behavior analysis.

The verification of timed automata by checking satisfiability has been the
topic of several research projects. Most research work encodes the evaluation of
atomic constraint to variants of predicate calculus with real variables. Niebert et
al. [30] represented the bounded reachability problem in Boolean variables and
numerical constraints of Pratt’s difference logic, while Audemard et al. [7] took
a clock as a real variable, and reduced the bounded verification of timed systems
to the satisfiability of a math-formula with linear mathematical relations hav-
ing real variables. Moura et al. [27] also used real variables to represent infinite
state systems. Penczek et al. [31][36] handled timing behavior by discretization,
in which they divided each time unit into 2n segments (n = number of clocks).
Finally, Yu et al. [38] explicitly encoded region automata and proved that the
reachability analysis of dense-time systems is equivalent to solving the satisfia-
bility of Boolean formulae iteratively. However, most of these approaches do not
emphasize the correctness guarantee.

Some researchers have tried to determine whether iterative satisfiability anal-
ysis can terminate early if more restrictive formulae are generated based on sat-
isfiability results from previous iterations. Moura et al. [28] achieved this by
using induction rules to prove the safety properties of infinite systems. Although
they were able to detect cases where early termination was possible, they could
not guarantee termination. In [34], Sorea checked full LTL formulae based on
predicate abstraction to extend BMC capabilities. Compared to encoding ab-
stract predicates, encoding regions themselves provides at least two advantages
– simplicity and an intrinsic bound for termination.

McMillan [24] uses interpolations as an over-approximation of the reachable
states. His technique not only verifies the correctness of safety properties, but
also guarantees termination. However, it has yet to support timing analysis.
Compared to interpolation, where the analysis of internal information in SAT-
solvers is required, the inductive method can be implemented by treating SAT-
solvers as black boxes. We would like to investigate the merging of interpolations
and our approach in the future.

Unlike other reachability analysis techniques for timed automata, discretiza-
tion allows us to deploy the inductive method rather straightforwardly. However,
it is unclear how to apply the same technique in BDD [12], DBM [21] or CRD
[35]. It would also be interesting to develop a corresponding inductive method
for them and compare their performance with our discretization approach.



8 Conclusion and Future Work

BMC is more efficient in identifying bugs, especially for systems with a large
number of program variables; however, its correctness guarantee performance
can be disappointing.. With induction, it is now possible to prove safety proper-
ties efficiently by BMC in some cases. With the help of discretization, we are able
to migrate the success of the discrete-system verification to timing-behavior anal-
ysis. We applied induction algorithms to our previous research on discretization
of region automata, and thereby reduced the reachability analysis of dense-time
systems to satisfiability. The results of our primitive experiments indicate that
even without enhancements (e.g. symmetry reduction, forward projection, and
abstraction), our approach is more efficient than RED in correctness guaran-
tee as well as bug hunting. However, one limitation of our approach is that the
performance depends on whether and when the induction successes.

In the future, we plan to investigate on enhancements to improve the effi-
ciency. Notably, the interpolation technique proposed in [24] is of interest to us.
Secondly, we would like to integrate xBMC with WebSSARI [18] in order to
verify the timing behavior of real-world Web applications.
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